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1 Abstract

The Abelian Sandpile Model and its recurrent configurations, known as the Sandpile group, are abundant in
modern mathematics and have combinatoric, algebraic, and geometric descriptions. Past work has focused on the
sandpile group of the n-dimensional hypercube. In this project, we perform a more general analysis on the Cayley
graph of the group Fr2 and any of its generating sets. While the p-Sylow component of the sandpile group has been
classified for p 6= 2, significantly less is known about the 2-Sylow component. In this paper, we use ring theory to
prove a sharp upper bound for the largest 2-Sylow subgroup in the sandpile group of an arbitrary Cayley graph.
We also partially classify the number of 2-Sylow subgroups in the sandpile group and make further reductions into
determining its structure. Using these reductions, we provide a full classification of the sandpile group for the r = 2
case and other enlightening results for small r cases.

2 Introduction and Notation

Let G = (V, E) be a connected graph on n vertices with no self-loops and an ordering on the vertices. We define its
Laplacian L(G) to be the n× n matrix with entries

L(G)u,v =

{
deg(u) u = v

−m(u, v) u 6= v

where m(u, v) is the number of edges between u and v. L(G) is an integer matrix, so we can study it as a linear map
of Z-modules Zn → Zn.

Note by the definition of L(G) that the vector (1, 1, . . . , 1) ∈ ker(L(G)). When the graph G is connected, we
have an equality ker(L(G)) = span((1, 1, . . . , 1)). Therefore, Im(L(G)) ∼= Zn−1, a sublattice. It follows that the
cokernel can be written as

Zn/Im(L(G)) ∼= Z⊕ K(G)

where K(G) is a finite abelian group, known as the sandpile group of G. It follows from Kirchoff’s Matrix Theorem
that |K(G)| is the number of spanning trees of G. This group is our main object of study.

We are interested in computing the sandpile groups of Cayley graphs of the group Fr2. One motivation for studying
this family of graphs is that the hypercube graph Qn, which has a sandpile group that is not completely determined,
is a Cayley graph of Fr2.

In 2003, H. Bai determined the p-Sylow groups Qn for p 6= 2 [7]. Bai also derive formulae for the number of
Sylow-2 cyclic factors and the number of Z/2Z’s. Meanwhile, Ducey and Jalil [4] computed the Sylow-p groups for
the Cayley graphs of any finite group for p - |G| in terms of the eigenvalues of L(G). In 2015, Chandler et. al. [2]
determined the cokernel of the adjacency matrix of Qn in terms of n.

However, the 2-Sylow structure of Cayley graphs of Fr2 is still unknown. Anzis and Prasad [3] made progress in
this direction by bounding the largest 2-Sylow cyclic factor of K(Qn).

We begin by defining a generic set of generators M for a Cayley graph of Fr2. In particular, hypercubes are
generic. We then have the result
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Theorem 2.1. Suppose that M is in the generic case. Then the number of invariant Sylow-2 cyclic factors of K(G)
is 2n−1 − 1.

We conjecture that this is both a lower bound and this lower bound is only achieved in the generic case. We then
use the methods of Anzis-Prasad to extend and improve their upper bound for all Cayley graphs of Fr2. Namely,

Corollary 2.2. The largest 2-cyclic factor, Z/2eZ has bound

e ≤ blog2(n)c+ r− 1

In the case of Qn, we go further to explicitly determine the top cyclic factor. We then continue to determine
the 2nd through nth cyclic factors, and conjecture a formula for the (n + 1)st factor. We conclude by completely
determining the sandpile group for r = 2 and for the generic case of r = 3.

2.1 Background and Previous Results

We first define what a Cayley graph is in our context. Given G = Fr2 and a set of generators M

M =

 | |

v1 · · · vn
| |


such that vi ∈ Fr2 − {0}, we form the Cayley graph, G(Fr2,M), with vertex set V = Fr2 and edges w,w+ vi for
w ∈ V and vi ∈ M. The fact that M is a generating set implies G is connected, and vi 6= 0 ensures there are no
self-loops. Since addition is performed in Fr2, note we also have w+ vi + vi = w+ 2vi = w. Therefore, we can think
of this graph as undirected. If we index the matrix representation of L(G) by the binary tuples u, v ∈ Fr2 as opposed
to a decimal indexing, then we can say that

L(G)u,v =

{
n u = v

−(# of generators, vi, such that u+ vi = v) u 6= v

since G is an n-regular graph.

We are now interested in K(G) for such graphs. As mentioned in the introduction, Kirchoff’s Matrix Tree theo-

rem tells us that if λ1 = 0 < λ2 ≤ λ3 ≤ · · · ≤ λ2r then |K(G)| = 1
2r

∏2r

i=2 |λi|, which is also the number of spanning

trees [6]. Note by the structure theorem for finite abelian groups, K(G) ∼=
⊕
p⊕e≥1(Z/peZ)m(pe), where m(pe) is

the power of Z/peZ in K(G). Thus, we can try to determine the group prime by prime.

We will now detail some basic properties about the sandpile group of an arbitrary Cayley graph with vertex set
V = Fr2. Much of this is easily derived from other sources such as [4] and [6], but we add in statements and proofs for
completeness of the story. In particular, we will outline the proofs required to determine the p-primary component
for p 6= 2.

First off, when regarding these matrices over R it turns out all there is an eigenbasis for all of these G(Fr2,M)
at once.

Definition 2.3. For u ∈ Fr2, define

fu =
∑
x∈Fr

2

(−1)u·xex

where ex is the standard basis vector (0, . . . , 0, 1, 0, . . . , 0) of R2r with the only 1 at the xth index.

These vectors have some very special properties. Namely,

Lemma 2.4. {fu} are an orthogonal 2r basis for R2r , and the standard basis {eu}u∈Fr
2

satisfies eu = 1
2r

∑
v∈Fr

2
(−1)u·vfv.

This basis is in fact an eigenbasis, with the eigenvalues only depending on the generating set M.

Lemma 2.5. For any set of generators of Fr2 given by M = (v1, . . . , vn), where the {vi} is a collection of column
vectors, the Cayley graph G = G(Fr2,M) and its graph Laplacian L(G) has every fu as eigenvector, with eigenvalue
λu,M = n−

∑n
i=1(−1)

u·vi .
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We use this information to determine the Sylow-p structure. If we define the ring R = Z
[
1
2

]
= Z2 = {a/2k : a ∈

Z, k = 0, 1, . . . , }, then the change of basis formula from Lemma 2.2 implies we can diagonalize L(G) over R to a
matrix D = diag(λu, u ∈ Fr2). Using this fact we prove

Proposition 2.6.

SylpK(G) = Sylp

 ⊕
u∈Fr

2
−{0}

Z/λu,MZ


for p 6= 2

Thus, we have a nice description in terms of the eigenvalues for the Sylow-p subgroups for p 6= 2. One might hope
this classification to also hold for p = 2, but data shows it is in general much wilder. In order to deal with the
Sandpile group when p = 2, we first adopt the approach of Benkart et. al. [1] and induce a ring structure on K(G).
We once again include the proof for the sake of completeness.

Proposition 2.7.

cokerL(G) ∼= K(G)⊕ Z ∼= Z[x1, x2, . . . , xr]/(x21 − 1, . . . , x2r − 1, n−

n∑
i=1

r∏
j=1

x
(vi)j
j ) (1)

Remark 2.8. From here on out, we will also denote the ideal I(G) := (x21 − 1, . . . , x
2
r − 1, n−

∑n
i=1

∏r
j=1 x

(vi)j
j ) for

a Cayley graph G.

Remark 2.9. Note that by definition of cokernel, the order of an element ω = (a1, . . . , a2r) in the cokernel is equal
to the smallest integer C such that there exists a v ∈ Z2r such that L(G)v = Cw. This is used to find orders of
elements in the polynomial ring (which corresponds to a vector in Z2r) for determining top cylic factors and their
2-valuations.

Remark 2.10. In the case G = Qn, this polynomial ring is

Z[x1, . . . , xn]/(x21 − 1, x22 − 1, . . . , x2n − 1, n− (x1 + x2 + · · ·+ x+ n))

This group has kernel that is symmetric under the action of Sn, which is an important fact that we will use later.

Remark 2.11. Invariance of GLn(Fr2) It is important to note the sandpile group K(G(Fr2,M)) for M an r × n set
of generators is invariant under left multiplication by elements of GLr(Fr2). That is, given T ∈ GLr(Fr2), we have
K(G(Fr2,M)) ∼= K(G(Fr2, T ◦M)). As a result, we only need to think about isomorphism classes of generators.

Remark 2.12. Let G = G(Fr2,M) be a Cayley graph of Fr2. Let {a1, . . . , a2r−1} denote the multiplicites of each
non-zero generator of the Cayley graph, G, on Fr2. Say another matrix N has multiplicities {λa1, . . . , λa2r−1} for
some k ∈ Z. If the L(G(Fr2,M)) has Smith normal form [0, s1, . . . , s2r−1] then L(G(Fr2, N)) has Smith normal
form [0, λs1, . . . , λs2r−1]. Thus, inflating the multiplicities of each column of M by a common factor λ inflates the
multiplicities of the edges of G by λ, which has the predictable effect on the Sandpile group.

