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1. Introduction

In this report, we study the representations of the Schur cover of the eleven (untwisted) finite groups of
Lie type whose Schur multiplier is non-trivial. While the complex representations of finite groups of Lie
type are well-known, it seems that there has been little research into their projective representations, or
equivalently, the representations of the Schur covers of these groups. In most cases, the Schur multiplier
M(G) of a finite group of Lie type G is trivial, hence this reduces to the well-known theory. However,
in small ranks and characteristics, the Schur multiplier of G can be non-trivial, and a list of all such
groups is given in the following Theorem of Steinberg (1981). Following Steinberg’s convention, we name
these Chevalley groups by their corresponding Dynkin diagrams and specify the field Fq between the
parentheses. A description of this classification can be found in [RH07].

Theorem 1.1. [Ste81, Theorem 1.1] Let G be a perfect simply connected Chevalley group over Fq.
Then the Schur multiplier of G is trivial except for the following cases:

(a) If G is A1(4), A2(2), A3(2), C3(2), F4(2) or G2(4), then M(G) = Z/2Z,
(b) If G is A1(9), B3(3) or G2(3), then M(G) = Z/3Z,
(c) If G is A2(4) then M(G) = Z/4Z× Z/4Z,
(d) If G is D4(2) then M(G) = Z/2Z× Z/2Z.

Note that each of these groups being perfect means that they have a universal central extension whose
index is the size of the Schur multiplier.

Given a reductive group G, let its Schur multiplier be A. We then consider Schur covers G̃ given by
the short exact sequence

1→ A→ G̃→ G→ 1.

It is possible to construct representations of a reductive group G from representations of its subgroups;

We set out to construct irreducible representations of G̃ in an analogous way. In particular, we are
interested in constructing honest representations—representations whose restriction to A does not just

constitute the trivial representation. These are precisely the representations of G̃ which cannot be
obtained by inflating representations of G.

In the non-cover case, if B is a Borel subgroup of a reductive group G, with unipotent radical U and
maximal torus T , we can write B = U o T . We then can take representations on T and inflate them
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to B by letting them act trivially on U . We can then induce these new representations to obtain either
an irreducible representation of G, or a sum of two irreducibles (one of which is 1-dimensional). The
interested reader is encouraged to consult [DL76] for more on constructing irreducible representations of
G from those of the torus.

However, the same strategy does not work in the metaplectic case. Given a subgroup H ≤ G and the

projection map G̃
φ−→ G, let H̃ denote the preimage φ−1(H). Then Theorem 3.1 tells us that there exists

T ′ ≤ T̃ such that T ′ ∼= T and

B̃ = Ũ o T ′.

The analogous strategy would then be to inflate from T ′, but this would only give us the representations

of G̃ which arise via inflation from G and so does not account for the honest representations of G̃. For

this strategy to have yielded honest representations, we would have needed B̃ = U ′ o T̃ instead, where

U ′ ∼= U is a copy of U in G̃, but Theorem 3.4 implies that there is no homomorphic section of U in Ũ .

Therefore, we turn to a different strategy for constructing irreducible representations of G̃, again trying
to emulate a strategy which worked for G. In the usual reductive group case, we have the following result
of Gelfand and Graev, where U is the unipotent radical of a Borel subgroup B of a reductive group G:

Theorem 1.2. [Ste67, Theorem 49] Let G be a finite Chevalley group and let λ be a character on U
such that λ |Xa

6= 1 for simple roots a in the root system corresponding to G and λ |Xa
= 1 for a a

positive but not simple root. Then IndGU λ is multiplicity-free.

The induced representation IndGU λ in the previous theorem is called the Gelfand-Graev representation
of G. The goal of this project is to construct an analogue of the Gelfand-Graev representation in the
metaplectic case for the 11 groups in Theorem 1.1. We have not however been able to find an exact
analogue. Indeed, the data in Appendix B suggests that in general, a representation of the preimage

φ−1(U) = Ũ will not induce to be multiplicity-free in G̃. However, we can still attempt to construct

representations of Ũ which induce to have minimal multiplicity in G̃. In an attempt to better understand

the representations of Ũ and their relation to those of G̃, we have the following results:

Theorem 1.3 (Corollary 3.10.1). All 1-dimensional representations of Ũ factor through U .

This result provides some information about the structure of the honest representations of Ũ . Fur-
thermore, we have the following:

Theorem 1.4 (Theorem 3.16). Let 1→ A→ G̃
φ−→ G→ 1 be a central extension. Let H be a subgroup

of G, and let H̃ = φ−1(H) be the pre-image of H. Given representations π1, π2 of H̃ such that〈
ResH̃Aπ1,ResH̃A π2

〉
= 0

then the induced representations πG̃1 , πG̃2 do not share any irreducible factors. In other words, we have:〈
χ
πG̃
1
, χ

πG̃
2

〉
= 0.

This theorem tells us that when we partition representations in the cover according to A-restrictions,
induction preserves this distinction.

Our conjectures in §4 present several further avenues to explore irreducible representations of Ũ and

G̃. Of particular interest is Conjecture 2, which claims that if two representations of Ũ are isotypic
components of the induced representation of the same character on A, then they will induce to the same

representation on G̃. This conjecture would provide a promising Gelfand–Graev analogue. Indeed, we

would only need to select one representation in Ũ for each character of A. The other conjectures primarily

concern Ũ . Conjecture 4 posits that all honest representations of Ũ have the same degree. Conjecture 3

claims that this degree is greater than or equal to the largest degree of an inflated representation of Ũ

from U . Conjecture 5 provides an elegant enumeration of the conjugacy classes of Ũ , which, if true, will
be of great use for proving Conjectures 4 and 3.

2. Background

Our main object of study are the Schur covers of the 11 exceptional groups from Theorem 1.1, which
are stem central extensions of these groups. In this section, we develop the requisite background on
such extensions. We also introduce some background on Schur multipliers and Schur covers, as well as
necessary terminology for representations and reductive groups.
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Definition 2.1. A short exact sequence of groups

1→ A
i−→ G→ H → 1

is a central extension of G by A if i(A) 6 Z(G), where Z(G) is the center of G. A central extension of
G by A is stem if A 6 G′, where G′ = [G,G] is the derived subgroup of G.

Definition 2.2. Two central extensions of H by A,

1→ A→ G→ H → 1

and
1→ A→ G′ → H → 1,

are equivalent if there is a group isomorphism φ : G→ G′ that commutes with the short exact sequences,
i.e, we have a commutative diagram

1 A G H 1

1 A G′ H 1.

φ

Definition 2.3. A central extension

1→ A→ G
π−→ H → 1

is split if there exists a homomorphism φ : H → G such that π ◦ φ = idH . In this case, φ(H) ∼= H and
G is a semi-direct product of A and φ(H).

We can often understand properties of the covering group through an understanding of cocycles. The
relationship between these two objects is outlined below.

Proposition 2.4. [Wei69, Theorem 5.1.2] There is a bijection

{equivalence classes of central extensions of G by A} ⇐⇒ H2(G,A).

Furthermore, the equivalence class of split extensions corresponds to the trivial cohomology class of
H2(G,A) under this bijection.

The bijection is as follows: given a central extension

1→ A→ G̃→ G→ 1

take any (set-theoretic) section ψ : G → G̃. Then σ : G × G → A given by σ(g, h) = ψ(g)ψ(h)ψ(gh)−1

is a 2-cocycle, and thus [σ] ∈ H2(G,A).

Given [σ] ∈ H2(G,A), we construct a group G̃ = {(g, a) | g ∈ G, a ∈ A} with multiplication given by
(g, a) · (h, b) = (gh, σ(g, h)ab). The central extension is then

1→ A→ G̃→ G→ 1

where the middle maps are the natural ones.
The central extensions we study are those in which a group G is extended by its Schur multiplier,

defined here along with notable facts about it.

Definition 2.5. The Schur multiplier of a group G is the group M(G) = H2(G,Z) ' H2(G,C×).

Definition 2.6. Let G be a finite group. A Schur covering group (or universal central extension) of G
is a central extension

1→M(G)→ G̃→ G→ 1

such that under the universal coefficients theorem map, defined as the mapH2(G,M(G))→ Hom(M(G),M(G))
in the short exact sequence

0→ Ext1Z(Gab,M(G))→ H2(G,M(G))→ Hom(M(G),M(G))→ 0,

the image of cohomology class corresponding to this extension is the identity map from M(G) to itself.

Remark 2.7. In general, the Schur cover of a group is not universal, and G can have multiple isoclinic
Schur covers. However, all of our groups G are perfect. This implies that Gab is trivial, and thus that
Ext1Z(Gab,M(G)) = 0. Then we have an isomorphism H2(G,M(G)) ' Hom(M(G),M(G)), showing
that the Schur cover is unique up to isomorphism.

Given a central extension, we often care whether or not it splits. One such criteria for splitting is
given by the following:
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Theorem 2.8 (Schur–Zassenhaus Theorem). Let 1 → A → G
π−→ H → 1 be a short exact sequence of

groups. If gcd(|A| , |H|) = 1, then the sequence splits.

One core property we make use of for representations of covers is whether or not they factor through
a given surjection, defined as the following:

Definition 2.9. A representation π : G→ GL(V ) factors through a surjection φ : G→ U if φ(g) = IdV
for all g ∈ kerφ. We call a representation π of G̃ honest if it does not factor through the map G̃ → G,

and similarly for Ũ and B̃.

Finally, we define certain important subgroups of a reductive group G.

Definition 2.10. Let G be a reductive group over a field k. Let B be a fixed Borel subgroup of G and
U be the unipotent radical of B. Let T denote the maximal split torus of B.

The subgroup U is of particular interest to us. It is this subgroup used in Theorem 1.2 to construct an

elegant representation of G. For this reason, we would like to better understand U and Ũ as we attempt
to extend this theorem to the cover case.

