Generating Functions for f-vectors of Simple Weight Polytopes

Jiyang Gao, Vaughan McDonald

MIT, Harvard University

 $28 \ {\rm January} \ 2019$

Gao, McDonald

2 Coxeter Group and Weight Polytopes

(3) f-polynomials of Simple Weight Polytopes

f-vector and f-polynomial

Definition (f-vector and f-polynomial)

Define the *f*-vector of a *r*-dim Polytope *P* as $f(P) := (f_0, \ldots, f_r)$, where f_i is the number of *i*-dimensional faces of *P*. Define its *f*-polynomial as $f_P(t) = \sum_{i=0}^r f_i t^i$.

Example:

A cube has 8 vertices, 12 edges and 6 faces.

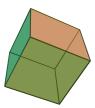
$$f(P) = (8, 12, 6, 1)$$
$$f_P(t) = 8 + 12t + 6t^2 + t^3$$

h-vector and h-polynomial

Definition (h-vector and h-polynomial)

Define the *h*-polynomial of a *r*-dim Polytope *P* as $h_P(t) = f_P(t-1) = \sum_{i=0}^r f_i(t-1)^i$. Assume $h_P(t) = \sum_{i=0}^r h_i t^i$, then define its *h*-vector as $h(P) := (h_0, h_1, \dots, h_r)$.

Example:



A cube has $f_P(t) = 8+12t+6t^2+t^3$. Replace t with t-1.

$$h_P(t) = f_P(t-1) = 1 + 3t + 3t^2 + t^3$$

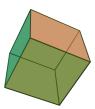
 $h(P) = (1, 3, 3, 1)$

h-vector and h-polynomial

Definition (h-vector and h-polynomial)

Define the *h*-polynomial of a *r*-dim Polytope *P* as $h_P(t) = f_P(t-1) = \sum_{i=0}^r f_i(t-1)^i$. Assume $h_P(t) = \sum_{i=0}^r h_i t^i$, then define its *h*-vector as $h(P) := (h_0, h_1, \dots, h_r)$.

Example:



A cube has $f_P(t) = 8+12t+6t^2+t^3$. Replace t with t-1.

$$h_P(t) = f_P(t-1) = 1 + 3t + 3t^2 + t^3$$

 $h(P) = (1, 3, 3, 1)$

Is this always symmetric?

Dehn-Somerville Equation

Definition (Simple Polytope)

A r-dimensional polytope is called a *simple polytope* if and only if each vertex has exactly r incident edges.

For example, a cube is a simple polytope.

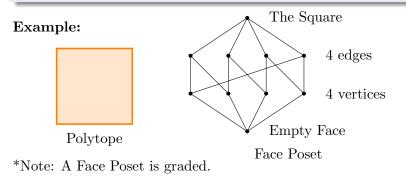
Theorem (Dehn-Sommerville equation)

For any simple polytope P, its h-vector is symmetric.

Face Poset

Definition (Face Poset)

The *face poset* of polytope P is the poset {faces of P} ordered by inclusion of faces.



Methods to describe a polytope:

- *f*-polynomial/*h*-polynomial;
- face poset.

f-vectors and cd-index of Weight Polytopes

Section 2

Coxeter Group and Weight Polytopes

Gao, McDonald

8 / 28

Finite Reflection groups

Definition (Finite Reflection Group)

A finite reflection group is a finite subgroup $W \subset \operatorname{GL}_n(\mathbb{R})$ generated by reflections, i.e. elements w such that $w^2 = 1$ and they fix a hyperplane H and negate the line perpendicular to H

Example: One example of a finite reflection group is the Dihedral Group $I_n = \{s, t \mid s^2 = t^2 = e, (st)^n = e\}.$

Coxeter groups

Definition (Coxeter Group)

A Coxeter Group is a group W of the form

$$W \cong \langle s_1, \dots, s_n \mid s_i^2 = e, (s_i s_j)^{m_{ij}} = e \rangle$$

for some $m_{ij} \in \{2, 3, 4, ...\} \cup \{\infty\}$. If W is finite, then W is called a *Finite Coxeter Group*. $S = \{s_1, s_2, ..., s_n\}$ is called the *Generating Set* of W.

f-vectors and cd-index of Weight Polytopes

Finite Coxeter Groups = Finite Reflection Groups

Here is a BIG theorem of Coxeter:

Theorem (Coxeter)

Finite Coxeter groups = Finite reflection groups.

