

Massachusetts Institute of Technology

INTRODUCTION

In [1], McNamara proved that two *skew diagrams* can have the same Schur support only if they have the same number of $k \times \ell$ rectangles as subdiagrams. It follows that two *connected ribbons* α and β can have the same Schur support only if one is obtained by permuting row lengths of the other (i.e. $\beta = \alpha_{\pi}$ for some permutation π). We give a necessary and a sufficient condition for an m-rowed ribbon α to have the same Schur support as every permutation α_{π} , for $\pi \in$ S_m . We conjecture that our necessary condition is also sufficient.

PRELIMINARIES

A Young diagram of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ is a collection of rows of left aligned boxes, where row i has length λ_i .

A filling of a Young diagram is **semistandard** if the entries increase weakly across rows and strictly down columns. The content of a filling records the number of times each integer is used in the filling. For example, a SSYT of shape $\lambda = (8, 7, 3)$ and content $\nu = (5, 4, 3, 3, 3)$ is:

				1			
2	2	3	3	4	5	5	
3	4	5					

A skew diagram λ/μ is obtained by removing μ from the top-left corner of λ , where λ and μ are ordinary ("straight") diagrams. (So λ/μ is only defined when $\mu_i \leq \lambda_i$ for all *i*.) For example, $\lambda/\mu = 1$ (7, 6, 3)/(3, 2) has diagram

The **Schur function** of a skew partition λ/μ is defined as

where t_i is the number of occurrences of i in T.

A **ribbon** is a skew partition which does not contain a 2×2 block as a subdiagram. Notice that connected ribbons are fully determined by their row lengths and as such can be represented by integer tuples.

We can express $s_{\lambda/\mu} = \sum_{\nu} c_{\mu,\nu}^{\lambda} s_{\nu}$ with integers $c_{\mu,\nu}^{\lambda} \ge 0$. We define the **Schur support** of a skew shape λ/μ as

 $[\lambda/\mu] = \{ \nu \mid c_{\mu,\nu}^{\lambda} > 0 \}.$

Support Equalities Among Ribbon Schur Functions

Marisa Gaetz

 $x_1^{t_1} x_2^{t_2} x_3^{t_3} \cdots$

QUESTION

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a ribbon. Let α_π denote a ribbon formed by applying the permutation $\pi \in S_m$ to the row lengths of α .

A ribbon $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ is said to have *full equivalence class* if for all permutations $\pi \in S_m$, we have $[\alpha] = [\alpha_\pi]$.

Question: Which connected ribbons have full equivalence class?

SUFFICIENT CONDITION

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a ribbon. If all triples $(\alpha_j, \alpha_k, \alpha_\ell)$ with $1 \leq j, k, \ell \leq m$ satisfy the strict triangle inequality ($\alpha_i < \alpha_k + \alpha_\ell$), then α has full equivalence class.

PROOF SKETCH

Littlewood Richardson (LR) Rule: [2] Let D be a skew shape. A partition $\lambda = (\lambda_1, \dots, \lambda_m)$ is in the support of s_D iff there is a valid LR-filling of D with content λ . A filling of D is an LR-filling if:

- The tableau is semistandard.
- Every initial reverse reading word is Yamanouchi: #i'S $\ge \#(i+1)$ 'S

Reverse Reading Word: 1,1,2,2,1,3,2

This is Yamanouchi and semistandard, and hence is a valid LRfilling. The content of the filling is (3, 3, 1), so (3, 3, 1) is in the support of the ribbon (2, 3, 2).

R-Matrix Algorithm: [3] Gives us a way to swap two rows while preserving the Yamanouchi property in the whole tableau and semistandardness *within the two swapped rows*.

13347

When all strict triangle inequalities hold, we can swap any rows iand i + 1 using this algorithm to get (after some additional work) an LR-filling of $\alpha_{(i i+1)}$ of the same content as the original LR-filling for α . Since transpositions generate S_m , this shows that α has full equivalence class.

Will Hardt

Carleton College

Shruthi Sridhar Cornell University

NECESSARY CONDITION

all $j \leq m-2$, where

$$N_j = \max\left\{ k \Big|_{\substack{i \leq j}} \right\}$$

Conjecture: This necessary condition is sufficient as well.

Note: A weaker but simpler version of our necessary condition is: $\alpha_i < \sum_{k=i+1}^m \alpha_k$ for all $1 \le i \le m-2$.

PROOF SKETCH

- equivalence class.

FUTURE WORK

- from small cases supports this conjecture.)
- Extend the results to generic skew shapes.

REFERENCES

[1] Peter R. W. McNamara, Necessary conditions for Schur-positivity, Journal of Algebraic Combinatorics 28(4): 495–507, 2008 [2] D. E. Littlewood and A. R. Richardson, Group characters and algebra, *Phil. Trans.*

A 233, (1934), 99–141.

[3] R. Inoue, A. Kuniba, and T. Takagi. Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry, J. Phys. A: Math. *Theor.* **45** 7 (2012) 073001.

ACKNOWLEDGMENTS

This research was performed as a part of the 2017 University of Minnesota, Twin Cities Combinatorics REU, and was supported by NSF RTG grant DMS-1148634 and by NSF grant DMS-1351590. We would like to thank Victor Reiner, Pavlo Pylyavskyy, Sunita Chepuri, and Galen Dorpalen-Barry for their advice, mentorship, and support.

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a ribbon, where $\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_m$. If α has full equivalence class, then $N_j < \sum_{i=j+1}^m \alpha_i - (m-j-2)$ for

 $\left\{ \sum_{1 \le j, \alpha_i < k} (k - \alpha_i) < m - j - 2 \right\}$

• If the j^{th} necessary inequality is not satisfied for a ribbon α , we can use the LR-Rule to show that $[\alpha_{(j,j+1)}] \neq [\alpha]$.

• In this case, if we fill the i^{th} row of $\alpha_{(j \ j+1)}$ with i's for all $i \leq j$ and then use as many j's as possible for the rest of the filling, there will be no LR-filling of α of the same content. In short, row j is too long relative to the rows below it for α to have full

 Prove that the necessary condition is also sufficient. (Data • Investigate non-full equivalence classes of ribbons.