3 Number of even invariant factors depends on parity of generators

In this section we wish to compute the number of even cyclic factors appearing in the sandpile group. Given a
sandpile group

K(G) ∼=
⊕
p

⊕
e≥1

(Z/peZ)m(pe)

Tensoring with Z/2Z yields

K(G)⊗ (Z/2Z) ∼=
⊕
e≥1

(Z/2eZ)m(2e) ⊗ Z/2Z ∼= (Z/2Z)
∑

em(2e)

where we used the facts that (Z/peZ)⊗ (Z/2Z) = 0 for p 6= 2 and (Z/2eZ)⊗ (Z/2Z) = Z/2Z for all e ≥ 1. We define

d(M) :=
∑
e≥1

m(2e)

which is the number of even invariant factors. Now say we have a Cayley graph on Fr2 with M = {vi}
n
i=1 a collection

of generators with µu for each λu ∈ Fr2 − {0} with n :=
∑
i µi. Our first result about d(M) is the following:
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Proposition 3.1. d(M) is only depend on the multiplicities of the generators modulo 2.

Proof. We use the ring description of the sandpile group from equation (1). If we have another Cayley graph G ′,
corresponding to V = Fr2 and another set of generators with multiplicities {λi}

2r−1
i=1 and {µi}

2r−1
i=1 such that λi ≡ µi

mod 2 so that n ′ =
∑
i λi ≡

∑
i µi mod 2, then

[Z⊕ K(G)]⊗ (Z/2Z) ∼= Z/2Z⊕ (K(G)⊗ (Z/2Z)) ∼= Z/2Z[x1, . . . , xr]/(x21 − 1, . . . , x2r − 1, n−

2r−1∑
i=1

µi

r∏
j=1

x
(vi)j
j )

∼= Z/2Z[x1, . . . , xr]/(x21 − 1, . . . , x2r − 1, n ′ −
2r−1∑
i=1

λi

r∏
j=1

x
(vi)j
j ) ∼= Z/2Z⊕ (K(G ′)⊗ (Z/2Z))

and thus the K(G)⊗ Z/2Z ∼= K(G ′)⊗ Z/2Z meaning that d(M) = d(M ′).

4 Characterization of the Number of 2-Sylow Components

Our first main theorem derives a formula for the number of even invariant factors for most choices of M. First, we
make a definition:

Definition 4.1. Given M = {v1, . . . , vn} an r× n list of generators of Fr2, we say that M is generic if

n∑
i=1

vn 6= ~0

Remark 4.2. For a fixed r and 1 ≤ i ≤ r, the probability that the sum of the ith coordinates is 0 is roughly 1/2.
Heuristically, each of the coordinates is about independent (not exactly since not all the coordinates can be 0, but
this is just a heuristic). Then the probability that M is not in the generic case is roughly 1/2r, which exponentially
decays to 0. This is why we use the word ’generic.’

We will now prove Theorem 2.1, which we restate here:

Theorem 4.3. Suppose that M is in the generic case. Then the number of invariant Sylow-2 cyclic factors of K(G)
is 2n−1 − 1.

Proof. The number of Sylow-2 cyclic factors will be the Z/2Z-rank of the vector space K(G)⊗Z/2Z, since Z/2eZ⊗
Z/2Z = Z/2Z for e > 0 and Z/mZ⊗ Z/2Z = 0 for 2 - m. Thus, we want the rank of

K(G)⊗ Z/2Z ∼= Z/2Z[x1, . . . , xr]/

x21 − 1, . . . , x2r − 1, n−

n∑
i=1

r∏
j=1

x
(vi)j
j


Making the change of variables ui := xi − 1 yields

K(G)⊗ Z/2Z ∼= Z/2Z[u1, . . . , ur]/

u21, . . . , u2r , n−

n∑
i=1

r∏
j=1

(uj − 1)
(vi)j


Call this last relation in the ideal p(x1, . . . , xr) := n −

∑n
i=1

∏r
j=1(uj + 1)

(vi)j Since
∑n
i=1 vi 6= 0, there exists an

index k such that
∑n
i=1(vi)k = 1. As a result, the coefficient of uk in p(x1, . . . , xr) is 1. Therefore, noting this

expression has trivial constant term and that any monomial in the ring can only have degree 1 factors of uk, we can
rewrite 0 ≡ p(u1, . . . , ur) = uk · f− g, where f, g are polynomials with no monomials dividing uk and f has constant
term 1. Since f has nonzero constant term and any monomial u2i = 0, we in fact have f2 = 1, so f is invertible and
uk ≡ fg in the quotient. Relabel the variables so that k = r (alternatively use GLr invariance of the sandpile group
with the transposition (k r)). We can now construct a bijection from

T : cokerL(G)⊗ Z/2→ Z/2[u1, . . . , ur−1]/(u21, . . . , u2r−1) ∼= (Z/2Z)2
r−1

, by mapping ut → ut for t < r and ur → g(u1, . . . , ur−1)f(u1, . . . , ur−1). Note that as a vector space rank(Z/2⊕
K(G) ⊗ Z/2) ≤ 2r−1, since all monomials involving ur can be written in terms of u1, . . . , ur−1. Thus, the map
T is a surjective linear map from a space of dimension ≤ 2r−1 to a space of dimension 2r−1. It then must be an

isomorphism. Therefore, (Z⊕ K(G))⊗ Z/2Z ∼= (Z/2Z)2r−1

so K(G) has 2r−1 − 1 Sylow-2 cyclic factors.
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What about in the nongeneric cases? In that case, the final relation no longer has a degree 1 term, so we cannot
construct the isomorphism from the proof above. However, we can at least prove a basic structural result as follows:

Proposition 4.4. Let (av1 , . . . , av2r−1
) be the multiplicities of the generators associated to M, and assume not all

avi have the same parity. Let M ′ be the generating set with (av1 + 1, . . . , av2r−1
+ 1). Then d(M) = d(M ′).

Proof. Using the techniques from 2.1, we have that d(M) is one less than the dimension of

Z/2Z[x1, . . . , xr]/(x21 − 1, . . . , x2r − 1, g(x1, x2, . . . , xr))

where

g(x1, x2, . . . , xr) = n−

n∑
i=1

r∏
j=1

x
(vi)j
j = n−

2r−1∑
i=1

aiewi

where ai is the multiplicity of the ith standard generator, wi ∈ Fr2, which is also the binary expansion of i, and

ewi
=
∏r
j=1 x

(wi)j
j as in 2.7. As before, we make the substitution ui = xi − 1 to get

Z/2Z[x1, . . . , xr]/(x21 − 1, . . . , x2r − 1, g(x1, x2, . . . , xr)) ∼= Z/2Z[u1, . . . , ur]/(u21, . . . , u2r , p(u1, u2, . . . , ur))

where

p(u1, u2, . . . , ur) = n−

n∑
i=1

r∏
j=1

(uj − 1)
(vi)j

as in 2.1. Note that d(M ′) is one less than the dimension of

Z/2Z[x1, . . . , xr]/(x21 − 1, . . . , x2r − 1, g ′(x1, . . . , xr), s.t.

g ′(x1, . . . , xr) = n−

2r−1∑
i=1

(ai + 1)ewi
= g(x1, . . . , xr) −

2r−1∑
i=1

ewi

note that under the substitution of ui’s, we get

g ′(x1, . . . , xr) 7→ p ′(u1, . . . , ur) = p(u1, . . . , ur) −

2r−1∑
i=1

r∏
j=1

(uj + 1)
(wi)j

having used 1 ≡ −1 mod 2. To each wi, we define s(wi) to be the subset of components of wi which have value 1,
so that

r∏
j=1

(uj + 1)
(wi)j =

∑
K⊆s(wi)

∏
k∈K

uk =
∑

K⊆s(wi)

uαK

From this we get
2r−1∑
i=1

r∏
j=1

(uj + 1)
(wi)j =

2r−1∑
i=1

∑
K⊆s(wi)

uαK
=

∑
K⊆{1,...,r}

∑
i s.t. K⊆s(wi)

uαK

Now note that given a fixed binary string, γ, with r components, the number of z ∈ Fr2 such that s(γ) ⊆ s(z) is equal
to 2r−s(γ), and thus ∑

K⊆{1,...,r}

∑
i s.t.
K⊆s(wi)

uαK
=

∑
K⊆{1,...,r}

2r−s(γ)uαK
≡ uα{1,...,r}

=

r∏
i=1

ui

From this, we determine p ′ = p+
∏r
i=1 ui, so d(M ′) is the dimension of

Z/2Z[u1, . . . , ur]/(u21, . . . , u2r , p(u1, u2, . . . , ur) + u1u2 . . . ur))

Since M does not have all even or all odd multiplicities, then p(u1, . . . , ur) is both nonzero and has coefficient 1 for
some monomial u = ub1

. . . ubk
that does contain all of the ui. Take such a monomial of minimal degree, and we

see that
(u+ [p(u1, . . . , ur) − u]) ·

u1 · · ·ur
u

≡ u1 · · ·ur + [p(u1, . . . , ur) − u] ·
u1 · · ·ur

u
≡ u1 · · ·ur

This is because every summand in p(u1, . . . , ur) − u has a generator, ui, in common with the monomial, u, and so
every summand of (p−u) · u1···ur

u
will have u2i for some i, meaning that all summands are equivalent to 0, giving the

last equivalence. Therefore u1 . . . ur = 0 in both rings (as the same conditions and constructions could have been
done with M ′), and p(u1, . . . , ur) + u1 . . . ur ≡ p(u1, . . . , ur), which implies d(M) = d(M ′).
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By Proposition 5.1, for fixed r there are only finitely many possible values for what d(M) could be. We just need to
choose a representative from each sequence of evens and odds, up to the GLr(F2) action. We have compiled all the
possible d(M) for r = 2, 3 in later sections.