3. Results

This section introduces our main results along with supporting background. Specifically, we describe
our motivation and strategy for developing a Gelfand–Graev analogue for the metaplectic case.

We begin with a result showing how a naive attempt at parabolic induction fails in the cover case.

Theorem 3.1. Let G be a group in Theorem 1.1, and let G̃ be the Schur cover of G, so that we have
the short exact sequence

1→M(G)→ G̃
π−→ G→ 1

Let B,U, T be as in Definition 2.10. Let B̃, Ũ , T̃ be the preimages of B,U, T under π : G̃→ G. We have
the following:

(a) 1→M(G)→ T̃ → T → 1 splits, so T ' T ′ for some subgroup T ′ of T̃ ,

(b) B̃ is the normalizer of Ũ in G̃, and B̃ = Ũ o T ′.

Proof. (a) Use Theorem 2.8, with the condition that |T | = (q−1)rank(G). Note that |M(G)| is always
coprime to |T | in these cases.

(b) Using Proposition 2.4, it is a straightforward computation to prove that B̃ = NG̃(Ũ). Then use

the fact that
∣∣∣Ũ ∣∣∣ is a power of q and Schur–Zassenhaus to get the desired conclusion.

�

Because B̃ splits over T ′ ∼= T rather than T̃ , we can only use the representations of T itself, which
provides fewer than needed to do techniques in [DL76]. This motivates our desire for a Gelfand-Graev
analogue.

Before embarking on our quest for such an analogue, we must introduce some definitions and results
in group cohomology theory. For a full account of group cohomology, the reader is encouraged to consult
[Wei69].

Definition 3.2. Let G be a group, M a G-module, and H a subgroup of G. We will make use of the
following maps, defined for any n > 0. For full definitions, the reader is encouraged to read Section 2.3
of [Wei69].

(a) The restriction map Res : Hn(G,M)→ Hn(H,M).
(b) If [G : H] <∞, the corestriction map Cor : Hn(H,M)→ Hn(G,M).
(c) If H E G, the inflation map Inf : Hn(G/H,MH)→ Hn(G,M), where MH = {m ∈M | hm = m

for all h ∈ H}.

Remark 3.3. If [G : H] <∞, then by [Wei69, Corollary 2.4.9], the composition Cor◦Res : Hn(G,M)→
Hn(G,M) corresponds to multiplication by [G : H].

In order to understand the representations of Ũ and thus how to construct a Gelfand-Graev analogue,
we have the following result.

Theorem 3.4. Let G be a group in Theorem 1.1. Using notation as in Theorem 3.1, we have that

(1) 1→ A→ Ũ → U → 1

is a non-split stem extension.
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In order to prove Theorem 3.4, we develop several technical results.

Lemma 3.5. Let G be a group and M be a G-module. Assume that H2(G,M) is a p-group and that U
is a finite index subgroup of G with p - [G : U ]. Then the restriction H2(G,M)→ H2(U,M) is injective.

Proof. Consider the restriction and corestriction maps

H2(G,M)
Res−−→ H2(U,M)

Cor−−→ H2(G,M)

which is the same as multiplying by [G : U ]. Since H2(G,M) is a p-group and p - [G : U ], Cor ◦ Res is
an isomorphism. This implies Res is injective. �

Remark 3.6. The condition of Lemma 3.5 is satisfied if U is a finite index p-Sylow subgroup of G.

It is now useful to note that several of the groups relevant to our study are p-groups.

Lemma 3.7. [Ste67, Corollary to Theorem 26] For any finite Chevalley group G, U is a p-Sylow subgroup
of G, where p is the characteristic of the field k.

By Theorem 1.1, we have that M(G) is always a p-group. Since |Ũ | = |M(G)| · |U |, it follows that Ũ

is a p-Sylow subgroup of G̃ as well. Finally, we have the following p-groups.

Lemma 3.8. For G any of the groups in Theorem 1.1, both A = H2(G,C×) and H2(G,A) are p-groups,
where q is a power of p.

Proof. The first group is evidently a p-group from the list of Schur multipliers in Theorem 1.1, although
a self-contained proof is also given in [Ste67, p. 47, Corollary 2]. For the second group, note that all
such groups are perfect. Then Remark 2.7 completes the proof. �

We further require the following result:

Lemma 3.9. [Rot99, Lemma 7.64] For a central extension

1→ A→ C → G→ 1

we have that A 6 C ′ if and only if the transgression map δ : H1(A,C×)→ H2(G,C×).

Finally, we note a necessary technical fact:

Lemma 3.10. [Wei69, Theorem 3.4.3] For a group G, a normal subgroup N of G, and a G-module A,
we have a functorial short exact sequence (called the Inflation-Restriction exact sequence):

0→ H1(G/N,AN )
Inf−−→ H1(G,A)

Res−−→ H1(N,A)G/N
δ−→ H2(G/N,AN )

Inf−−→ H2(G,A)

where AN = {a ∈ A | na = a for all n ∈ N}. The map δ : H1(N,A)G/N → H2(G/N,AN ) is called the
transgression map.

Having stated the necessary results, we are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. The extension (1) corresponds to the cohomology class Res([σ]) ∈ H2(U,A),
where [σ] ∈ H2(G,A) is the cohomology class corresponding to the Schur cover of G. In particular,

Proposition 2.4 tells us [σ] is non-trivial since 1 → A → G̃ → G → 1 is a stem extension. Combining
Lemma 3.5, 3.7, and 3.8, we have that Res : H2(G,A) → H2(U,A) is injective, hence Res([σ]) is also
non-trivial, i.e: the extension (1) does not split.

On the other hand, applying Lemma 3.5, 3.7, and 3.8 again gives us an injective map

Res : H2(G,C×)→ H2(U,C×)

Using functoriality of the Inflation-Restriction exact sequence noted in Lemma 3.10, we have:

H1(A,C×) H2(G,C×)

H1(A,C×) H2(U,C×)

∼

= Res

δ

hence the transgression map is injective, thus Lemma 3.9 implies that (1) is a stem extension. �

This gives us the following corollary, which lets us better understand the honest and induced repre-

sentations of Ũ .
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Corollary 3.10.1. Applying the abelianization functor to (1) gives

A→ Ũab → Uab → 0

Theorem 3.4 implies that the first map is trivial, hence we have an isomorphism Ũab ' Uab. In particular,

[Ũ : Ũ ′] = [U : U ′], and as a result all 1-dimensional representations of Ũ factor through U .

Remark 3.11. The proof of Theorem 3.4 also applies for any subgroup H of G with index [G : H] not

divisible by p. In particular, all 1-dimensional representations of B̃ and G̃ also factor through B and G,
respectively.

We now develop some technical results describing the relationship between representations of A and

of the pullback H̃ of some subgroup H ⊂ G. These will be used to prove a structure theorem connecting

inductions of representations in Irr H̃ to their restrictions to A.

Proposition 3.12. [GR18, Exercise 4.11] For any (finite-dimensional) representations π : H → GL(V )
with induced representation πG, let R be a set of right coset representatives of G over H. Then we have:

tr(πG(g)) =
∑
r∈R

{
tr(π(h)) h = rgr−1 ∈ H
0 otherwise

Proof. Define fr,ei for r ∈ G, ei a standard basis vector of V as

fr,ei(x) =

{
π(h) · ei x = hr for h ∈ H
0 otherwise

Then {fr,ei | r ∈ R} is a basis of the vector space V G. Notice for fixed i(
πG(g)fr,ei

)
(x) = frg−1,ei(x)

Thus
(
πG(g)fr,ei

)
(x) is in the span of {frg−1,ej | 1 ≤ j ≤ dim(V )} since these are the only basis functions

which are nonzero on the right coset Hrg−1, and they are zero on the rest of G. If Hrg−1 6= Hr, then
in a matrix representation of πG(g) with basis {fr,ei | r ∈ R}, the entry in the fr,ei , fr,ei cell is 0. If
Hrg−1 = Hr, then plugging in x = rg−1, we find(

πG(g)fr,ei
)

(x) =
∑
j

〈
π(rgr−1)ei, ej

〉
fr,ej

Summing over all basis vectors and cosets yields the proposition. �

The following result displays the induction of the trivial character on A to any subgroup H̃ containing
A.

Proposition 3.13. For χ ∈ Irr(A), for all (H, a) ∈ H̃ where H ⊂ G,

(IndH̃A χ)((h, a)) =

{
|H|χ(a) if h = 1

0 otherwise

Proof. Denote by H̃ \A the set of left coset representatives of A in H̃. Then

(IndH̃A χ)((h, a)) =
∑

h̃∈H̃\A

χ(h̃(h, a)h̃−1)

where we understand χ(h̃(h, a)h̃−1) = 0 if h̃(h, a)h̃−1 /∈ A. But since A is in the center of H̃, h̃(h, a)h̃−1 ∈
A if and only if (h, a) ∈ A, i.e. h = 1, in which case h̃(1, a)h̃−1 = (1, a). The proposition then follows

from [H̃ : A] = |H|. �

Furthermore, we can quickly show that distinct characters on A induce to have disjoint support on

H̃.

Proposition 3.14. For χ1, χ2 ∈ Irr(A),〈
IndH̃A χ1, IndH̃A χ2

〉
H̃

= 0

Proof. By Frobenius reciprocity,〈
IndH̃A χ1, IndH̃A χ2

〉
H̃

=
〈
χ1,ResH̃A IndH̃A χ2

〉
A

But by Proposition 3.13, ResH̃A IndH̃A χ2 = |H| · χ2. The claim then follows from 〈χ1, χ2〉A = 0. �
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Finally, we combine the previous two results to get an elegant characterization of the restriction of

representations H̃ to A, or equivalently of the induction of any character of A to H̃.

Proposition 3.15. For all χ ∈ IrrA and π ∈ Irr H̃,〈
IndH̃A χ, π

〉
H̃

=

{
dimπ if

〈
IndH̃A χ, π

〉
H̃
6= 0

0 otherwise

Proof. By Frobenius reciprocity, 〈
IndH̃A χ, π

〉
H̃

=
〈
χ,ResH̃A π

〉
A
.