Gao, McDonald

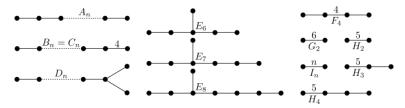
Coxeter Diagram

Definition (Coxeter Diagram)

Given a Coxeter presentation (W, S), we can encapsulate it in the *Coxeter Diagram*, denoted $\Gamma(W)$, a graph with V = S and if $m_{ij} = 3$, s_i and s_j are connected with no label and if $m_{ij} > 3$, s_i and s_j are connected with label m_{ij} .

Example: The dihedral group I_n has Coxeter diagram

Amazingly, finite Coxeter groups are classified! They come in four infinite families, A_n , B_n , D_n , and I_n , as well as a finite collection of exceptional cases. The Coxeter diagrams look as follows:



We will focus our energies on types A_n, B_n, D_n .

f-vectors and cd-index of Weight Polytopes

Weight Polytopes

Definition (Weight Polytope)

Given a finite Coxeter group $W, \lambda \in \mathbb{R}^n$, we define the Weight Polytope P_{λ} to be the convex hull of $\{w \cdot \lambda \mid w \in W\}$.

▶ 《콜▶ 《콜▶ :

Weight Polytopes

Definition (Stabilizer)

Let $J(\lambda) = \{s \in S \mid s(\lambda) = \lambda\}$ be the *stabilizer* of λ .

Theorem (Maxwell)

The f-vector and face lattice of a weight polytope P_{λ} is only dependent on W, S and $J(\lambda)$.

Weight Polytope Example 1

Coxeter Group

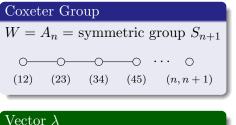
 $W = A_n =$ symmetric group S_{n+1}

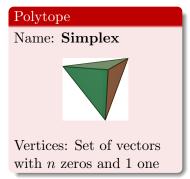
Vector λ $\lambda = (0, \dots, 0, 1)$

n zeros

f-vectors and cd-index of Weight Polytopes

Weight Polytope Example 1





E

f-vectors and cd-index of Weight Polytopes

Weight Polytope Example 2

Coxeter Group

 $W = B_n =$ signed permutation group

Vector λ

$$\lambda = (\underbrace{1,1,\ldots,1})$$

n ones

Gao, McDonald

æ

· < 프 > · < 프 > · ·

f-vectors and cd-index of Weight Polytopes

Weight Polytope Example 2

Coxeter Group

 $W = B_n$ = signed permutation group

$$\bigcirc \frac{4}{(-1)} \bigcirc \cdots \bigcirc (12) (23) (34) (n-1,n)$$

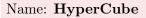
Vector λ

$$\lambda = (\underbrace{1, 1, \dots, 1})$$

n ones

$$\begin{array}{c|c} & J(\lambda) \\ \circ & \bullet & \circ & \circ \\ \hline 1 & 2 & 3 & 4 & n \end{array}$$

Polytope



Vertices: Set of vectors with 1 and -1

★ 문 ► ★ 문 ►

E

f-polynomial

f-vectors and cd-index of Weight Polytopes

Section 3

f-polynomials of Simple Weight Polytopes

Gao, McDonald

18 / 28

Renner's Classification of Simple Polytopes

Theorem (Renner)

A type A_n or B_n weight polytope is simple iff its Coxeter diagram has one of the following structures.

- < E ≻ < E ≻ -

Renner's Classification of Simple Polytopes

Theorem (Renner)

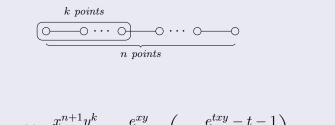
A type A_n or B_n weight polytope is simple iff its Coxeter diagram has one of the following structures.

What are their f-polynomials?

Case 1

Theorem (Golubitsky)

Denote $F_{n,k}(t)$ as the f-polynomial for the f polytope of



$$\sum_{n \ge k \ge 0} F_{n,k}(t) \cdot \frac{x^{n+1}y^k}{(n+1)!} = \frac{e^{xy}}{y-1} \cdot \left(y + \frac{e^{txy} - t - 1}{t+1 - e^{tx}}\right) - 1.$$