5 Bounding the Largest Cyclic Factor

In [3], Anzis and Prasad proved that for G = Qn, the largest cyclic factor must divide 2nlcm(1, . . . , n). As a
corollary, they derived that the largest 2-cyclic factor is bounded by 2blog2 nc+n. We generalize this result for all
Cayley graphs of Fr2 and improve the bound by a factor of 2. Let G = G(Fr2,M) be an arbitrary Cayley graph. Let
λ1 = 0, λ2, . . . , λ2r be the eigenvalues of the Laplacian matrix L(G).

Theorem 5.1. Let d be the size of the largest cyclic factor in K(G). Then d | 2r−2lcm (λi : i ≥ 2).

We follow the exact same proof outline as in Anzis-Prasad, with minor tweaks to account for the general case.
First, using equation 1, we have the following lemmas:

Lemma 5.2. For 0 6= p(x1, . . . , xr) ∈ Z[x1, . . . , xr]/I(G) with finite additive order, let w be the vector in Z2r

corresponding to p(x1, . . . , xr) under the isomorphism, Z2r ∼= Z[x1, . . . , xr]/(x21 − 1, . . . , x2r − 1). Let |w| be the
additive order of w in coker(L(G)). Then

|w| = smallest C ∈ Z s.t. ∃v ∈ Z2
r

s.t. L(G)v = Cw

Proof. This follows by the definition of cokernel and considering the cokernel as a Z-module.

Lemma 5.3. The largest cyclic factor in K(G) is max1≤k≤r ord(xk − 1)

Proof. We follow the same process as detail in [3]. See Lemma 2.3 in their paper. For the sake of completeness, we
write out the whole proof. [1] Proposition 5.20 implies that L(G) is the extended McKay Cartan matrix associated
to the Fr2 faithful representation with character

∑n
i=1 χvi . This representation is faithful by [1] Proposition 5.3 c).

Proposition 5.20 then tells us that, Z[x1, . . . , xr]/(x2i − 1, n −
∑∏

x
(vi)j
j ) is isomorphic to the representation

ring of Fr2 modulo the ideal generated by n −
∑
i χvi . By the second part of the proposition, an element has finite

additive order in this ring iff it lies in the kernel of the map sending all of the χvi to 1, implying that any irreducible
character χv → 1. The element corresponding to xj − 1 in the representation ring is χe − 1 for some irreducible
character χe under our isomorphism, and it follows that it has finite additive order. Furthermore, a consequence of
this proposition is that any polynomial with finite additive order is a linear combination of xI − 1, where xI denotes
a monomial free of second powers.

Now let xI − 1 be the polynomial such that xI is the monomial with largest finite order. If C(xI − 1) ∈ (x21 −

1, . . . , x2r − 1, n −
∑∏

x
(vj)i
i ) then we wish to show that C(XI − 1) ≡ 0. Indeed suppose xj | xI. Then we have

C(XI − 1) = C(xj − 1) · XI

xj
+ C

(
XI

xj
− 1
)

, which we can reduce inductively to a sum of xI − 1 with deg xI = 1. This

shows that the largest cyclic factor is determined by the maximal order taken over all xi − 1, the desired result.

Remark 5.4. This lemma can actually be slightly generalized. Namely, let w1, . . . , wn be any generating set of Fr2.
Then the maximal order element of the set {

∏
j x

(wi)j
j − 1} will have largest possible additive order.

Anzis and Prasad’s original argument shows that for the hypercube, we can take any xk − 1 for 1 ≤ k ≤ n.
The argument relies on showing that xi − 1 and xj − 1 have the same additive order, which follows from symmetry
under permutation. However, this is no longer the case. If we took a set of generators M fixed under the action of
permutation, then any xi − 1 would have maximal order.

Note now that our sandpile group remains the same under permutation of the variables {x1, . . . , xr} (this is a
transformation induced by the GLr action). Therefore, we can assume one of the maximal order elements is x1 − 1.

Proof of Theorem 5.1. We once again follow the same argument as Anzis-Prasad. Namely, that we wish to find the
smallest integer C such that there is a solution w to L(G)v = Cw for w = x1 − 1 7→ (−1, 1, 0, . . . , 0).

Define wλ = (0, 21−n, 0, 21−n, . . . , 0, 21−n). By Lemma 3.2, we change to the eigenbasis and get

v = x1 − 1 7−→ 1

2r

∑
v∈Fr

2

[(−1)v·e1 − (−1)v·0]fv

 = −
1

2r−1

∑
u1=1

fu
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Since fu is an eigenbasis, we can take the following solution to the equation L(G)v = Cw:

v = −
1

2r−1

∑
u1=1

1

λu
fu

Let Xr is the change-of-basis matrix from {eu} to the {fu} where we consider the index, u, as a number written
in binary. Upon changing basis, the equation L(G)v = w becomes (X−1

r L(G)Xr)(X
−1
r v) = X−1

r w. The right-hand
side is equal to wλ from above, while the LHS is equal to D(X−1

r v) where D is the diagonalization of L(G) by the
aforementioned change-of-basis matrix. We thus have v = XrD

−1wχ. Then

D−1wχ =
1

2r−1

∑
u1=1

fu

λu

Then

D−1wχ =
1

2r−1

∑
u1=1

1

λu

∑
v∈Fr

2

(−1)u·vev =
1

2r−1

∑
v∈Fr

2

∑
u1=1

(
(−1)u·v

λu

)
ev

Let `(λ) be the lcm of the eigenvalues. Multiplying this expression by 2r−1L(λ) yields

2r−1`(λ)w =
1

2

∑
v∈Fr

2

∑
u1=1

(
(−1)u·v`(λ)

λu

)
ev

Let p(v) = 21−r
∑
u1 6=0(

(−1)u·v

λu
), and note that the coefficients q(v) = `(λ)2r−1 are all integers, and that q(v1) ≡

q(v2) mod 2, since all of the signs are equivalent modulo 2. If q(v) are all even, then 2r−1`(λ)w ∈ Z2r , which yields
the result. Otherwise, 1

2
q(v) ∈ Z+1/2, so that 2r−1`(λ)w ∈ (Z+1/2)2r . But then recall that L(G) has a 1-dimensional

kernel spanned by 1 =
∑
i ei. But then 2r−1`(λ)(λ)w + 1

2
1 ∈ Z2r and satisfies L(G)(2r−1`(λ)w + 1

2
1) = 2r−1`(λ)v,

so the result follows.

Corollary 5.5. The largest 2-cyclic factor, Z/2eZ has bound

e ≤ blog2(n)c+ r− 1

Proof. First we note that if d is the order of the largest cyclic factor, then if we write

K(G) ∼= Z/α1Z⊕ Z/α2Z⊕ · · · ⊕ Z/α2r−1Z

for {αi} the list of non-zero invariant factors in Smith Normal Form such that α1 | α2 | · · · | α2r−1, then d = α2r−1
will contain the largest 2-sylow component under the isomorphism

Z/(2k · b)Z ∼= Z/2kZ⊕ Z/bZ

where 2 - b. From this, given d | 2r−2lcm (λi : i ≥ 2), the largest 2-Sylow component is v2(d) so that

v2(d) ≤ v2lcm (λi : i ≥ 2) + r− 2

Note that 2 ≤ λi ≤ 2n, so
lcm (λi : i ≥ 2) | lcm (2, 2, . . . , 2n)

which implies that
v2lcm (λi : i ≥ 2) ≤ v2 [lcm (2, . . . , 2n)] = 1+ blog2(n)c

giving
v2(d) ≤ blog2(n)c+ r− 1

What is especially nice about this improvement is that it is asymptotically tight: As we will see later, this
upperbound is achieved for all hypercubes Q(2k), Q(2k + 1). This will be an immediate consequence of the main
result of the next section, which completely determines the top cyclic factor of the hypercube.

We now start talking about results that will eventually lead to the complete determination of the top cyclic factor
of Qn.
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Lemma 5.6. The order of xj − 1 in K(G) is equal to the minimum integer C, such that for any v ∈ Fr2,

C

2r−2

∑
u·v=1
uj=1

1

λu
∈ Z.

Proof. Using the same logic as above but without looking just at a maximal element, C is equal to the minimal
integer such that there exist some k ∈ R,

C

2r−1
·

∑
uj=1

fu

λu
+ k1

 =
C

2r−1

∑
v∈Fr

2

(p(v) + k)ev ∈ Z

Denote the coordinate of ev in 1
2r−1

∑
uj=1

fu
λu

as p(v). Finding the minimal C for some value of k is equivalent to

finding the smallest C such that C
2r−1αi(k) ∈ Z for all i, which is equivalent to finding the minimal C such that

C · [p(v) − p(~0)] ∈ Z for all x ∈ {1, . . . , 2r}. This is because if such a C is chosen, then we can choose k ∈ R so that

C · [p(v) + k · 21−r] = C ·
(
[p(v) − p(~0)] + [p(~0) + k · 21−r]

)
∈ Z

and there always exists a k ∈ R so that C · [p(~0) + k · 21−r] ∈ Z. Moreover if C · [p(w) + k · 21−r] ∈ Z, then we can
take the difference to get

C · [p(w) + k · 21−r] − C · [p(~0) + k · 21−r] = C · [p(w) − p(~0)] ∈ Z

Thus our search for the minimal C is equivalent to finding a C so that C · [p(v) − p(~0)] ∈ Z for all v, and is thus
independent of k. Unraveling this yields

C(p(v) − p(~0) =
C

2r−1

∑
uj=1

(−1)u·v − 1

λu
= −

C

2r−2

∑
u·v=1
uj=1

1

λu
∈ Z.

as desired.