But Proposition 3.14 implies that there is a unique χ such that the inner product on the left hand side

is non-zero. In particular, if
〈

IndH̃A χ, π
〉
H̃
6= 0, then ResH̃A π = k · χ for some positive integer k. Hence

k = k · χ(1) = ResH̃A π(1) = π(1) = dimπ. It follows that〈
IndH̃A χ, π

〉
H̃

= 〈χ, k · χ〉A = k = dimπ.

�

In light of Propositions 3.13 and 3.15, we see that each irreducible representation π of a subgroup

H̃ ⊂ G̃ corresponding to H ⊂ G restricts to a single representation χ on A. This sets up the following

theorem, which tells us that representations π ∈ Irr H̃ restricting to different χ ∈ IrrA will then induce

to orthogonal representations on G̃.

Theorem 3.16. Let 1 → A → G̃
φ−→ G → 1 be a central extension. Let H be a subgroup of G,

and let H̃ = φ−1(H) be the pre-image of H. Given irreducible representations π1, π2 of H̃, we have

ResH̃A πi = dimπi ·χi for irreducible representations χi of A. Then if χ1 6= χ2, the induced representations

πG̃1 and πG̃2 do not share any irreducible components. In other words, we have:〈
χ
πG̃
1
, χ

πG̃
2

〉
= 0

Proof of Theorem 3.16. We note that πi ⊂ IndH̃A χi and thus that IndG̃
H̃
πi ⊂ IndG̃

H̃
IndH̃A χi = IndG̃A χi In

particular, this means that ResG̃A IndG̃
H̃
πi = [G̃ : A]χi. Then if χ1 6= χ2, we have that〈

ResG̃A IndG̃
H̃
π1,ResG̃A IndG̃

H̃
π2

〉
=
〈

[G̃ : A]χ1, [G̃ : A]χ2

〉
= 0.

It follows that
〈

IndG̃
H̃
π1, IndG̃

H̃
π2

〉
= 0, as desired. �

Theorem 3.16 brings us closer to developing a Gelfand–Graev analogue by giving us a way of parti-

tioning representations of H̃ which commutes with induction. Namely, representations are partitioned
according to their restrictions on A. However, it fails to provide a strict enough classification to give a
useful analogue.

4. Conjectures and Motivating Results

This section attempts to chart potential directions for future work on this topic. Most importantly,
Conjecture 2 provides a converse to Theorem 3.16 which would provide an elegant Gelfand–Graev ana-
logue. In addition to being motivated by the theorem, this conjecture is a stronger version of Conjecture

1. Later conjectures present predictions on the structure of the honest representations of Ũ and of the

conjugacy classes of Ũ . Such information would be valuable in further understanding honest representa-

tions of Ũ and, through induction, of G̃.
The data of SL(3, 2) and SL(2, 9), as described in Appendix B, suggest the following conjecture:

Conjecture 1. Let µ, µ′ ∈ Irr(Ũ) are honest characters of dimension > 1. Then IndG̃
Ũ
µ ∼= IndG̃

Ũ
µ′ if

and only if µ⊗ χ = µ′ for an irreducible 1-dimensional character χ of Ũ .

The strongest definite knowledge related to this conjecture is Proposition 4.3. We first prove a lemma

about the center of Ũ .

Lemma 4.1. Z(Ũ) = A, where A refers to the embedding of A in Ũ .
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Proof. Choose wo to be the longest word in the Weyl group W . Then for any w ∈ W and root α, we
have that wUαw

−1 = Uwα. Then since wo is the unique element which sends every positive root to a
negative root, woUw

−1
o = U−, the opposite unipotent subgroup. Then woUw

−1
o ∩U = 1. By the cocycle

presentation, it is obvious that woŨw
−1
o ∩ Ũ ⊆ {(1, a) : a ∈ A} = A, where by A we mean the embedding

of A in Ũ . So Z(Ũ) ⊆ woŨw
−1
o ∩ Ũ ⊆ A. On the other hand, by definition of central extensions,

A ⊆ Z(Ũ). The desired equality follows. �

We now state Mackey’s restriction formula, which will be useful in proving our next result.

Theorem 4.2. [CR87, Theorem 10.13] Let π be a representation of H ⊂ G, Hg = H ∩ gHg−1, and
πg(x)(v) = π(g−1xg)v. Then

ResGH IndGH π
∼=

⊕
H\G/H

IndHHg
πg.

Now we can show the following proposition, showing that two representations of Ũ which are ”tensor-

equivalent” induce to share at least some components in G̃.

Proposition 4.3. Suppose π, χ ∈ Irr(Ũ) and χ is 1-dimensional. Then〈
(π ⊗ χ)G̃, πG̃

〉
G̃
> 0.

Proof. By Frobenius reciprocity, this statement is equivalent to
〈

ResG̃
Ũ

(π ⊗ χ)G̃, π
〉
Ũ
> 0. By Mackey’s

restriction formula Theorem 4.2, 〈
ResG̃

Ũ
(π ⊗ χ)G̃, π

〉
Ũ

=

〈 ⊕
g∈Ũ\G̃/Ũ

IndŨ
Ũg

(π ⊗ χ)Ũg
, π

〉
Ũw

=
∑

tw∈TW

〈
IndŨ

Ũtw
(π ⊗ χ)Ũtw

, π
〉

=
∑

tw∈TW

〈
(π ⊗ χ)Ũtw

,ResŨ
Ũtw

π
〉

The desired inequality is then satisfied if for some tw ∈ TW , ResŨ
Ũtw

χ is trivial. We showed in the proof

of Lemma 4.1 that for wo ∈ W the longest word in the Weyl group, Ũwo
= A. From Corollary 3.10.1,

we know that χ is trivial on A. Hence letting tw = 1 · wo implies the result. �

However, it is likely that the relevant property of honest representations in Irr(Ũ) is not tensor-
equivalence, but rather which irreducible representation of A they restrict to. Indeed, any 1-dimensional

representation χ of Ũ is trivial on A by Corollary 3.10.1. Therefore, for π, χ ∈ Irr(Ũ) where χ is 1-

dimensional, ResŨA π = ResŨA π ⊗ χ. Further, we have that for any π ∈ Irr(H̃), there always exists

χ ∈ Irr(A) such that
〈

IndH̃A χ, π
〉
6= 0 by Frobenius reciprocity. Moreover, Proposition 3.14 says that

there is a unique such χ.
We have the following as a final demonstration of how nicely the representations on A relate to those

on higher subgroups before stating the conjecture.

Proposition 4.4. Let {πi} ⊂ Irr(H̃) be the set of irreducible representations of H̃ which factor through
H ⊂ G, and let χtr be the trivial representation on A. Then

IndH̃A χtr =
⊕
i

(πi)
⊕ dimπi .

Proof. Suppose that
〈

IndH̃A χtr, π
〉
H̃
> 0 for some π ∈ Irr(H̃). Then by Proposition 3.13, we see that

ResH̃A π(a) = Iddimπ. Therefore, π ∈ {πi}.
Now suppose that we have some π which factors through H. Then we have that〈

IndH̃A χtr, π
〉

=
1

|G|
∑
g∈G

IndH̃A χtr(g)π(g) =
1

|G|
∑
g∈G

(∑
r∈R

χtr(rgr
−1)

)
π(g)
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=
1

|A|
∑
a∈A

χtr(a)π(a) = dimπ.

�

Theorem 3.16 tells us that for any central extension 1→ A→ G̃→ G→ 1 and any subgroup H ⊂ G,

we have that two elements of Irr H̃ which restrict to different characters of A will induce to orthogonal

representations on G̃. An elegant classification result would be a partial converse of this statement. To
this end, we present the following conjecture, which is stronger and more natural than Conjecture 1:

Conjecture 2. If π1, π2 ∈ Irr(Ũ) are honest representations and for i = 1, 2 and some χ ∈ Irr(A),〈
πi, IndŨA χ

〉
> 0,

then IndG̃
Ũ
π1 = IndG̃

Ũ
π2.

This statement seems to be experimentally true in our examples. Notably, it needs the restrictions
placed on it: even for the four small G with data listed in Appendix B, this conjecture fails when replacing

Ũ by B̃. It also fails for inflated representations. This suggests that, if true, this conjecture will require

properties of both reductive groups and of Ũ in particular, making it a tempting and satisfying target
for a metaplectic Gelfand–Graev analogue.

Specifically, Conjecture 2 would tell us that representations in Irr Ũ could be partitioned into equiv-
alence classes based on restriction to A. Then by selecting exactly one representation πχi

from each

equivalence class, we would have a representation ⊕χi
πχi

on Ũ which would induce to a representation

supported on every element of Irr G̃ with minimal multiplicity.
We now turn our attention to better understanding the number and degree of honest representations of

Ũ . This information could help prove or modify Conjecture 2. We begin with the following observation:

Remark 4.5. The degree of any representation π ∈ Irr(Ũ) is a power of p, where p is the characteristic
of the field k of the linear algebraic group G.

This fact follows from U and thus Ũ being p-groups and the fact that the degree of a representation
of a group divides the order of the group. The following conjectures, based on the data in Appendix B,

attempt to give more information about the degrees of the honest representations of Ũ .

Conjecture 3. Given µ, µ′ ∈ Irr(Ũ), where µ factors through U and µ′ doesn’t. Then dimµ ≤ dimµ′.

Conjecture 4. All honest representations of Ũ have the same degree.