▲ロト ▲母ト ▲ヨト ▲ヨト 三ヨー のへで

Case 2

Theorem

7

Denote $F_{n,a,b}(t)$ as the f-polynomial for the f polytope of

$$\begin{array}{c} a \ points & b \ points \\ \hline \bigcirc \cdots & \bigcirc & & \bigcirc \cdots & \bigcirc & & & \bigcirc \\ n \ points \end{array}$$
Then,
$$\sum_{a,b \ge 0} \sum_{n > a+b} F_{n,a,b}(t) \cdot \frac{x^{n+1}y^a z^b}{(n+1)!} = \frac{1}{y^2 - y} \left(x + \frac{(xy - e^{xy} + 1)(xz - e^{xz})}{y} \right) \\ + \frac{\left(tz + (t+1)e^{xz} - t - e^{(t+1)xz}\right) \left(\frac{ty + (t+1)e^{(xy)} - t - e^{((t+1)xy)}}{(t - e^{(tx)} + 1)y} - e^{(xy)}\right)}{t(y - 1)z} \\ + \frac{e^{(xy + xz)}}{ty} + \frac{\left(ze^{(txy)} - ye^{(txz)}\right)e^{(xy + xz)}}{t(y - z)y}\right).$$

Gao, McDonald

Case 3

Theorem

Denote $F_{n,k}(t)$ as the f-polynomial for the f polytope of

$$\underbrace{\bigcirc}_{n \text{ points}}^{k \text{ points}}$$
Then,
$$\sum_{n>k\geq 0} F_{n,k}(t) \cdot \frac{x^n y^k}{n!} = \frac{1}{y-1} \left(e^{(t+2)xy} + \frac{e^{tx} \cdot \left(e^{2(t+1)xy} - (t+1)e^{2xy} + t - ty\right)}{(t+1-e^{2tx})y} \right).$$

- < 토 ≻ < 토 ≻

Case 4

Theorem

Denote $F_{n,k}(t)$ as the *f*-polynomial for the *f* polytope of

$$\underbrace{\bigcirc 4}_{n-2>k\geq 0} F_{n,k}(t) \frac{x^{n+1}y^k}{(n+1)!} = \frac{1}{y^2 - y} \left(xy + \left(y + \frac{(t+1)e^{(2\,xy)}}{t} - \frac{e^{(2\,(t+1)xy)}}{t} - 1 \right) \left(\frac{(t+1)tx - te^{(tx)}}{t - e^{(2\,tx)} + 1} + 1 \right) - x - \frac{((t+1)xy + \frac{1}{t} + 1)e^{(2\,xy)} - \frac{e^{(2\,(t+1)xy)}}{t} - e^{((t+2)xy)}}{y} \right).$$

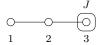
E

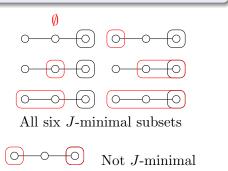
Ingredients of the Proof

Definition (J-minimal subset)

For a Coxeter diagram $\Gamma = (W, S)$ and subset $J \subseteq S$, a *J-minimal subset* is a subset $X \subseteq S$ such that no connected component of X on the Coxeter diagram lies entirely in J.

Example:





Ingredients of the Proof

Theorem (Renner, Maxwell)

Consider the action of W on {faces of P_{λ} }, then there is a bijection

 $f: \{J(\lambda)\text{-minimal sets}\} \rightarrow \{\text{orbits of the action}\}.$

If X is $J(\lambda)$ -minimal, then all faces in f(X) are called X-type face. All X-type face has dimension |X|, and the number of X-type faces is

$$\frac{|W|}{|W_{X^*}|},$$

where $W_{X^*} \subseteq W$ is the subgroup generated by

 $\{s \in S | s \in X \text{ or } s \text{ and } X \text{ are not connected}\}.$

Example of Renner/Maxwell

X	Face	W_{X^*}	$ W / W_{X^*} $
Ø	Vertices	$\{3\}$	48/2 = 24
	Long Edges	$\{1, 3\}$	48/4 = 12
	Triangle Edges	$\{2\}$	48/2 = 24
	Octagons	$\{1, 2\}$	48/8 = 6
	Triangles	$\{2,3\}$	48/6 = 8
	Truncated Cube	$\{1, 2, 3\}$	48/48 = 1

f-polynomial

f-vectors and *cd*-index of Weight Polytopes

Summary: What have we done?

	<i>f</i> -polynomial	Face Poset
General Simple	\checkmark	Maxwell
Weight Polytopes		(we rewrote \checkmark)
Weyl Group	\checkmark	Renner
Weight Polytopes	(some done by	
	Golubitsky)	
Simplex	Known	Known

Gao, McDonald

- < ≣ ▶ <

f-polynomial

f-vectors and cd-index of Weight Polytopes

The End!

Thank You!

Gao, McDonald