Remark 5.7. Since we only care about the Sylow-2 factor in these maximal orders, it actually suffices to find the
minimal C such that for any v ∈ Fr2,

C

2r−2

∑
u·v=1
uj=1

1

λu
∈ Z(2)

where Z(2) is the localization of the integers away from the prime ideal (2). This way, we don’t actually care about
odd denominators.

The sums
∑
u·v=1

ur

λu
are in general hard to handle. In order to deal with this sum more concretely, we prove the

following very useful lemma, which lets us break down these sums into much smaller pieces.

Lemma 5.8. In C[au : u ∈ Fr2 \ {0}],

spanZ

{ ∑
u·v=1

au

∣∣∣∣∣v ∈ Fr2

}
= spanZ

{
2|S|−1

∑
uS=d

au

∣∣∣∣∣∅ 6= S ⊆ [r], d ∈ F|S|
2 \ {0}

}
.

Here, uS = d means each coordinate ui for i ∈ S matches the entries of d. For example, u{1,4,7} = [0, 1, 0] ⇐⇒
u1 = 0, u4 = 1, u7 = 0.

Proof. For 1 ≤ k ≤ r, define

Uk = spanZ

{ ∑
u·v=1

au

∣∣∣∣∣v ∈ Fr2, w(v) ≤ k

}
,

where w(v) is the number of 1’s in v. And,

Vk = spanZ

{
2|S|−1

∑
uS=d

au

∣∣∣∣∣∅ 6= S ⊆ [r], |S| ≤ k, d ∈ F|S|
2 \ {0}

}
.
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We prove by induction on k that Uk = Vk. When k = 1 it is obvious since U1 and V1 are the same set. If for k− 1
it holds, we now prove it for k. Denote v(k) =

∑k
i=1 ei. It suffices (why?) to prove that

2k−1
∑

u[k]=v(k)

au + (−1)k
∑

v(k)·u=1

au ∈ Vk−1 = Uk−1. (∗)

This is because

Uk = spanZ

{
Uk−1,

∑
u·v=1

au where w(v) = k

}
,

Vk = spanZ

Vk−1, 2k−1 ∑
uS=v(k)

au where |S| = k

 .
Notice that ∑

v(k)·u=1

au −
∑

v(k−1)·u=1

au −
∑
uk=1

au = −2 ·
∑

v(k−1)·u=1
uk=1

au.

Since
∑
v(k−1)·u=1 au and

∑
uk=1

au are both in Uk−1 = Vk−1, it suffices to show that

2k−1
∑

u[k]=v(k)

au + (−1)k−1 · 2 ·
∑

v(k−1)·u=1
uk=1

au ∈ Uk−1 = Vk−1.

Now denote bu ′ = 2 ·au for any u ′ ∈ Fr−12 \ {0}, where u is u ′ inserting uk = 1 at the kth entry. Then by induction,
define

U ′k−2 = spanZ

{ ∑
u ′·v ′=1

bu ′

∣∣∣∣∣v ′ ∈ Fr−12 , w(v ′) ≤ k− 2

}
,

V ′k−2 = spanZ

2|S|−1 ∑
u ′

S
=d

bu ′

∣∣∣∣∣∣∅ 6= S ⊆ [r− 1], |S| ≤ k− 2, d ∈ F|S|
2 \ {0}

 .
and U ′k−2 = V

′
k−2. Moreover, by induction on equation (∗), we have

2k−2
∑

u ′
[k−1]

=v(k−1)

bu ′ + (−1)k−1
∑

v(k−1)·u ′=1

bu ′ ∈ V ′k−2 = U ′k−2,

or
2k−1

∑
u[k]=v(k)

au + (−1)k−1 · 2 ·
∑

v(k−1)·u=1
uk=1

au ∈ V ′k−2 = U ′k−2.

Along with the fact that V ′k−2 ⊆ Vk−1, it concludes our proof.

Example 5.9. r = 2
We work with C[a1,0, a0,1, a1,1], so that the left hand span, from now on labelled as L, consists of a generating set

GL := {[v = (1, 0)→ (a1,0 + a1,1)], [v = (0, 1)→ (a0,1 + a1,1)], [v = (1, 1)→ (a1,0 + a0,1)]}

while the span on the right, hereon denoted as R, has generating set consisting of

GR := {

(S, d) = ({1}, (1))→ (a1,0 + a1,1) (S, d) = ({2}, (1))→ (a0,1 + a1,1)

(S, d) = ({1, 2}, (1, 0))→ 2a1,0 (S, d) = ({1, 2}, (0, 1))→ 2a0,1

(S, d) = ({1, 2}, (1, 1))→ 2a1,1

}

in this case, we see that two of the generators on each side are identical. Moreover, we

(1, 0) + (0, 1) − (1, 1)↔ 2a1,1, (1, 0) + (1, 1) − (0, 1)↔ 2a1,0, (0, 1) + (1, 1) − (1, 0)↔ 2a0,1
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Showing us that R ⊆ L. To see the other implication, note that

(a1,0 + a1,1) + (a0,1 + a1,1) − 2a1,1 = a1,0 + a0,1

showing that L ⊆ R.

There is a clear motivation in lemma 7.5. If we assign au = 1/λu whenever ur = 1 and au = 0 whenever ur = 0,
we can rewrite the definition of C in lemma 7.4 into the following corollary:

Corollary 5.10. The order of xj − 1 in K(G) is equal to the minimum integer C, such that for any S ⊆ [n], |S| ≥
2, d ∈ F|S|

2 \ {0},
C

2r−|S|

∑
uS=d

1

λu
∈ Z.

This is equivalent to saying, for G, if we draw a r-dimensional hyper cube, and write down 1/λu on each vertex
u 6= 0, then C will be the largest denominator of the arithmetic mean of vertices of a certain face, among all faces
that does not pass through the origin.

6 The Complete Description of the Top Cyclic Factor of Qn

In this section, we will use the techniques developed in the last section to prove the following theorems:

Theorem 6.1. For n ≥ 2, let cn be the size of the largest cyclic factor in K(Qn). Then,

v2(cn) = max{max
x<n

{v2(x) + x}, v2(n) + n− 1}.

Theorem 6.2. For n ≥ 3, the 2nd to the (n−1)th largest cyclic factor in K(Qn) all have the same size dn. Moreover,

v2(dn) = max
x<n

{v2(x) + x}.

Conjecture 6.3. For n ≥ 3, let en be the size of the nth largest cyclic factor in K(Qn). Then,

v2(en) = max{ max
x<n−1

{v2(x) + x}, v2(n− 1) + n− 3}.

Similarly, for n ≥ 4, let fn be the size of the (n+ 1)th largest cyclic factor in K(Qn). Then,

v2(fn) = max
x<n−1

{v2(x) + x}.

Lemma 6.4. cn is the minimum integer such that for any 2 ≤ a ≤ n and 1 ≤ b ≤ a,

cn

2n−a

n−a∑
i=0

(
n−a
i

)
2(b+ i)

∈ Z.

Proof. This follows from Corollary 5.10 and the fact that when G = Qn, λu = 2w(u) (recall w(u) is the number of 1s
in vector u ∈ Fr2). In particular, there are

(
n−a
i

)
ways to choose i 1’s in a vector given at first a size a subvector.

Theorem 6.5. (Kummer’s Theorem) For any non-negative integers a ≥ b,

v2

((
a

b

))
= number of carries when adding a− b to b in binary.

For example,

1 1 1 1 1 1

1 0 0 1 1 1 1 0 1 317

+ 0 1 0 1 1 0 1 1 1 183

1 1 1 1 1 0 1 0 0 500

Therefore, v2(
(
500
317

)
) = 6, since there are 6 carries.
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Lemma 6.6. For any p ≥ 1, q ≥ 0, assume u is the unique element in the interval [p, p+q] that maximizes v2(u),
then

v2

(
q∑
i=0

(
q
i

)
p+ i

)
= v2

((
q
u−p

)
u

)
.

Proof. First we claim that for any c ∈ [p, p+ q],

v2

((
q
c−p

)
c

)
≤ v2

((
q
u−p

)
u

)
.

This is because the binary form of c − p and u − p are the same in the last v2(c) bits. Denote k := v2(u). Then
q < 2k+1. Therefore, in the remaining k− v2(c) bits, the maximal number of carries possible is u− p, with a carry
on every single bit and no carries from c−p. By Kummer’s Theorem, this worst scenario exactly results in equality.
For example, when p = 134, q = 101, we have u = 192 and k = 6. Now we analyze the case when c = 168, v2(c) = 3.
In the two vertical additions, last v2(c) = 3 bits (indicated by the red box) are identical, and therefore the first 3
carries (indicated by the blue box) are identical. The number of carries differ in at most 3, which is the same as
k− v2(c).