We give a lower bound for the number of honest irreducible representations of Ũ . According to [TT14,

Theorem 3.1], for an element q ∈ U , the number of conjugacy classes of Ũ which map to the conjugacy
class of q under the covering map is equal to

#
{
χ irrep. of A | χ

(
σ(q1, q)σ(q, q1)−1

)
= 1, ∀q1 ∈ CU (q)

}
where CU (q) is the centralizer of q and σ : G×G→ A is the cocycle. Substituting q = 1, we have

#
{
χ irrep. of A | χ

(
σ(q1, 1)σ(1, q1)−1

)
= 1,∀q1 ∈ Z(1)

}
= #{χ irrep. of A} = |A|

as each Schur multiplier A is the kernel of a central extension and thus abelian. The relation

χ
(
σ(q1, q)σ(q, q1)−1

)
= 1

is always satisfied by the trivial representation, so we know that each Ũ must have at least |A| − 1 more

conjugacy classes than U , and therefore Ũ has at least |A| − 1 honest representations.

Upon inspection, we find that when G is A1(4), A3(2), or A1(9), Ũ has exactly |A| − 1 honest
representations, whereas A2(2) has one more than this lower bound.

We first make a remark:

Remark 4.6. From its definition, a cocycle σ satisfies the cocycle condition

aσ(b, c)− σ(ab, c) + σ(a, bc)− σ(a, b) = 0

for all a, b, c in G, where aσ(b, c) is the element a ∈ G acting on σ(b, c) ∈ A under some group action.
As mentioned in [Kar87, page 5], in the case of the Schur multiplier, this action of G on A = M(G) is
trivial.

We now observe the following fact:
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Proposition 4.7. For all positive integers r and elements q ∈ U , σ(qr, q) = σ(q, qr).

Proof. The cocycle must satisfy aσ(b, c) − σ(ab, c) + σ(a, bc) − σ(a, b) = 0 for all a, b, c ∈ U . When we
set a = b = c = q, we have that qσ(q, q)− σ(q2, q) + σ(q, q2)− σ(q, q) = 0. Since U can only act trivially
on A as stated in Remark 4.6, we have that σ(q2, q) = σ(q, q2). Proceeding by induction, suppose
σ(qr, q) = σ(q, qr). Then qσ(qr, q) − σ(qr+1, q) + σ(q, qr+1) − σ(q, qr) = 0. Again, q must act trivially
on A, and so our inductive hypothesis gives up σ(qr+1, q) = σ(q, qr+1, proving the result. �

Corollary 4.7.1. If C(q) = 〈q〉, then the number of conjugacy classes of Ũ which map into the conjugacy
class of q is |A|.

Proof. Using Proposition 4.7, the condition in [TT14, Theorem 3.1] reduces to

# {χ irrep. of A | χ (1) = 1, ∀q1 ∈ CU (q)} .
The required condition is true for all χ ∈ Irr(A), and thus the size of this set is |A| since A is abelian. �

The following conjecture arises from studying the conjugacy classes of the unipotent subgroup U of
A2(2) and hypothesizing that the converse of the above is true.

Conjecture 5. The number of conjugacy classes of Ũ which map to the conjugacy class of q ∈ U under
the covering map is {

|A|, if CU (q) = 〈q〉
1, otherwise.
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Appendix A. GAPpendix

In computing data on induced representations of Ũ , we wrote several useful functions in GAP 4.10
which expedited the process. They are recorded here, along with brief explanations of their functionality.

IP specifies the standard inner product on two characters of the same group G. It takes as its
arguments T the character table of G; chi any character of G; and psi any positive integer in the range
[1,# Irr(G)], correponding to the psith irreducible character (under the order in which GAP stores
them). IP outputs 〈χ, Irr(G)[ψ]〉.
IP := func t i on (T, chi , p s i )

l o c a l S ;

S := Size sConjugacyClas se s (T) ;

r e turn Sum( [ 1 . . Length (S) ] ,

i −> S [ i ] ∗ ch i [ i ] ∗ ComplexConjugate ( I r r (T) [ p s i ] [ i ] ) ) / S i z e (T) ;

end ; ;

coeffs returns the coefficients (c1, . . . , cn) arising as χ =
∑
ciχi for χi the n irreducible characters

in character table T (numbered according to GAP’s internal system).

c o e f f s := func t i on (T, ch i )

r e turn L i s t ( [ 1 . . Length ( S i ze sConjugacyClas se s (T) ) ] , i −> IP (T, chi , i ) ) ;

end ; ;

embed returns a group U ′ 6 H such that U ′ ∼= U , given U 6 G ∼= H.

embed := func t i on (U, G, H)

l o c a l phi , gens , image gens , isom , pro j ;

phi := IsomorphismGroups (G, H) ;

gens := GeneratorsOfGroup (G) ;

image gens := L i s t ( gens , x −> Image ( phi , x ) ) ;

isom := GroupHomomorphismByImages (G, H, gens , image gens ) ;

r e turn Image ( isom , U) ;

end ; ;

Given groups G and H admitting the projection map H G
p

, as well as U 6 G, lift returns

p−1(U) 6 H.

l i f t := func t i on (U, G, H)

l o c a l p ro j ;

p ro j := GroupHomomorphismByImages (H, G) ;

r e turn PreImage ( proj , U) ;

end ; ;

IC returns the induced characters IndHG χ for each χ an irreducible character of G.

IC := func t i on (G, H)

l o c a l n , i c , c tg ;

i c := [ ] ;

c tg := CharacterTable (G) ;

f o r n in [ 1 . . Length ( I r r (G) ) ] do

Add( ic , InducedClassFunct ion ( ClassFunct ion ( ctg , I r r (G) [ n ] ) , H) ) ;

od ;

r e turn i c ;

end ; ;

charsAppearing returns, for each irreducible character χ of G, the indices of the irreducible characters

θ of H for which
〈

IndHG χ, θ
〉
H
6= 0. (charsAppearing is purely a function for intuitive convenience and

it carries strictly less information than charCoeffs.)

charsAppearing := func t i on (G, H)

l o c a l i c , i , m, n ;

i c := IC(G, H) ;

f o r i in [ 1 . . Length ( I r r (G) ) ] do

i f i < 10 then Pr int ( ” ” ) ; f i ; Pr int ( i ) ; Pr int ( ” : ” ) ;

f o r m in [ 1 . . Length ( Const i tuentsOfCharacter ( i c [ i ] ) ) ] do

f o r n in [ 1 . . Length ( I r r (H) ) ] do

i f Const i tuentsOfCharacter ( i c [ i ] ) [m] = I r r (H) [ n ] then

Pr int (n) ; Pr int ( ” ” ) ; break ;
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f i ;

od ;

od ; Pr int ( ”\n” ) ;
od ;

end ; ;

charsAppearing returns, for each irreducible character χ of G, the values
〈

IndHG χ, θ
〉
H
6= 0 for each

irreducible character θ of H.

charCoe f f s := func t i on (G, H)

l o c a l i c , i , x , cth ;

i c := IC(G, H) ;

cth := CharacterTable (H) ;

f o r i in [ 1 . . Length ( i c ) ] do

i f i < 10 then Pr int ( ” ” ) ; f i ; Pr int ( i ) ; Pr int ( ” : ” ) ;

f o r x in [ 1 . . Length ( c o e f f s ( cth , i c [ i ] ) ) ] do

i f c o e f f s ( cth , i c [ i ] ) [ x ] = 0

then Pr int ( ” . ” ) ;

e l s e Pr int ( c o e f f s ( cth , i c [ i ] ) [ x ] ) ; Pr int ( ” ” ) ;

f i ;

od ; Pr int ( ”\n” ) ;
od ;

end ; ;

Given the nth irreducible character χn of G (according to GAP’s internal numbering), for each 1-

dimensional irreducible character χ of G, 1twistSum returns the values
〈

IndHG (χn ⊗ χ), θ
〉

for each

irreducible character θ of H.

1twistSum := func t i on (G, H, n)

l o c a l i c , rep , 1dims , tw i s t s , cth , i , m, x ;

i c := IC(G, H) ;

rep := i c [ n ] ;

1dims := [ ] ;

f o r x in I r r (H) do

i f x [ 1 ] = 1 then Add(1 dims , x ) ; f i ;

od ;

tw i s t s := L i s t (1 dims , x −> rep ∗ x ) ;

cth := CharacterTable (H) ;

f o r i in [ 1 . . Length ( tw i s t s ) ] do

i f i < 10 then Pr int ( ” ” ) ; f i ; Pr int ( i ) ; Pr int ( ” : ” ) ;

f o r m in [ 1 . . Length ( c o e f f s ( cth , tw i s t s [ i ] ) ) ] do

i f c o e f f s ( cth , tw i s t s [ i ] ) [m] = 0

then Pr int ( ” . ” ) ;

e l s e Pr int ( c o e f f s ( cth , tw i s t s [ i ] ) [m] ) ; Pr int ( ” ” ) ;

f i ;

od ; Pr int ( ”\n” ) ;
od ;

end ; ;

For each 1-dimensional character χ of G, for each irreducible character θ of G with dim θ > 1,
1twistIrreps index n (according to GAP’s internal numbering) of χn = χ⊗ θ.
1 tw i s t I r r e p s := func t i on (G)

l o c a l 1dims , x , i , n , y ;

1dims := [ ] ;

f o r x in I r r (G) do

i f x [ 1 ] = 1 then Add(1 dims , x ) ; f i ;

od ;

f o r x in [ 1 . . Length (1 dims ) ] do

i f x < 10 then Pr int ( ” ” ) ; f i ;

Pr int ( x ) ; Pr int ( ” : ” ) ;

f o r i in [ Length (1 dims )+1 . . Length ( I r r (G) ) ] do

y := 1dims [ x ] ∗ I r r (G) [ i ] ;

f o r n in [ Length (1 dims )+1 . . Length ( I r r (G) ) ] do

i f I r r (G) [ n ] = y then

i f n < 10 then Pr int ( ” ” ) ; f i ;
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|U | |U | |U | |U |
1 2 2 2

χ1 1 1 1 1
χ2 1 −1 −1 1
χ3 1 −1 1 −1
χ4 1 1 −1 −1

Figure 1. For G = SL2(F4), Display(CharacterTable(U));.

|Ũ | 4 4 4 |Ũ |
1 4 4 4 2

χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 1 1 −1 −1 1
χ4 1 −1 −1 1 1
χ5 2 −2

Figure 2. For G = SL2(F4), Display(CharacterTable(Utilde));.

