Support Equalities Among Ribbon Schur Functions

Marisa Gaetz

Massachusetts Institute of Technology

Will Hardt

Carleton College

InTRODUCTION

In [1], McNamara proved that two skew diagrams can have the same Schur support only if they have the same number of $k \times \ell$ rectangles as subdiagrams. It follows that two connected ribbons α and β can have the same Schur support only if one is obtained by permuting row lengths of the other (i.e. $\beta=\alpha_{\pi}$ for some permutation π). We give a necessary and a sufficient condition for an m-rowed ribbon α to have the same Schur support as every permutation α_{π}, for $\pi \in$ S_{m}. We conjecture that our necessary condition is also sufficient.

Preliminaries

A Young diagram of a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ is a collection of rows of left aligned boxes, where row i has length λ_{i}.

A filling of a Young diagram is semistandard if the entries increase weakly across rows and strictly down columns. The content of a filling records the number of times each integer is used in the filling. For example, a SSYT of shape $\lambda=(8,7,3)$ and content $\nu=(5,4,3,3,3)$ is:

```
ll:l|lllllllll
2 2 3 3 4 5 5
|2 2 
```

A skew diagram λ / μ is obtained by removing μ from the top-left corner of λ, where λ and μ are ordinary ("straight") diagrams. (So λ / μ is only defined when $\mu_{i} \leq \lambda_{i}$ for all i.) For example, $\lambda / \mu=$ $(7,6,3) /(3,2)$ has diagram

$$
\varpi \square / \square=\square \square \square
$$

The Schur function of a skew partition λ / μ is defined as

where t_{i} is the number of occurrences of i in T.
A ribbon is a skew partition which does not contain a 2×2 block as a subdiagram. Notice that connected ribbons are fully determined by their row lengths and as such can be represented by integer tuples

We can express $s_{\lambda / \mu}=\sum_{\nu} c_{\mu, \nu}^{\lambda} s_{\nu}$ with integers $c_{\mu, \nu}^{\lambda} \geq 0$. We define the Schur support of a skew shape λ / μ as

$$
[\lambda / \mu]=\left\{\nu \mid c_{\mu, \nu}^{\lambda}>0\right\} .
$$

QUESTION

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ be a ribbon. Let α_{π} denote a ribbon formed by applying the permutation $\pi \in S_{m}$ to the row lengths of α.

A ribbon $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ is said to have full equivalence class if for all permutations $\pi \in S_{m}$, we have $[\alpha]=\left[\alpha_{\pi}\right]$.
Question: Which connected ribbons have full equivalence class?

SUFFICIENT CONDITION

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ be a ribbon. If all triples $\left(\alpha_{j}, \alpha_{k}, \alpha_{\ell}\right)$ with $1 \leq j, k, \ell \leq m$ satisfy the strict triangle inequality $\left(\alpha_{j}<\alpha_{k}+\alpha_{\ell}\right)$, then α has full equivalence class.

Proof Sketch

Littlewood Richardson (LR) Rule: [2] Let D be a skew shape. A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is in the support of s_{D} iff there is a valid LR-filling of D with content λ. A filling of D is an LR-filling if:

- The tableau is semistandard.
- Every initial reverse reading word is Yamanouchi: $\# i$'s $\geq \#(i+1)$'s
Reverse Reading Word: 1,1,2,2,1,3,2

This is Yamanouchi and semistandard, and hence is a valid LRfilling. The content of the filling is $(3,3,1)$, so $(3,3,1)$ is in the support of the ribbon $(2,3,2)$.
R-Matrix Algorithm: [3] Gives us a way to swap two rows while preserving the Yamanouchi property in the whole tableau and semistandardness within the two swapped rows.

| 1 | 3 | 3 | 4 | 7 |
| :--- | :--- | :--- | :--- | :--- | | 1 | 3 | 5 |
| :--- | :--- | :--- |

\longrightarrow | | | | | 1 | 4 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3 | 3 | 3 | 5 | | |

When all strict triangle inequalities hold, we can swap any rows and $i+1$ using this algorithm to get (after some additional work) an LR-filling of $\alpha_{(i i+1)}$ of the same content as the original LR-filling for α. Since transpositions generate S_{m}, this shows that α has full equivalence class.

Shruthi Sridhar

Cornell University

Necessary Condition

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ be a ribbon, where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{m}$. If α has full equivalence class, then $N_{j}<\sum_{i=j+1}^{m} \alpha_{i}-(m-j-2)$ for all $j \leq m-2$, where

$$
N_{j}=\max \left\{k \mid \sum_{i \leq j, \alpha_{i}<k}\left(k-\alpha_{i}\right)<m-j-2\right\}
$$

Conjecture: This necessary condition is sufficient as well.
Note: A weaker but simpler version of our necessary condition is: $\alpha_{i}<\sum_{k=i+1}^{m} \alpha_{k}$ for all $1 \leq i \leq m-2$.

Proof Sketch

- If the $j^{\text {th }}$ necessary inequality is not satisfied for a ribbon α, we can use the LR-Rule to show that $\left[\alpha_{(j j+1)}\right] \neq[\alpha]$.
- In this case, if we fill the $i^{t h}$ row of $\alpha_{(j j+1)}$ with i 's for all $i \leq j$ and then use as many j 's as possible for the rest of the filling, there will be no LR-filling of α of the same content. In short, row j is too long relative to the rows below it for α to have full equivalence class.

Future Work

- Prove that the necessary condition is also sufficient. (Data from small cases supports this conjecture.)
- Investigate non-full equivalence classes of ribbons.
- Extend the results to generic skew shapes.

References

[1] Peter R. W. McNamara, Necessary conditions for Schur-positivity, Journal of AIgebraic Combinatorics 28(4): 495-507, 2008
[2] D. E. Littlewood and A. R. Richardson, Group characters and algebra, Phil. Trans. A 233, (1934), 99-141.
[3] R. Inoue, A. Kuniba, and T. Takagi. Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry, J. Phys. A: Math. Theor. 457 (2012) 073001

ACKNOWLEDGMENTS

This research was performed as a part of the 2017 University of Minnesota, Twin Cities Combinatorics REU, and was supported by NSF RTG grant DMS-1148634 and by NSF grant DMS-1351590. We would like to thank Victor Reiner, Pavlo Pylyavskyy, Sunita Chepuri, and Galen Dorpalen-Barry for their advice, mentorship, and support.