1 1 1 1

0 1 1 1 0 1 0 u− p = 58

+ 0 1 0 1 0 1 1 43

1 1 0 0 1 0 1 q = 101

1

0 1 0 0 0 1 0 c− p = 34

+ 1 0 0 0 0 1 1 67

1 1 0 0 1 0 1 q = 101

Now we proceed to show that equality will be achieved an odd numbers of times. According to the above analysis,
equality occurs when c− p does not carry in the highest k− v2(c) bits. However, we can negate the top bit of c− p.
We reconsider the example above where c = 168. In such case, we can switch the top bit (indicated by the orange
box) of c = 168 to get c ′ = c+ 2k = 232, such that v2(

(
101
34

)
) = v2(

(
101
98

)
).

1

0 1 0 0 0 1 0 c− p = 34

+ 1 0 0 0 0 1 1 67

1 1 0 0 1 0 1 q = 101

1

1 1 0 0 0 1 0 c ′ − p = 98

+ 0 0 0 0 0 1 1 3

1 1 0 0 1 0 1 q = 101

Therefore, there is a pairing of c+ 2k − p and c− p when c 6= u. This ends the proof.

Now we have all the tools we need to calculate cn. Assume u = 2k is the largest power of 2 smaller or equal to
n. We have

v2(cn) = max
2≤a≤n
1≤b≤a

{
−v2

(
n−a∑
i=0

(
n−a
i

)
b+ i

)
− a+ n+ 1

}
from Lemma 6.4

= max

{
v2(cn−1), max

2≤a≤n

{
−v2

(
n−a∑
i=0

(
n−a
i

)
a+ i

)
− a+ n+ 1

}
,−v2

(
n−2∑
i=0

(
n−2
i

)
1+ i

)
+ n− 1

}
by induction

= max

{
v2(cn−1), max

2≤a≤u

{
−v2

(
n−a∑
i=0

(
n−a
i

)
a+ i

)
− a+ n+ 1

}}
(∗)

= max

{
v2(cn−1), max

2≤a≤u

{
−v2

((
n−a
u−a

)
u

)
− a+ n+ 1

}}
from Lemma 6.6

= max

{
v2(cn−1), n+ k+ 1− min

2≤a≤u

{
a+ v2

((
n− a

u− a

))}}
The justification of the (∗) comes from the following 2 facts:
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• v2
(∑n−a

i=0
(n−a

i )
a+i

)
≥ v2

(∑n−u
i=0

(n−u
i )
u+i

)
.

This inequality is true since the right side of the equation equals −k according to Lemma 6.6, and each term
in the sum on the left side has v2 ≥ −k. This helps rule out all cases in (∗) where a > u.

• v2
(∑n−2

i=0
(n−2

i )
1+i

)
≥ v2

(∑n−2
i=0

(n−2
i )
2+i

)
. When n = u, the right side of the inequality equals −k and is

definitely no larger than the left side. When n > u, according to Lemma 6.6, the left side is v2(
(
n−2
u−1

)
) − k,

and the right side is v2(
(
n−2
u−2

)
) − k. Since

(
n−2
u−1

)
= n−u
u−1

(
n−2
u−2

)
, we have the inequality is true, and thus it helps

ruling out the last term in (∗).

Claim 6.7.

min
2≤a≤u

{
a+ v2

((
n− a

u− a

))}
= min
2≤a≤u

{a+ k− v2(n− a+ 1), 2+ k− v2(n)}.

Assume the binary expansion of n is n = 2p1 + 2p2 + · · · + 2pd for 0 ≤ p1 < p2 < · · · < pd. Denote ni =
2p1 + 2p2 + · · ·+ 2pi for i = 1, 2, . . . , d− 1 and nd = u = 2pd . We only need to prove the following two subclaims:

1. For any i = 1, 2, . . . , d− 1, we have

min
ni<a≤ni+1

{
a+ v2

((
n− a

u− a

))}
= ni + 1+ k− pi+1 = min

ni<a≤ni+1

{a+ k− v2(n− a+ 1)}.

The second equation comes from the fact that v2(n−a+ 1) ≤ pi+1 for a ∈ (ni, ni+1] and minimum is reached
when a = ni + 1. The first equation comes from the fact that when subtracting u− a from n− a, since n− a
and n− u are the same in all but the last pi+1 + 1 bits, and u− a have all 1 except in the last pi+1 + 1 bits,
there is always k− pi+1 carries in the first k− pi+1 bits. By Kummer’s Theorem, v2

((
n−a
u−a

))
≥ k− pi+1, and

equality is achieved when a = ni + 1.

2. When n is even, we have

min
2≤a≤2p1

{
a+ v2

((
n− a

u− a

))}
= 2+ k− p1 = min

2≤a≤2p1
{a+ k− v2(n− a+ 1), 2+ k− v2(n)}.

The second equation comes from the fact that v2(n− a+ 1) ≤ p1 for a ∈ [2, 2p1 ] and the minimum is reached
when a = 2. For the first equation with the same argument as in case 1, we have v2

((
n−a
u−a

))
≥ k − p1, and

equality is achieved when a = 2.

By combining the two cases, we have the claim, and using the formula from before:

v2(cn) = max
2≤a≤n

{v2(x) + x, v2(n) + n− 1}

Corollary 6.8. For n = 2k − 1, the top n− 1 Sylow-2 cyclic factors have exponent 2k − 1
For n = 2k, the top Sylow-2 cyclic is 2k + k − 1. The 2nd through n − 1st Sylow-2 cyclic factors are 2k − 1. For
n = 2k+1, the top n−1 Sylow-2 cyclic factors are 2k+k. These last two statements imply the bound of r+blog2 nc−1
is asymptotically sharp over all Cayley graphs.

We would now like to work towards the proof of 6.2. We already have a strategy for finding the top cyclic factor
of K(G), but now we would like to find a strategy for finding the 2nd largest cyclic factor of K(G). Let G be any
Cayley graph of Fr2. Note that we are try to find the maximal additive order in Z[x1, . . . , xr]/(x21 − 1, . . . , x2r − 1, n−∑
xvi)/〈x1 − 1〉. The elements of finite order will still be elements that are in the kernel of the map xi → 1, and

we will be able to write any element as a sum of the elements of the form xi − 1 for 2 ≤ i ≤ r. Thus, the second
largest cyclic factor will correspond again to the maximal order element of the for xi − 1 in the new quotient group.
In general, knowing which i to choose is very hard, but for the hypercube symmetry implies that we can just choose
x2 − 1.
To find the order of the 2nd largest cyclic factor, we solve the equation L(G)v = C(x1 − 1) +D(x2 − 1) be C,D ∈ Z
and D as small as possible. So we have this strange new parameter C. However, the symmetry of the hypercube can
yield the following nice result

Lemma 6.9. For 2 ≤ k ≤ n− 1, the kth largest cyclic factor will correspond to the largest D such that there exists
an integer vector v with L(G)v = D(xk − x1). In the notation above, this means we can choose C = −D.
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Proof. First we will deal with the case k = 2. The second largest cyclic is the smallest positive integer C such
that k(x1 − 1) + C(x2 − 1) ∈ Im(L(G)). Note, however, by symmetry that if k(x1 − 1) + C(x2 − 1) ∈ Im(L(G))
then k(x1 − 1) + C(x3 − 1) ∈ Im(L(G)). Therefore, C(x2 − x1) ∈ Im(L(G)). Conversely, if C(x2 − x1) =
−C(x1 − 1) + C(x2 − 1) ∈ Im(L(G)) then we can take k = C and so the second largest factor must be the or-
der of x2 − x1.

For general k, We wish to solve for the minimal Ck such that there exists costants r1, . . . , rk−1 such that r1(x1 −
1) + · · · + rk−1(xk−1 − 1) + Ck(xk − 1) ∈ Im(L(G)). Since k ≤ n − 1, xn is not amongst x1, . . . , xk, and so by
symmetry we have that r1(xn − 1) + r2(x2 − 1) + r3(x3 − 1) + · · · + rk−1(xk−1 − 1) + Ck(xk − 1) ∈ Im(L(G))
and r1(xn − 1) + r2(x2 − 1) + r3(x3 − 1) + · · · + rk−1(xk−1 − 1) + Ck(x1 − 1) ∈ Im(L(G)). subtracting yields
Ck(xk − x1) ∈ Im(L(G)), which implies that Ck must just be the order of xk − x1, as desired.

Note that the order of xk − x1 is just the order of xkx1 − 1, since x21 = 1. By symmetry, all these elements have
the same additive order, so this lemma implies that the 2nd through (n− 1)st largest cyclic factors are all the same.
It would thus suffice to compute the 2nd largest cyclic factor.