Print (n) ; Pr int ( ” ” ) ; break ;

f i ;

od ;

od ; Pr int ( ”\n” ) ;
od ;

end ; ;

Appendix B. Character Tables and Other Data

In each character table, the first row in each column shows the size of the centralizer of that conjugacy
class; in particular, it is noted when this size is the size of the group. The second row shows the order
of each element in that class.

In the context of GAP code, [n,m] denotes the m-th group of order n, i.e. SmallGroup(n,m).

Case 1: G = A1(4). We have the isomorphisms A1(4) ∼= SL2(F4) ∼= PSL2(F4) ∼= PSL2(F5) ∼= A5,
the former via definition; the next via charF4 = 2; and the latter two via [ATLAS]. We have the

additional isomorphisms G̃ ∼= SL2(F5) [ATLAS], U ∼= V4, Ũ ∼= Q8 the quaternion group, B ∼= V4 o C3,

and B̃ ∼= Q8 o C3.
Define the following in GAP:

> m1 := [ [ Z(4 ) ˆ0 , Z(4 ) ] , [ Z(4 ) ∗0 , Z(4 ) ˆ0 ] ] ; ;

> m2 := [ [ Z(4 ) ˆ0 , Z(4 ) + Z(4) ˆ0 ] , [ Z(4 ) ∗0 , Z(4 ) ˆ0 ] ] ; ;

> m3 := [ [ Z(4 ) , Z(4 ) ∗0 ] , [ Z(4 ) ∗0 , Z(4 ) ˆ2 ] ] ;

> G := SL(2 , 4 ) ; ;

> A5 := AlternatingGroup (5 ) ; ;

> Gti lde := SchurCover (A5) ; ;

> U := embed(Group (m1,m2) , G, A5) ; ;

> Ut i lde := l i f t (U, A5 , Gt i lde ) ; ;

> B := embed(Group (m1,m2,m3) , G, A5) ; ;

> Bt i ld e := l i f t (B, A5 , Gt i lde ) ; ;

In GAP, G is stored as [60, 5], G̃ as [120, 5], U as [4, 2], Ũ as [8, 4], B as [12, 3], and B̃ as [24, 3].
See Figures 1–6 for the relevant character tables.

Case 2: G = A2(2). We have the isomorphisms A2(2) ∼= SL3(F2) ∼= PSL3(F2) ∼= PSL2(F7), the former
via definition; the intermediate via charF2 = 2; and the latter via [ATLAS]. We have the additional

isomorphisms U = B ∼= D8 and Ũ = B̃ ∼= Q16 (with the former equalities because charF2 = 2).
Define the following in GAP:

> m1 := [ [ Z(2 ) , Z(2 ) , 0∗Z(2) ] , [ 0∗Z(2) , Z(2 ) , 0∗Z(2) ] , [ 0∗Z(2) , 0∗Z(2) , Z(2 ) ] ] ; ;

> m2 := [ [ Z(2 ) , 0∗Z(2) , Z(2 ) ] , [ 0∗Z(2) , Z(2 ) , 0∗Z(2) ] , [ 0∗Z(2) , 0∗Z(2) , Z(2 ) ] ] ; ;

> m3 := [ [ Z(2 ) , 0∗Z(2) , 0∗Z(2) ] , [ 0∗Z(2) , Z(2 ) , Z(2 ) ] , [ 0∗Z(2) , 0∗Z(2) , Z(2 ) ] ] ; ;

> G := SL(3 , 2 ) ; ;
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|B| 4 3 3
1 2 3 3

χ1 1 1 1 1
χ2 1 1 a 1

a

χ3 1 1 1
a a

χ4 3 −1

Figure 3. For G = SL2(F4), Display(CharacterTable(B));, for a = −1+i
√
3

2 .

|B̃| 6 6 6 6 4 |B̃|
1a 6a 3a 6b 3b 4a 2a

χ1 1 1 1 1 1 1 1
χ2 1 a 1

a
1
a a 1 1

χ3 1 1
a a a 1

a 1 1
χ4 2 1 −1 1 −1 −2
χ5 2 a − 1

a
1
a −a −2

χ6 2 1
a −a a − 1

a −2
χ7 3 −1 3

Figure 4. For G = SL2(F4), Display(CharacterTable(Btilde));, for a = −1+i
√
3

2 .

|G| 4 5 5 3
1 2 5 5 3

χ1 1 1 1 1 1
χ2 3 −1 a a
χ3 3 −1 a a
χ4 4 −1 −1 1
χ5 5 1 −1

Figure 5. For G = SL2(F4), Display(CharacterTable(G));, for a = 1−i
√
5

2 .

|G̃| 10 10 6 10 10 4 6 |G̃|
1 10 10 6 5 5 4 3 2

χ1 1 1 1 1 1 1 1 1 1
χ2 2 a a 1 −a −a −1 −2
χ3 2 a a 1 −a −a −1 −2
χ4 3 a a a a −1 3
χ5 3 a a a a −1 3
χ6 4 −1 −1 1 −1 −1 1 4
χ7 4 1 1 −1 −1 −1 1 −4
χ8 5 −1 1 −1 5
χ9 6 −1 −1 1 1 −6

Figure 6. For G = SL2(F4), Display(CharacterTable(Gtilde));, for a = 1−i
√
5

2 .

χ1 χ2 χ3 χ4

θ1 1 1 1
θ2 1
θ3 1
θ4 1

Figure 7. For G = SL2(F9), charCoeffs(U, B);.
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χ1 χ2 χ3 χ4 χ5

θ1 1 1
θ2 1
θ3 1
θ4 1 1 1 1

Figure 8. For G = SL2(F9), charCoeffs(B, G);.

χ1 χ2 χ3 χ4 χ5 χ6 χ7

θ1 1 1 1
θ2 1
θ3 1
θ4 1
θ5 1 1 1

Figure 9. For G = SL2(F9), charCoeffs(Utilde, Btilde);.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9

θ1 1 1
θ2 1
θ3 1
θ4 1 1 1
θ5 1 1
θ6 1 1
θ7 1 1 1 1

Figure 10. For G = SL2(F9), charCoeffs(Btilde, Gtilde);.

|U | 4 |U | 4 4
1 2 2 2 4

χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 1 1 1 −1 −1
χ4 1 −1 1 1 −1
χ5 2 −2

Figure 11. For G = SL3(F2), Display(CharacterTable(U));.

> Gti lde := SchurCover (G) ; ;

> U := Group (m1,m2,m3) ; ;

> Ut i lde := l i f t (U, G, Gt i lde ) ; ;

In GAP, G is stored as [168, 42], Gtilde as [336, 114], U as [8, 3], and Utilde as [16, 9].
See Figures 11–14 for the relevant character tables.

Case 3: G = A3(2). We have the isomorphisms A3(2) ∼= SL4(F2) ∼= PSL4(F2) ∼= A8, the former via
definition; the intermediate via charF2 = 2; and the latter via [ATLAS]. The 2-fold Schur cover of G can
be seen as the preimage of A8 6 SO(7)—permuting components of the subspace of R8 with components

summing to 0—under the 2-fold cover Spin(7) SO(7).

Define the following in GAP:

> m1 := [ [ Z(2 ) ˆ0 , Z(2 ) , 0∗Z(2) , 0∗Z(2) ] , [ 0∗Z(2) , Z(2 ) ˆ0 , 0∗Z(2) , 0∗Z(2) ] , [ 0∗Z(2)

, 0∗Z(2) , Z(2 ) ˆ0 , 0∗Z(2) ] , [ 0∗Z(2) , 0∗Z(2) , 0∗Z(2) , Z(2 ) ˆ0 ] ] ; ;

> m2 := [ [ Z(2 ) ˆ0 , 0∗Z(2) , Z(2 ) , 0∗Z(2) ] , [ 0∗Z(2) , Z(2 ) ˆ0 , 0∗Z(2) , 0∗Z(2) ] , [ 0∗Z(2)

, 0∗Z(2) , Z(2 ) ˆ0 , 0∗Z(2) ] , [ 0∗Z(2) , 0∗Z(2) , 0∗Z(2) , Z(2 ) ˆ0 ] ] ; ;

> m3 := [ [ Z(2 ) ˆ0 , 0∗Z(2) , 0∗Z(2) , Z(2 ) ] , [ 0∗Z(2) , Z(2 ) ˆ0 , 0∗Z(2) , 0∗Z(2) ] , [ 0∗Z(2)

, 0∗Z(2) , Z(2 ) ˆ0 , 0∗Z(2) ] , [ 0∗Z(2) , 0∗Z(2) , 0∗Z(2) , Z(2 ) ˆ0 ] ] ; ;

> m4 := [ [ Z(2 ) ˆ0 , 0∗Z(2) , 0∗Z(2) , 0∗Z(2) ] , [ 0∗Z(2) , Z(2 ) ˆ0 , Z(2 ) , 0∗Z(2) ] , [ 0∗Z(2)

, 0∗Z(2) , Z(2 ) ˆ0 , 0∗Z(2) ] , [ 0∗Z(2) , 0∗Z(2) , 0∗Z(2) , Z(2 ) ˆ0 ] ] ; ;
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|Ũ | 4 |Ũ | 4 8 8 8
1 4 2 4 8 8 4

χ1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 1 1
χ3 1 −1 1 1 −1 −1 1
χ4 1 1 1 −1 −1 −1 1
χ5 2 2 −2

χ6 2 −2 −
√

2
√

2

χ7 2 −2
√

2 −
√

2

Figure 12. For G = SL3(F2), Display(CharacterTable(Utilde));.

|G| 8 4 7 7 3
1 2 4 7 7 3

χ1 1 1 1 1 1 1

χ2 3 −1 1 −1+i
√
7

2
−1−i

√
7

4

χ3 3 −1 1 −1−i
√
7

4
−1+i

√
7

2

χ4 6 2 −1 −1
χ5 7 −1 −1 1
χ6 8 1 1 −1

Figure 13. For G = SL3(F2), Display(CharacterTable(G));.

|G̃| 6 14 14 8 6 8 14 8 14 |G̃|
1 3 7 7 4 6 8 14 8 14 2

χ1 1 1 1 1 1 1 1 1 1 1 1
χ2 3 a 1

a −1 1 a 1 1
a 3

χ3 3 1
a a −1 1 1

a 1 a 3
χ4 4 1 −a 1

a −1 a 1
a −4

χ5 4 1 1
a −a −1 1

a a −4
χ6 6 −1 −1 2 −1 −1 6

χ7 6 −1 −1 −
√

2 1
√

2 1 −6

χ8 6 −1 −1
√

2 1 −
√

2 1 −6
χ9 7 1 −1 1 −1 −1 7
χ10 8 −1 1 1 −1 1 1 8
χ11 8 −1 1 1 1 −1 −1 −8

Figure 14. For G = SL3(F2), Display(CharacterTable(Gtilde));, for a = −1+i
√
7

2 .