Proof of Theorem 6.2. Using 5.6, we want to find the minimal C such that

C

2n−2

∑
u·v=1
u·(e1+ek=1

1

λu

. We will be once again using Lemma 5.8, which tells us we need to find minimal C such that C
2n−|S|

∑
uS=d

u·(e1+ek)

1
λu
∈

Z(2). We now want to find an analogue of 6.4. We can rewrite this relation as

C

2n − |S|

∑
uS=d

u·(e1+ek)=1

1

λu
=

C

2n − |S|

∑
uS=d
u·e1=1
u·ek=0

1

λu
+

C

2n − |S|

∑
uS=d
u·e1=0
u·ek=1

1

λu

Then note that when choosing a specific fixed subvector, the conditions u · e1 = 0, u · ek = 1 and u · e1 = 1, u · ek = 0
cannot both happen at the same time, so one of the sums will be empty. For the other sum if we let our fixed
subvector have size a with b 1’s, then the number of vectors corresponding to eigenvalue 2(b + i) is the number of
ways to choose i 1’s from n− a slots. This calculation yields the same sum as in 6.4:

C

2n−a

n−a−1∑
i=0

(
n−a
i

)
2(b+ i)

However, in this case we must restrict to the case where either a > 2 and b ≥ 1, or a = 2 and b = 1. A fixed
subvector with a = b = 2 is impossible because we need to either specify u · e1 = 1, u · ek = 0 or u · e1 = 0, u · ek = 1,
both of which only have a single 1. Then following the calculation for Theorem 5.10, we include all cases except
a = b = 2, which yields the number v2(n)+n−1. Therefore, our factor is just equal to the max over the cases when
a > 2 and b = 1, which is

max
x<n

{v2(x) + x}

as desired.

7 Determination of the Sandpile group for r = 2

In this section we will classify all sandpile groups for r = 2 and n arbitrary. In the case that r = 2, we have the
following generating matrix:

M =

(
1 . . . 1 0 . . . 0 1 . . . 1
0 . . . 0 1 . . . 1 1 . . . 1

)
=

(
a ∗
[
1
0

]
, b ∗

[
0
1

]
, c ∗

[
1
1

])
Set n = a+ b+ c. The eigenvalues are

λ(1,0),M = (a+ b+ c) − (−a+ b− c) = 2(a+ c)
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λ(0,1),M = (a+ b+ c) − [a− b− c] = 2(b+ c)

λ(1,1),M = (a+ b+ c) − [−a− b+ c] = 2(a+ b)

So that by the matrix tree theorem

detL(G)
i,i

= τ(G) =
λ2 · · · λ2r

2r

detL(G)
i,i∏

u∈Fr
2
−{0} λu,M

=
1

2r
=⇒ |Syl2(K(G))| =

1

2r
Pow2

 ∏
u∈Fr

2
−{0}

λu,M


The 2-Sylow structure is then given by a partition of the log2 |Syl2(K(G))| where the length of the partition is
bounded but undetermined.

Restricting to when M is generic, the length of the partition is 1, so Syl2(K(G)) = Z/2eZ for 2e = |Syl2(K(G))| =
2Pow2[(a+ b)(a+ c)(b+ c)]. The corresponding values of (a, b, c) are

(a, b, c) ≡ (a, b, c) mod 2 ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 0)}

noting that when r = 2, we can permute all of the generators via GL2(F2)-action, we have only two generic cases:
(1, 0, 0) and (1, 1, 0), i.e. a odd, c even, and b is either.

(a, b, c) ≡ (1, 0, 0)
In this case, the only even factor is b+ c so that

2e = 2 · 2v2((a+b)(a+c)(b+c)) = 2v2(b+c)+1

(a, b, c) ≡ (1, 1, 0)
In this case, we have that the only even factor is a+ b, so

2e = 2v2(a+b)+1

For non-generic matroid, (a, b, c) ≡ (0, 0, 0) can be reduced by 2.12, so it suffices to handle the case (a, b, c) ≡ (1, 1, 1)
which is not generic. In this case, we can explicitly determine the top cyclic factor using the method in 5.3. By
GL-action, we can assume that the maximum order is achieved by x2 − 1↔ (−1, 0, 1, 0), and so we want to find the
smallest C such that

C · 1
2

[
χ(0,1)

λ(0,1)
+
χ(1,1)

λ(1,1)

]
∈ Z

but we have that
χ(0,1) =

∑
v∈(Z/2Z)2

(−1)(0,1)·vfv = [f(0,0) − f(0,1) + f(1,0) − f(1,1)]

χ(1,1) =
∑

v∈(Z/2Z)2
(−1)(1,1)·vfv = [f(0,0) − f(0,1) − f(1,0) + f(1,1)]

Moreover, from the previous calculations, we have that λ(0,1) = 2(b+ c) and λ(1,1) = 2(a+ b), so that

C · 1
2

[
χ(0,1)

λ(0,1)
+
χ(1,1)

λ(1,1)

]
= C · 1

2

[
f(0,0)

(
1

2(b+ c)
+

1

2(a+ b)

)
− f(0,1)

(
1

2(b+ c)
+

1

2(a+ b)

)
+ f(1,0)

(
1

2(b+ c)
−

1

2(a+ b)

)
+ f(1,1)

(
−

1

2(b+ c)
+

1

2(a+ b)

)]
∈ spanZ{f(0,0), f(1,0), f(0,1), f(1,1)}

from this, it suffices to take the least common multiple of the four such Cu which guarantee that each coefficient,
ru, of fu lies in Z, in particular

r(0,0) =
a+ b+ b+ c

2(a+ b)(b+ c)
=

a+ 2b+ c

2(a+ b)(b+ c)
= −r(0,1)

r(1,0) = −r(1,1) =
a− c

2(a+ b)(b+ c)

14



Instead of taking the least common multiple of this opaque formula, we note that the order of the cyclic factor, C,
is invariant under which solution we choose, as ker(L(G)) = Zv0, but

∀λ ∈ Z, L(G)(v+ λv0) = L(G)(v) = w

using the notation of Anzis and Prasad [3], where v0 = (1, . . . , 1) in the fu basis. In particular, we choose
λ = 1

2(b+c) +
1

2(a+c) , so that

v =
1

2

[
χ(0,1)

λ(0,1)
+
χ(1,1)

λ(1,1)

]

=⇒ v+ v0 =
1

2

[
f(0,0)

(
1

(b+ c)
+

1

(a+ b)

)
− f(1,0)(0)

+ f(0,1)

(
1

(b+ c)

)
+ f(1,1)

(
1

2(a+ b)

)]
for which C = 2lcm((b+ c), (a+ c)) is the minimal such C so that

L(G)v = L(G)(v+ λv0) = Cw ∈ spanZ{f(0,0), f(1,0), f(0,1), f(1,1)}

this same technique of adding an element of the kernel to get a more transparent expression for C is used in the
general proof of the largest 2-Sylow. WLOG v2(b+ c) ≥ v2(a+ c), so that v2(C) = v2(b+ c)+ 1 and the first factor
is Z/2eZ with e = v2(b + c) + 1, meaning that the other factor has size f = v2((a + c)(a + b)). Note that given 3
odd numbers, at least 2 of them must be sum to be 2 mod 4. In particular, taking the 3 cases of

(a, b, c) ∈ {(1, 1, 1), (3, 1, 1), (3, 3, 1)} mod 4

which occur up to permutation equivalence and gcd(a, b, c) = 1 reduction, we see that v2(b+ c) ≥ v2(a+ c) means
that equality implies that v2(a+ b) = 1, so that f = v2(a+ c) + 1 and

Syl2(K(G)) = Z/2eZ⊕ Z/2fZ

8 r = 3 determination of 2-Sylow structure

We now turn our attention to the case of r = 3. Say that our matroid M has multiplicities as follows:

M =

a ∗
10
0

 , b ∗
01
0

 , c ∗
00
1

 , d ∗
11
0

 , e ∗
10
1

 , f ∗
01
1

 , g ∗
11
1


Then the 7 nonzero eigenvalues are

2(a+ b+ e+ f), 2(b+ c+ d+ f), 2(a+ c+ d+ e), 2(b+ d+ e+ g), 2(c+ e+ f+ g), 2(a+ d+ f+ g), 2(a+ b+ c+ g)

One way to think of this is via the Fano plane description of F32 − {0}. See figure 1.

Figure 1: In this diagram, the circle and each straight line represents a line in F32 not passing through the origin.
Note that each eigenvalue is 2 times the sum of complements of a line.

Recall from before that the number of Sylow-2 generators, d(M), is only dependent on the parity of the numbers of
each generator. We can think of all these cases thus in terms of how many odd multiplicities and how many even
multiplicities there are. The cases are

1. all odd: d(M) = 6
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2. 1 odd, 6 even: d(M) = 3

3. 2 odd, 6 even: d(M) = 3

4. 3 odd, 4 even, the odd lies on a line: d(M) = 5

5. 3 odd, 4 even, the odd multiplicity vectors span the space: d(M) = 3

And the mirror images where we switch the number of evens with the number of odds. Note that cases 2, 4, 5 and
the switched parity analogues are in the generic case, while 3 and its mirror case are not.

For r = 3 and an arbitrary set of generators, we can apply the methodology from Section 5 to get the following
result:

Proposition 8.1. For r = 3, let d1 ≤ d2 ≤ · · · ≤ d7 be all the powers of 2 in the nonzero eigenvalues of L(G(F32,M)
for M with reduced multiplicity (gcd of the multiplicities is 1). Let ctop be the top Sylow-2 cyclic factor. Then

ctop =

{
2d7+1 not all di equal

2d7 di = dj for all i, j ∈ {1, . . . , 7}

.