χ1 χ2 χ3 χ4 χ5 χ6

θ1 1 2 1
θ2 1 1 1 1
θ3 1 1 1
θ4 1 1 1
θ5 1 1 1 2 2

Figure 15. For G = SL3(F2), charCoeffs(U, G);, where each row shows the values

cj for IndGU θi =
∑
j cjχj .

> m5 := [ [ Z(2 ) ˆ0 , 0∗Z(2) , 0∗Z(2) , 0∗Z(2) ] , [ 0∗Z(2) , Z(2 ) ˆ0 , 0∗Z(2) , Z(2 ) ] , [ 0∗Z(2)

, 0∗Z(2) , Z(2 ) ˆ0 , 0∗Z(2) ] , [ 0∗Z(2) , 0∗Z(2) , 0∗Z(2) , Z(2 ) ˆ0 ] ] ; ;

> m6 := [ [ Z(2 ) ˆ0 , 0∗Z(2) , 0∗Z(2) , 0∗Z(2) ] , [ 0∗Z(2) , Z(2 ) ˆ0 , 0∗Z(2) , 0∗Z(2) ] , [ 0∗Z
(2) , 0∗Z(2) , Z(2 ) ˆ0 , Z(2 ) ] , [ 0∗Z(2) , 0∗Z(2) , 0∗Z(2) , Z(2 ) ˆ0 ] ] ; ;

> G := SL(4 , 2 ) ; ;

> Gti lde := SchurCover (G) ; ;
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χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11

θ1 1 2 1
θ2 1 1 1 1
θ3 1 1 1
θ4 1 1 1
θ5 1 1 1 2 2
θ6 1 1 1 2 2
θ7 1 1 2 1 2

Figure 16. For G = SL3(F2), charCoeffs(Utilde, Gtilde);, where each row shows

the values cj for IndG̃
Ũ
θi =

∑
j cjχj .

|U | 16 32 16 8 |U | 16 32 16 32 16 16 16 16 8 8
1 2 2 2 4 2 2 2 4 2 2 2 4 4 4 4

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1 1 1 −1
χ3 1 1 1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 1 1
χ4 1 −1 1 1 −1 1 1 1 −1 1 −1 1 −1 1 −1 1
χ5 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
χ6 1 −1 1 −1 1 1 −1 1 −1 1 1 −1 1 −1 −1 1
χ7 1 1 1 −1 −1 1 −1 1 1 1 1 1 1 1 −1 −1
χ8 1 −1 1 1 −1 1 1 1 −1 1 1 −1 1 −1 1 −1
χ9 2 −2 2 2 −2 −2 2
χ10 2 −2 2 2 −2 2 −2
χ11 2 −2 2 −2 2 −2 2
χ12 2 −2 2 −2 2 2 −2
χ13 2 −2 2 2 −2 2 −2
χ14 2 2 2 2 −2 −2 −2
χ15 4 −2 −4 2
χ16 4 2 −4 −2

Figure 17. For G = SL4(F2), Display(CharacterTable(U));.

> U := Group (m1,m2,m3,m4,m5,m6) ; ;

> Ut i lde := l i f t (U, G, Gt i lde ) ; ;

In GAP, U is stored as [64, 138] and Utilde as [128, 931].
See Figures 17–20 for the relevant character tables.

Case 4: G = A1(9). We have the isomorphism A1(9) ∼= SL2(F9) by definition. From [ATLAS], G’s

3-fold Schur cover G̃ is isomorphic to 6.A6, the 6-fold Schur cover of A6. Further, U ∼= C3 × C3,

Ũ ∼= (C3 × C3) o C3, B ∼= (C3 × C3) o C8, and B̃ ∼= ((C3 × C3) o C3) o C8.
Define the following in GAP:

> m1 := [ [ Z(9 ) ˆ0 , Z(9 ) ˆ0 ] , [ Z(9 ) ∗0 , Z(9 ) ˆ0 ] ] ; ;

> m2 := [ [ Z(9 ) ˆ0 , Z(9 ) ˆ2 ] , [ Z(9 ) ∗0 , Z(9 ) ˆ0 ] ] ; ;

> m3 := [ [ Z(9 ) ˆ0 , Z(9 ) ∗0 ] , [ Z(9 ) ∗0 , Z(9 ) ˆ7 ] ] ; ;

> G := SL(2 , 9 ) ; ;

> Gti lde := SchurCover (G) ; ;

> U := Group (m1,m2) ; ;

> Ut i lde := l i s t (U, G, Gt i lde ) ; ;

> B := Group (m1,m2,m3) ; ;

> Bt i ld e := l i f t (B, G, Gt i lde ) ; ;

In GAP, G is stored as [720, 409], U as [9, 2], Ũ as [27, 3], B as [72, 19], and B̃ as [216, 25].
See Figures 23–28 for the relevant character tables.

Other exceptional groups. An attempt to check Conjecture 5 against other groups resulted in an
error from GAP, which remains in effect for the package Unipot 1.4 and GAP 4.10. This error may be
patched using [Hor], giving the following commands:
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|Ũ | 16 8 8 16 16 32 16 64 8 32 32 |Ũ | 16 16 16 16
1 4 4 4 4 2 4 4 2 8 2 2 2 2 4 2 4

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1 −1 −1 −1
χ3 1 1 −1 −1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1
χ4 1 −1 −1 1 −1 −1 1 −1 1 1 1 1 1 −1 1 1 −1
χ5 1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 −1 1 1 −1
χ6 1 −1 1 −1 −1 −1 1 −1 1 1 1 1 1 1 −1 −1 1
χ7 1 1 −1 1 −1 1 1 −1 1 −1 1 1 1 1 −1 −1 1
χ8 1 −1 −1 −1 1 −1 1 1 1 −1 1 1 1 1 1 1 1
χ9 2 −2 2 2 −2 2 2 −2
χ10 2 −2 2 2 −2 2 −2 2
χ11 2 −2 2 −2 2 2 −2 2
χ12 2 −2 2 2 2 −2 −2 2
χ13 2 2 2 −2 2 −2 −2 2
χ14 2 −2 2 −2 2 2 2 −2
χ15 4 2 −2 −4 4
χ16 4 −2 2 −4 4
χ17 8 −8

Figure 18. For G = SL4(F2), Display(CharacterTable(Utilde));.

|G| 192 96 16 8 180 12 15 15 15 18 6 7 7
1 2 2 4 4 3 6 15 15 5 3 6 7 7

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 7 −1 3 −1 1 4 −1 −1 2 1 −1
χ3 14 6 2 2 −1 −1 −1 −1 −1 2
χ4 20 4 4 5 1 −1 1 −1 −1
χ5 21 −3 1 1 −1 6 −2 1 1 1
χ6 21 −3 1 1 −1 −3 1 a 1

a 1
χ7 21 −3 1 1 −1 −3 1 1

a a 1
χ8 28 −4 4 1 1 1 1 −2 1 −1
χ9 35 3 −5 −1 −1 5 1 2
χ10 45 −3 −3 1 1 b 1

b

χ11 45 −3 −3 1 1 1
b b

χ12 56 8 −4 1 1 1 −1 −1
χ13 64 4 −1 −1 −1 −2 1 1
χ14 70 −2 2 −2 −5 −1 1 1

Figure 19. For G = SL4(F2), Display(CharacterTable(G));, for a = −1+i
√
15

2 and

b = − 1+i
√
7

2 .

d i f f −−g i t a/ l i b / unipot . g i b/ l i b / unipot . g i

index 103b67c . . 0339655 100644

−−− a/ l i b / unipot . g i

+++ b/ l i b / unipot . g i

@@ −435 ,7 +435 ,7 @@ Insta l lOtherMethod ( GeneratorsOfGroup ,

ListX ( [ 1 . . Length ( Pos i t iveRoot s ( RootSystem (U) ) ) ] ,

D i f f e r e n c e ( AsSet ( Fam ! . r i ng ) , [ Zero ( Fam ! . r i ng ) ] ) ,

f unc t i on ( r , x )

− r e turn UnipotChevElem ( U, rec ( r oo t s :=r , f e l ems :=x ) ,

UNIPOT DEFAULT REP ) ;

+ return UnipotChevElem ( U, r ec ( r oo t s :=[ r ] , f e l ems :=[ x ] ) ,

UNIPOT DEFAULT REP ) ;

end

) ;

end
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|G̃| |G̃| 30 30 360 360 30 30 30 30 192 16 96 8 12 36 36 12 12 14 14 14 14
1 2 5 10 6 3 15 30 15 30 2 4 4 8 12 6 3 6 6 7 14 7 14

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 7 7 2 2 4 4 −1 −1 −1 −1 −1 −1 3 1 1 1 −1 −1
χ3 8 −8 −2 2 4 −4 1 −1 1 −1 −2 2 1 −1 1 −1
χ4 14 14 −1 −1 −1 −1 −1 −1 −1 −1 6 2 2 −1 2 2
χ5 20 20 5 5 4 4 1 −1 −1 1 1 −1 −1 −1 −1
χ6 21 21 1 1 6 6 1 1 1 1 −3 1 1 −1 −2
χ7 21 21 1 1 −3 −3 a a 1

a
1
a −3 1 1 −1 1

χ8 21 21 1 1 −3 −3 1
a

1
a a a −3 1 1 −1 1

χ9 24 −24 −1 1 6 −6 −1 1 −1 1 c −c c − 1
c

χ10 24 −24 −1 1 6 −6 −1 1 −1 1 1
c − 1

c c −c
χ11 28 28 −2 −2 1 1 1 1 1 1 −4 4 1 1 1 −1 −1
χ12 35 35 5 5 3 −1 −5 −1 1 2 2
χ13 45 45 −3 1 −3 1 c c 1

c
1
c

χ14 45 45 −3 1 −3 1 1
c

1
c c c

χ15 48 −48 −2 2 −6 6 1 −1 1 −1 −1 1 −1 1
χ16 56 56 1 1 −4 −4 1 1 1 1 8 −1 −1 −1 −1
χ17 56 −56 1 −1 −2 2 a −a 1

a − 1
a −2 2

χ18 56 −56 1 −1 −2 2 1
a − 1

a a −a −2 2
χ19 56 −56 1 −1 4 −4 1 −1 1 −1 1 −1 b −b
χ20 56 −56 1 −1 4 −4 1 −1 1 −1 1 −1 −b b
χ21 64 64 −1 −1 4 4 −1 −1 −1 −1 −2 −2 1 1 1 1
χ22 64 −64 −1 1 −4 4 −1 1 −1 1 2 −2 1 −1 1 −1
χ23 70 70 −5 −5 −2 −2 2 −1 1 1 1 1

Figure 20. For G = SL4(F2), Display(CharacterTable(Gtilde));, for a =

− 1+i
√
15

2 , b = −i
√

3, and c = − 1+i
√
7

2 .

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14

θ1 1 3 2 3 1
θ2 1 1 1 1 1 1 1 1
θ3 1 1 1 1 1 1
θ4 1 1 1 1 1 2
θ5 1 1 1 2 1 1
θ6 1 1 1 1 1 1
θ7 1 1 1 2 1 1
θ8 1 1 1 2 1 1
θ9 1 1 1 1 1 2 2 1 2 2
θ10 1 1 2 1 1 3 2 2
θ11 1 1 1 1 1 2 2 1 2 2
θ12 1 1 1 1 1 2 1 1 1 2 3
θ13 1 1 1 1 1 2 2 1 2 2
θ14 1 1 2 1 1 3 2 2
θ15 1 1 2 2 2 3 1 3 3 2 4 5
θ16 1 1 1 1 1 1 3 3 3 4 4 4

Figure 21. For G = SL4(F2), charCoeffs(U, G);, where each row shows the values

cj for IndGU θi =
∑
j cjχj .
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χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14 χ15 χ16 χ17 χ18 χ19 χ20 χ21 χ22 χ23

θ1 1 3 2 3 1
θ2 1 1 1 1 1 1 1 1
θ3 1 1 1 1 1 2
θ4 1 1 1 1 1 1
θ5 1 1 1 2 1 1
θ6 1 1 1 1 1 1
θ7 1 1 1 2 1 1
θ8 1 1 1 2 1 1
θ9 1 1 1 1 1 2 2 1 2 2
θ10 1 1 2 1 1 3 2 2
θ11 1 1 1 1 1 2 2 1 2 2
θ12 1 1 1 1 1 2 1 1 1 2 3
θ13 1 1 1 1 1 2 2 1 2 2
θ14 1 1 2 1 1 3 2 2
θ15 1 1 2 2 2 3 1 3 3 2 4 5
θ16 1 1 1 1 1 1 3 3 3 4 4 4
θ17 1 3 3 6 7 7 7 7 8

Figure 22. For G = SL4(F2), charCoeffs(Utilde, Gtilde);, where each row shows

the values cj for IndG̃
Ũ
θi =

∑
j cjχj .

|U | |U | |U | |U | |U | |U | |U | |U | |U |
1 3 3 3 3 3 3 3 3

χ1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 a a 1

a
1
a

1
a a

χ3 1 1 1 1
a

1
a a a a 1

a

χ4 1 a 1
a 1 a a 1 1

a
1
a

χ5 1 1
a a 1 1

a
1
a 1 a a

χ6 1 a 1
a a 1

a 1 1
a a 1

χ7 1 1
a a 1

a
1
a 1 a 1

a 1
χ8 1 a 1

a
1
a 1 1

a a 1 a
χ9 1 1

a a a 1 a 1
a 1 1

a

Figure 23. For G = SL2(F9), Display(CharacterTable(U));, for a = − 1+i
√
3

2 .

|Ũ | 9 9 9 9 9 9 9 9 |Ũ | |Ũ |
1 3 3 3 3 3 3 3 3 3 3

χ1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 a 1

a a a 1 1
a

1
a 1 1 1

χ3 1 1
a a 1

a
1
a 1 a a 1 1 1

χ4 1 1
a a 1 a 1

a
1
a 1 a 1 1

χ5 1 a 1
a 1 1

a a a 1 1
a 1 1

χ6 1 1 1 a 1
a

1
a a 1

a a 1 1
χ7 1 1 1 1

a a a 1
a a 1

a 1 1
χ8 1 a 1

a
1
a 1 1

a 1 a a 1 1
χ9 1 1

a a a 1 a 1 1
a

1
a 1 1

χ10 3 b 1
b

χ11 3 1
b b

Figure 24. For G = SL2(F9), Display(CharacterTable(Utilde));, for a = −1+i
√
3

2

and b = −3 · 1+i
√
3

2 .
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|B| 18 18 |B| 18 18 8 8 8 8 8 8
1 3 3 2 6 6 8 4 8 8 4 8

χ1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 1 −1 1 −1 −1 1 −1
χ3 1 1 1 −1 −1 −1 a −i − 1

a −a i 1
a

χ4 1 1 1 −1 −1 −1 − 1
a i a 1

a −i −a
χ5 1 1 1 −1 −1 −1 1

a i −a − 1
a −i a

χ6 1 1 1 −1 −1 −1 −a −i 1
a a i − 1

a

χ7 1 1 1 1 1 1 i −1 −i i −1 −i
χ8 1 1 1 1 1 1 −i −1 i −i −1 i
χ9 4 −2 1 −4 2 −1
χ10 4 −2 1 4 −2 1
χ11 4 1 −2 −4 −1 2
χ12 4 1 −2 4 1 −2

Figure 25. For G = SL2(F9), Display(CharacterTable(B));, for a = −1+i√
2

.

∣∣∣B̃∣∣∣ 24 24 24 24 24 24 18 12 18 24 24 24 24 24 24 24 24 18
∣∣∣B̃∣∣∣ 24 24 18 24

∣∣∣B̃∣∣∣ ∣∣∣B̃∣∣∣ ∣∣∣B̃∣∣∣ ∣∣∣B̃∣∣∣
1 8 24 24 24 24 4 4 3 12 6 12 12 12 8 8 24 24 6 2 8 24 3 24 6 3 3 6

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 −1 1 1 1 1
χ3 1 a a a −a −a −i i 1 i −1 −i −i i −a − 1

a − 1
a

1
a −1 −1 1

a
1
a 1 − 1

a −1 1 1 −1
χ4 1 −a −a −a a a −i i 1 i −1 −i −i i a 1

a
1
a − 1

a −1 −1 − 1
a − 1

a 1 1
a −1 1 1 −1

χ5 1 − 1
a − 1

a − 1
a

1
a

1
a i −i 1 −i −1 i i −i 1

a a a −a −1 −1 −a −a 1 a −1 1 1 −1
χ6 1 1

a
1
a

1
a − 1

a − 1
a i −i 1 −i −1 i i −i − 1

a −a −a a −1 −1 a a 1 −a −1 1 1 −1
χ7 1 −i −i −i −i −i −1 −1 1 −1 1 −1 −1 −1 −i i i i 1 1 i i 1 i 1 1 1 1
χ8 1 i i i i i −1 −1 1 −1 1 −1 −1 −1 i −i −i −i 1 1 −i −i 1 −i 1 1 1 1
χ9 3 − 1