Proof. WLOG say that the eigenvalue λ7 with v2(λ7) = d7 corresponds to an element u ∈ F32 with u3 = 1. Then
we claim that x3 − 1 has maximal additive order. In particular, we will minimize C over all v such that

C · 1
2

∑
u·v=1
u3=1

1

λu
∈ Z(2)

First, note Pow2(C) is bounded from above by 2d7+1, since we are taking 1
2

times a sum of reciprocals of eigenvalues.
The conditions u · v = 1, u3 = 1 for a fixed v 6= 0, e3 are satisfied by 2 vectors in F32. Assume that λu is an eigenvalue
with u3 = 1 and du < d7. Then there exists a unique vector v such that u · v = 1, u3 = 1 is only satisfied by the
vector corresponding to λ7 and u. Our sum then becomes

C

2
· ( 1
λu

+
1

λ7
) ∈ Z(2)

Since v2(λ) > v2(λu), we must have C ≡ 0 mod 2d7+1 for this equation to hold. Therefore, we achieve our upper-
bound, and have the desired top cyclic factor.

In the case that all the di are equal, every choice of v 6= v ′, yields a sum 1
2

∑
u·v=1,u·v ′=1

1
λu

= 1
2
( 1
λ1

+ 1
λ2

)

will always have order 2di , since v2(
1
λ1

+ 1
λ2

) = v2(
1
λ2

) + 1 = −(di + 1).

In this generic case, using the method in Section 10 for trying to determine the 2nd largest cyclic factor, we are
able to show

Theorem 8.2. Let G = G(F32,M) be in the generic case, and let d1 ≤ · · · ≤ d7 be the powers of 2 in the eigenvalues
of L(G). Then

Syl2(K(G)) =

{
Z/2d5−1Z× (Z/2d7+1Z)2 d6 = d7

Z/2d5Z× Z/2d6Z× Z/2d7+1Z d6 < d7

First, we prove the following lemma:

Lemma 8.3. If M be generic, then d1 = d2 = d3 = d4 = 1 and all the other eigenvalues have larger powers of 2.

Proof. From above we know that the generic case is when there is either 1 odd and 6 even, 2 odd and 5 even, 3 odd
and 4 even with the 3 odd being a basis, and their mirrors. In each, in the first case, if we assume a is odd, then there
are four eigenvalues that have a as a summand. With all the other multiplicities being even, these eigenvalues are 2
mod 4. For the second case, say a, b are odd. Then 2(b+ c+d+ f), 2(a+ c+d+ e), 2(b+d+ e+g), 2(a+d+ f+g)
are four eigenvalues containing one of a, b as summand, and must be 2-mod 4. For the third case, since the odds are
a basis we can assume a, b, c are odd. Then 2(b+ d+ e+ g), 2(c+ e+ f+ g), 2(a+ d+ f+ g), 2(a+ b+ c+ g) are 4
eigenvalues that sum an odd number of odd values, so these eigenvalues are 2 mod 4. These calculations also imply
that the other eigenvalues are 0 mod 4, since they are two times an even number. The case of the mirrors follows
from adding 1 to each multiplicity, and noting the the eigenvalues remain invariant modulo 2(1+ 1+ 1+ 1) = 8.
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9 Data for d(M) for r = 4

For the r = 4 case, we perform some reductions in terms of the number of even multiplicities. Let the number of even
multiplicities be denoted by ω, so that ω ∈ {0, 2, . . . , 14} as there are 24 − 1 = 15 non-trivial generators in the r = 4
case, and the case in which all of the generator multiplicities are even is reduced by section 4. Let the generators be
given by

 | . . . . . . |

v1 . . . . . . v15
| . . . . . . |

 =


a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


9.1 ω ≤ 2
For ω = 0, we have the complete graph with

{αi} = {1, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16} d(M0) = 15

In this case, we can assume by GL4 action that v1 has even multiplicity so that for our matroid of generators, M,
with generator multiplicities satisfying

a1 = 2, an = 1, ∀2 ≤ n ≤ 15

=⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 9, 36, 288, 288, 288, 288, 288, 288}, d(M1) = 7

For ω = 2, again GL action reduces it to the case when v1, v2 have odd multiplicity, so a1 = a2 = 2 and an = 1 for
3 ≤ n ≤ 15, with

{αi} = {1, 1, 1, 1, 1, 1, 1, 9, 36, 36, 36, 180, 720, 2880, 2880} =⇒ d(M2) = 7

9.2 ω = 3, 4

When ω > 2, we have to worry about whether or not the generators which have even multiplicity span a space of
dimension 2, 3, 4, or more.
ω = 3
In theω = 3 case, the vectors either span 2 dimensions or 3, and so it suffices to consider the cases of a1 = a2 = a4 = 2
and a1 = a2 = a3 = 2 with all other ai = 1. The former case yields

a4 = 2 =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 1, 2, 90, 360, 360, 360, 3960, 31680}, d(M3,3) = 7

a3 = 2 =⇒ {αi} = {1, 1, 1, 5, 20, 20, 20, 20, 20, 20, 20, 20, 80, 320, 320} d(M3,2) = 11

In the ω = 4 case, the vectors with even multiplicity can either span a space of dimension 3 or 4. If they span 4
dimensions, then WLOG, we can assume that they are the standard basis vectors so

a1 = a2 = a4 = a8 = 2 =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 120, 3960, 3960, 3960, 15840} d(M4,4) = 7

when they span 3 dimensions, then by GL equivalence they lie in the space spanned by v1, v2, v4, so assume a1 =
a2 = a4 = 2. This yields at most 4 cases in which we choose one of a3, a5, a6, or a7 to be equal to 2. The first
three choices are equivalent, as v3, v5, v6 all represent vectors that are sums of two of the standard basis vectors, and
hence are GL equivalent, thus we consider

a1 = a2 = a4 = a3 = 2 =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 1, 2, 110, 440, 440, 440, 3960, 31680]} d(M4,3,1) = 7

as well as

a1 = a2 = a4 = a7 = 2 =⇒ {αi} = {1, 1, 1, 5, 20, 20, 20, 20, 20, 20, 20, 20, 80, 240, 960} d(M4,3,2) = 11
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9.3 ω = 5

The 5 generators in question could span either 3 or 4 dimensions.
dim = 3

We assume that a1 = a2 = a4 = 2, leaving

(
4
2

)
= 6 choices to make as to which of the other generator multiplicities

from the set {a3, a5, a6, a7} should be 2. Clearly

{a3 = a5 = 2} ∼= {a3 = a6 = 2} ∼= {a5 = a6 = 2}

for we can act by the permutations (3, 4) and (2, 3, 4) realized as matrices in GL4(F2) to get equivalence. Similarly

{a3 = a7 = 2} ∼= {a5 = a7 = 2} ∼= {a6 = a7 = 2}

by permutations (2, 3) and (3, 4). Note that the first above cases are equivalent under multiplication by

g =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


so there’s actually only one case:

{a1 = a2 = a4 = a3 = a5 = 2} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 11, 44, 44, 44, 220, 880, 2640, 10560} d(M5,3,1) = 7

dim = 4
In this case, we can assume that a1 = a2 = a4 = a8 = 2, so it suffices to consider the 11 cases in which we choose
any of the remaining generators to be 2. Again from GL action we see that the choice of ai = 2 is equivalent to
aj = 2 if vi and vj are both sums of k standard basis vectors for the same number k. Thus (suppressing the notation
that {a1 = a2 = a4 = a8 = 2}), we have

{a3 = 2} ∼= {a4 = 2} ∼= {a6 = 2} ∼= {a9 = 2} ∼= {a10 = 2} ∼= {a12 = 2}

and separately
{a7 = 2} ∼= {a11 = 2} ∼= {a13 = 2} ∼= {a14 = 2}

and the case of {a15 = 2} is isolated. With this, we have

{a3 = 2} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 1, 2, 22, 132, 660, 5280, 15840, 15840} d(M5,4,1) = 7

{a7 = 2} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 1, 2, 110, 440, 440, 440, 1320, 205920} d(M5,4,2) = 7

{a15 = 2} =⇒ {αi} = {1, 1, 1, 1, 1, 5, 20, 20, 20, 20, 120, 480, 480, 480, 480} d(M5,4,3) = 9

9.4 ω = 6

dim = 3
We assume a1 = a2 = a4 = 2, and it remains to choose 3 generators from the set {v3, v5, v6, v7}. Note that by a
permutation of coordinates (2, 3, 4) via GL action, we can assume that a3 = 2, leaving only 3 cases.