a c d −c −d −i i −f − 1
f f 1

f
1
a a − 1

c
1
d −3 −a 1

c − 1
d g − 1

g −g 1
g

χ10 3 − 1
a d c −d −c −i i 1

f f − 1
f −f 1

a a − 1
d

1
c −3 −a 1

d − 1
c

1
g −g − 1

g g

χ11 3 1
a −d −c d c −i i 1

f f − 1
f −f − 1

a −a 1
d − 1

c −3 a − 1
d

1
c

1
g −g − 1

g g

χ12 3 1
a −c −d c d −i i −f − 1

f f 1
f − 1

a −a 1
c − 1

d −3 a − 1
c

1
d g − 1

g −g 1
g

χ13 3 a − 1
c − 1

d
1
c

1
d i −i − 1

f −f 1
f f −a − 1

a c −d −3 1
a −c d 1

g −g − 1
g g

χ14 3 a − 1
d − 1

c
1
d

1
c i −i f 1

f −f − 1
f −a − 1

a d −c −3 1
a −d c g − 1

g −g 1
g

χ15 3 −a 1
d

1
c − 1

d − 1
c i −i f 1

f −f − 1
f a 1

a −d c −3 − 1
a d −c g − 1

g −g 1
g

χ16 3 −a 1
c

1
d − 1

c − 1
d i −i − 1

f −f 1
f f a 1

a −c d −3 − 1
a c −d 1

g −g − 1
g g

χ17 3 −1 e 1
e e 1

e −1 −1 1
e e 1

e e −1 −1 1
e e 3 −1 1

e e −g − 1
g −g − 1

g

χ18 3 −1 1
e e 1

e e −1 −1 e 1
e e 1

e −1 −1 e 1
e 3 −1 e 1

e − 1
g −g − 1

g −g
χ19 3 1 − 1

e −e − 1
e −e −1 −1 e 1

e e 1
e 1 1 −e − 1

e 3 1 −e − 1
e − 1

g −g − 1
g −g

χ20 3 1 −e − 1
e −e − 1

e −1 −1 1
e e 1

e e 1 1 − 1
e −e 3 1 − 1

e −e −g − 1
g −g − 1

g

χ21 3 −i f − 1
f f − 1

f 1 1 −e − 1
e −e − 1

e −i i 1
f −f 3 i 1

f −f − 1
g −g − 1

g −g
χ22 3 −i − 1

f f − 1
f f 1 1 − 1

e −e − 1
e −e −i i −f 1

f 3 i −f 1
f −g − 1

g −g − 1
g

χ23 3 i 1
f −f 1

f −f 1 1 − 1
e −e − 1

e −e i −i f − 1
f 3 −i f − 1

f −g − 1
g −g − 1

g

χ24 3 i −f 1
f −f 1

f 1 1 −e − 1
e −e − 1

e i −i − 1
f f 3 −i − 1

f f − 1
g −g − 1

g −g
χ25 4 −2 2 −1 −4 1 −4 4 4 −4
χ26 4 1 −1 2 −4 −2 −4 4 4 −4
χ27 4 −2 −2 1 4 1 4 4 4 4
χ28 4 1 1 −2 4 −2 4 4 4 4

Figure 26. For G = SL2(F9), Display(CharacterTable(Btilde));, for a =
−1+i√

2
, c = e7πi/12, d = −e11πi/12, e = 1+i

√
3

2 , f = −eπi/6, f = 3−3i
√
3

2 .
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|G| 18 18 |G| 18 18 10 10 10 10 8 8 8
1 6 6 2 3 3 5 5 10 10 8 4 8

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 4 −1 2 −4 1 −2 −1 −1 1 1
χ3 4 2 −1 −4 −2 1 −1 −1 1 1
χ4 5 −1 2 5 −1 2 −1 1 −1
χ5 5 2 −1 5 2 −1 −1 1 −1
χ6 8 1 1 −8 −1 −1 a a −a −a
χ7 8 1 1 −8 −1 −1 a a −a −a
χ8 8 −1 −1 8 −1 −1 a a a a
χ9 8 −1 −1 8 −1 −1 a a a a
χ10 9 9 −1 −1 −1 −1 1 1 1
χ11 10 1 1 10 1 1 −2

χ12 10 −1 −1 −10 1 1
√

2 −
√

2

χ13 10 −1 −1 −10 1 1 −
√

2
√

2

Figure 27. For G = SL2(F9), Display(CharacterTable(G));, for a = 1+
√
5

2 .
∣∣∣G̃∣∣∣ ∣∣∣G̃∣∣∣ ∣∣∣G̃∣∣∣ ∣∣∣G̃∣∣∣ ∣∣∣G̃∣∣∣ ∣∣∣G̃∣∣∣ 24 24 24 18 18 18 18 24 24 24 24 24 24 30 30 30 30 30 30 30 30 30 30 30 30

1 2 3 6 3 6 12 12 4 3 6 3 6 24 24 24 24 8 8 30 15 10 5 30 15 10 5 30 15 30 15

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 3 3 a a 1
a

1
a f 1

f −1 −f −f − 1
f − 1

f 1 1 j j l l 1
j

1
j l l 1

k
1
k k k

χ3 3 3 a a 1
a

1
a f 1

f −1 −f −f − 1
f − 1

f 1 1 k k l l 1
k

1
k l l 1

j
1
j j j

χ4 3 3 1
a

1
a a a 1

f f −1 − 1
f − 1

f −f −f 1 1 1
j

1
j l l j j l l k k 1

k
1
k

χ5 3 3 1
a

1
a a a 1

f f −1 − 1
f − 1

f −f −f 1 1 1
k

1
k l l k k l l j j 1

j
1
j

χ6 4 −4 4 −4 4 −4 −2 2 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
χ7 4 −4 4 −4 4 −4 1 −1 −2 2 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
χ8 5 5 5 5 5 5 1 1 1 −1 −1 2 2 −1 −1 −1 −1 −1 −1
χ9 5 5 5 5 5 5 1 1 1 2 2 −1 −1 −1 −1 −1 −1 −1 −1
χ10 6 6 b b 1

b
1
b g 1

g 2 − 1
f − 1

f 1 1 −f −f 1 1 −f −f − 1
f − 1

f

χ11 6 6 1
b

1
b b b 1

g g 2 −f −f 1 1 − 1
f − 1

f 1 1 − 1
f − 1

f −f −f
χ12 6 −6 b −b 1

b − 1
b h −h 1

h − 1
h −i i 1

f − 1
f −1 1 f −f −1 1 f −f 1

f − 1
f

χ13 6 −6 b −b 1
b − 1

b −h h − 1
h

1
h i −i 1

f − 1
f −1 1 f −f −1 1 f −f 1

f − 1
f

χ14 6 −6 1
b − 1

b b −b − 1
h

1
h −h h i −i f −f −1 1 1

f − 1
f −1 1 1

f − 1
f f −f

χ15 6 −6 1
b − 1

b b −b 1
h − 1

h h −h −i i f −f −1 1 1
f − 1

f −1 1 1
f − 1

f f −f
χ16 8 8 8 8 8 8 −1 −1 −1 −1 l l l l l l l l l l l l

χ17 8 8 8 8 8 8 −1 −1 −1 −1 l l l l l l l l l l l l

χ18 8 −8 8 −8 8 −8 −1 1 −1 1 −l l −l l −l l −l l −l l −l l

χ19 8 −8 8 −8 8 −8 −1 1 −1 1 −l l −l l −l l −l l −l l −l l
χ20 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
χ21 9 9 c c 1

c
1
c −f − 1

f 1 −f −f − 1
f − 1

f 1 1 1
f

1
f −1 −1 f f −1 −1 f f 1

f
1
f

χ22 9 9 1
c

1
c c c − 1

f −f 1 − 1
f − 1

f −f −f 1 1 f f −1 −1 1
f

1
f −1 −1 1

f
1
f f f

χ23 10 10 10 10 10 10 −2 −2 −2 1 1 1 1
χ24 10 −10 10 −10 10 −10 1 −1 1 −1 i −i i −i i −i
χ25 10 −10 10 −10 10 −10 1 −1 1 −1 −i i −i i −i i

χ26 12 −12 d −d 1
d − 1

d j −j l −l 1
j − 1

j l −l 1
k − 1

k k −k
χ27 12 −12 d −d 1

d − 1
d k −k l −l 1

k − 1
k l −l 1

j − 1
j j −j

χ28 12 −12 1
d − 1

d d −d 1
j − 1

j l −l j −j l −l k −k 1
k − 1

k

χ29 12 −12 1
d − 1

d d −d 1
k − 1

k l −l k −k l −l j −j 1
j − 1

j

χ30 15 15 e e 1
e

1
e f 1

f −1 f f 1
f

1
f −1 −1

χ31 15 15 1
e

1
e e e 1

f f −1 1
f

1
f f f −1 −1

Figure 28. For G = SL2(F9), Display(CharacterTable(Gtilde));, for a =

−3 1+i
√
3

2 , b = 2a, c = 3a, d = 2b, e = 5a, f = a/3, g = 2a/3, h = −eπi/12 − e7πi/12, i =

−
√

2, j = −e4πi/15 + eπi/15, k = −e22πi/15 − e28πi/15, l = 1−
√
5

4 .

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12

θ1 1 1 1 1 1 1 1 1
θ2 1 1
θ3 1 1
θ4 1 1
θ5 1 1
θ6 1 1
θ7 1 1
θ8 1 1
θ9 1 1

Figure 29. For G = SL2(F9), charCoeffs(U, B);.
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χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13

θ1 1 1
θ2 1 1
θ3 1
θ4 1
θ5 1
θ6 1
θ7 1
θ8 1
θ9 1 1 1 1 1
θ10 1 1 1 1 1
θ11 1 1 1 1 1
θ12 1 1 1 1 1

Figure 30. For G = SL2(F9), charCoeffs(B, G);.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14 χ15 χ16 χ17 χ18 χ19 χ20 χ21 χ22 χ23 χ24 χ25 χ26 χ27 χ28

θ1 1 1 1 1 1 1 1 1
θ2 1 1
θ3 1 1
θ4 1 1
θ5 1 1
θ6 1 1
θ7 1 1
θ8 1 1
θ9 1 1
θ10 1 1 1 1 1 1 1 1
θ11 1 1 1 1 1 1 1 1

Figure 31. For G = SL2(F9), charCoeffs(Utilde, Btilde);.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14 χ15 χ16 χ17 χ18 χ19 χ20 χ21 χ22 χ23 χ24 χ25 χ26 χ27 χ28 χ29 χ30 χ31

θ1 1 1
θ2 1 1
θ3 1
θ4 1
θ5 1
θ6 1
θ7 1
θ8 1
θ9 1 1 1
θ10 1 1 1
θ11 1 1 1
θ12 1 1 1
θ13 1 1 1
θ14 1 1 1
θ15 1 1 1
θ16 1 1 1
θ17 2
θ18 2
θ19 1 1 1 1
θ20 1 1 1 1
θ21 1 1 1
θ22 1 1 1
θ23 1 1 1
θ24 1 1 1
θ25 1 1 1 1 1
θ26 1 1 1 1 1
θ27 1 1 1 1 1
θ28 1 1 1 1 1

Figure 32. For G = SL2(F9), charCoeffs(Btilde, Gtilde);.
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