{a5 = a6 = 2}, {a5 = a7 = 2}, {a6 = a7 = 2}

Note that the latter two cases are equivalent by nature of the permutation (3, 4), and the first and last case are
equivalent by action by

g =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1


so the only case is

{a5 = a6 = 2} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 11, 44, 132, 528, 528, 528, 528, 2112}, d(M6,3,1) = 7
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dim = 4

WLOG, a1 = a2 = a4 = a8 = 2, leaving

(
11
2

)
= 55 cases to reduce. From here on we abbreviate the set

{ai1 = · · · = aik = 2} by the indices {i1, . . . , ik}and just list groups of indices as opposed to writing the ∼= sign. We
find all collections of generators whose multiplicities are equivalent under GL action by explicit computation. There
are 24 equivalent cases as such

{3, 5}, {3, 9}, {6, 10}, {5, 12}, {3, 6}, {9, 10}, {3, 10}, {6, 12}, {9, 12}, {5, 6}, {10, 12}, {5, 9}

{3, 7}, {3, 11}, {6, 14}, {12, 13}, {11, 14}, {6, 14}, {9, 11}, {10, 11}, {12, 14}, {5, 13}, {5, 7}, {9, 13}

{3, 5} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 1, 2, 66, 264, 528, 528, 5280, 205920} d(M6,4,1) = 7

and a separate 3 equivalent cases here
{3, 12}, {6, 9}, {5, 10}

{3, 12} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 24, 24, 24, 120, 120, 480, 480, 480, 480} d(M6,4,2) = 9

and another 22-equivalent cases

{3, 14}, {6, 13}, {11, 12}, {10, 13}, {7, 9}, {7, 12}, {5, 11}, {9, 14}, {3, 13}, {6, 11}, {5, 14}

{3, 15}, {5, 15}, {6, 15}, {9, 15}, {10, 15}, {12, 15}

{7, 15}, {11, 15}, {13, 15}, {14, 15}, {6, 10}

{3, 14} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 1, 2, 22, 44, 220, 5280, 68640, 68640} d(M6,4,3) = 7

And finally 6 equivalent cases
{7, 11}, {7, 13}, {7, 13}, {7, 14}, {11, 13}, {13, 14}

{7, 11} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 11, 44, 44, 44, 44, 1320, 5280, 36960} d(M6,4,5) = 7

9.5 ω = 7

dim = 3
Again, assume a1 = a2 = a4 = 2 by GL action, then we must have in fact that ai = 2 for 1 ≤ i ≤ 7, yielding

{αi} = {1, 3, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 192} d(M7,3,1) = 13

dim = 4

WLOG, a1 = a2 = a4 = a8 = 2, so we have

(
11
3

)
= 165 cases to reduce. The following 16 cases are equivalent

{6, 10, 12}, {5, 9, 12}, {3, 5, 6}, {3, 9, 10}, {10, 12, 14},

{9, 12, 13}, {5, 6, 7}, {3, 10, 11}, {6, 12, 14}, {5, 9, 13}, {5, 12, 13},

{3, 6, 7}, {3, 9, 11}, {6, 10, 14}, {3, 5, 7}, {9, 10, 11}

{6, 10, 12} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 3, 6, 48, 48, 528, 6864, 6864, 20592}, d(M7,4,1) = 7

The following 72 cases are equivalent

{7, 10, 13}, {7, 9, 14}, {5, 11, 14}, {6, 11, 13}, {7, 11, 12}, {3, 13, 14}

{6, 11, 12}, {5, 11, 12}, {3, 6, 13}, {3, 9, 14}, {3, 5, 14}, {6, 10, 13},

{7, 9, 12}, {5, 9, 14}, {3, 10, 13}, {7, 9, 10}, {7, 10, 12}, {5, 6, 11}

{6, 10, 15}, {5, 9, 15}, {3, 5, 15}, {9, 10, 15}, {3, 6, 15}, {10, 12, 15}, {5, 12, 15},

{9, 12, 15}, {5, 6, 15}, {3, 9, 15}, {6, 12, 15}, {3, 10, 15}, {7, 10, 14},

{7, 9, 13}, {5, 7, 11}, {10, 11, 13}, {6, 7, 11}, {11, 12, 14}, {5, 13, 14}, {11, 12, 13},

{6, 7, 13}, {9, 11, 14}, {3, 11, 13}, {6, 13, 14}, {3, 11, 14}, {5, 7, 14}, {9, 13, 14}, {7, 12, 13},

{7, 10, 11}, {6, 11, 14}, {10, 13, 14}, {3, 7, 14}, {7, 12, 14}, {5, 11, 13}, {7, 9, 11}, {3, 7, 13}

{13, 14, 15}, {7, 14, 15}, {7, 11, 15}, {7, 13, 15}, {11, 13, 15}, {11, 14, 15}

{6, 13, 15}, {5, 14, 15}, {3, 14, 15}, {7, 9, 15}, {3, 13, 15}, {7, 10, 15}, {11, 12, 15},

{5, 11, 15}, {9, 14, 15}, {10, 13, 15}, {6, 11, 15}, {7, 12, 15}
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{7, 10, 13} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 1, 2, 22, 264, 528, 528, 13728, 480480} d(M7,4,2) = 7

A separate 63 cases occur:

{6, 9, 15}, {5, 10, 15}, {3, 12, 15}{10, 14, 15},

{9, 13, 15}, {5, 7, 15}, {10, 11, 15}, {6, 7, 15}, {12, 14, 15},

{5, 13, 15}, {12, 13, 15}, {9, 11, 15}, {3, 11, 15}, {6, 14, 15}, {3, 7, 15}

{3, 5, 11}, {3, 6, 11}, {9, 10, 13}, {5, 12, 14}, {9, 10, 14}, {3, 9, 13}, {6, 7, 10}, {3, 10, 14}, {9, 12, 14},

{6, 12, 13}, {5, 7, 12}, {5, 7, 9}, {6, 7, 12}, {10, 12, 13}, {6, 10, 11},

{3, 6, 14}, {5, 6, 14}, {3, 7, 9}, {5, 9, 11}, {10, 11, 12}, {3, 5, 13}, {3, 7, 10}, {5, 6, 13}, {9, 11, 12}

{6, 7, 9}, {5, 7, 10}, {3, 11, 12}, {6, 9, 13}, {5, 10, 11}, {3, 12, 14},

{6, 9, 11}, {5, 10, 13}, {5, 10, 14}, {3, 12, 13}, {6, 9, 14}, {3, 7, 12}

{5, 10, 12}, {6, 9, 12}, {5, 6, 10}, {3, 5, 10}, {5, 6, 9}, {3, 6, 12},

{5, 9, 10}, {3, 5, 12}, {3, 6, 9}, {3, 10, 12}, {6, 9, 10}, {3, 9, 12}

{6, 9, 15} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 24, 6864, 6864, 68640, 68640} d(M7,4,3) = 7

And a separate 4 cases
{11, 13, 14}, {7, 13, 14}, {7, 11, 14}, {7, 11, 13}

{11, 13, 14} =⇒ {αi} = {1, 1, 1, 1, 1, 1, 1, 3, 66, 528, 528, 528, 528, 528, 2640} d(M7,4,3) = 7

And a separate 10 cases

{3, 7, 11}, {9, 11, 13}, {12, 13, 14}, {10, 11, 14}, {6, 7, 14},

{5, 7, 13}, {9, 10, 12}, {5, 6, 12}, {3, 6, 10}, {3, 5, 9}

{3, 7, 11} =⇒ {αi} = {1, 1, 1, 1, 6, 24, 24, 24, 24, 24, 24, 48, 240, 480, 3360} d(M7,4,5) = 11

This accounts for all 165 cases.

9.6 ω ≥ 8
The same process can be repeated to collect further data. There is a symmetry that should be noted: it suffices to
use to above equivalences and check the above cases when 1 and 2 are switched in the multiplicities, so all of the
case work and equivalence groupings has been done, and we present the few cases of interest. Via proposition 7.4,
we immediately learn the value of d(M) for ω ≥ 8, and in the case that ω = 15, we apply lemma 5.1 to get that
d(M) = 15. As an example, here is ω = 8 with the odd vectors spanning a space of dimension 3. The lemma dictates
that d(M) = 3 and indeed

{ai = 1 ∀1 ≤ i ≤ 7} =⇒ {αi} = {1, 3, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 384} d(M8,3,1) = 13

The proposition is used to complete the rest of the data, indicating the following conjectures

Conjecture 9.1. For a matroid, M, yielding a connected Cayley graph on Fr2, d(M) ≥ 2r−1 − 1 with equality

occurring iff
∑n
i=1 vi 6= ~0.

Conjecture 9.2. d(M) is odd unless all of the eigenvalues have the same power of 2, in which case d(M) = 2n− 2.

10 Remaining Conjectures

We list remaining conjectures we’ve gathered based on data

Conjecture 10.1. When the greatest common divisor of all generator multiplicities is 1, the sandpile group depends
only on the collection of eigenvalues, not their labellings.

Conjecture 10.2. Two Cayley graphs have the same sandpile group if and only if their generator multiplicities are
the same up to GL-equivalence.
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Conjecture 10.3. The 2-Sylow component of the sandpile group for Q2n−1 and Q2n differs as follows: Syl2(K(Q2n))
equals a top cyclic factor as determined in section 11 and then the remaining factors come from taking Syl2(K(Q2n−1))
and doubling the multiplicity of each factor. That is, we have

Syl2(K(Q2k))
∼= Syl2(K(Q2k−1))

2 × Z/(22
k+k−1Z)
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22

http://www-users.math.umn.edu/~reiner/REU/AnzisPrasad2016.pdf
http://www-users.math.umn.edu/~reiner/REU/AnzisPrasad2016.pdf

	Abstract
	Introduction and Notation
	Background and Previous Results

	Number of even invariant factors depends on parity of generators
	Characterization of the Number of 2-Sylow Components
	Bounding the Largest Cyclic Factor
	The Complete Description of the Top Cyclic Factor of Qn
	Determination of the Sandpile group for r = 2
	r = 3 determination of 2-Sylow structure
	Data for d(M) for r = 4
	2
	= 3,4
	= 5
	= 6
	= 7
	8

	Remaining Conjectures
	Acknowledgements

