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1 Introduction

A large literature has been devoted to studying the f and h polynomials of convex poly-
topes. Given an n-dimensional polytope P, we define its f-vector f(P) := (f0, f1, . . . , fn)
where fi is the number of i-dimensional faces of P. Encoding this vector in a polyno-
mial f0 + f1t + f2t

2 + · · · + fnt
n, we can define the h-vector h(P) = (h0, . . . , hn) via

h0 + h1t + · · · + hntn = f0 + f1(t − 1) + f2(t − 1)
2 + · · · + fn(t − 1)n. In the case of a

simple polytope P, h(P) is nonnegative symmetric, unimodal, and can be interpreted as the
rational cohomology group of an associated toric variety X(P).

However, when P is not simple, the h-vector is more mysterious and encodes less infor-
mation about the polytope. In search of a similar quantity, we more closely examine the
poset structure of the polytope. One such invariant is the cd-index, which is a noncommu-
tative polynomial in variables c and d that encodes the flag f-vector of an Eulerian poset.
We are are interested in studying these invariants in the case of weight polytopes. Given
(W,S) a finite reflection group with generating set S acting on Rn and a vector λ ∈ Rn, the
weight polytope Pλ is the convex hull of the W-orbit of λ. Let J(λ) = {s ∈ S : s(λ) = λ} be
the generators that fix λ. In [3], Renner uses monoid methods to describe the facial structure
of Pλ in terms of J(λ) and (W,S) when W is a Weyl group. He also gave a complete clas-
sification of simple weight polytopes for each irreducible Dynkin diagram. Using Renner’s
work, Golubitsky compiled generating functions of the f-polynomials for two families of type
A simple weight polytopes.

In this paper, we extend Golubitsky’s work to find generating functions for all possible
infinite families of simple weight polytopes from irreducible Dynkin diagrams. Along the
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way, we also derive a generating function for the f-polynomials of hypersimplices. We then
focus on the nonsimple polytopes. We first detail the results of Maxwell[2], and show that
Renner’s result holds for arbitrary finite reflection groups. We then use Maxwell to derive
a generating function of the cd-index of hypersimplices ∆(n, k). As a corollary, we recover
the cd-index for simplices from Stanley [5].

2 Preliminaries

In this section, we will give some preliminary knowledge and define some terminologies. We
assume the readers are familiar with the definition of polytopes and (graded) posets/lattices.

2.1 Polytopes

A r-dimensional polytope is the convex hull of a finite number of points in Rr that spans the
space. On the boundary of the polytope, there lies objects called faces of a polytope. A face
is the intersection of the polytope with an arbitrary hyperplane that does not intersect the
interior of the polytope. A face is a polytope itself. A j-dimensional face is called a j-face
(i.e. a vertex is a 0-face, and the polytope itself is a r-face).
For a polytope P, define the f-vector f(P) := (f0, . . . , fr) where fi is the number of i-
dimensional faces of P. Define its f-polynomial as:

fP(t) =
∑

face Σ⊆P

tdim(Σ) =

r∑
i=0

fit
i.

The h-polynomial is:

hP(t) = fP(t− 1) =

r∑
i=0

fi(t− 1)
i.

If we expand hP(t) =
∑r

i=0 hit
i, then h(P) := (h0, . . . , hr) is the h-vector of polytope P.

Example 2.1.1. A cube has f-vector (8, 12, 6, 1) and h-vector (1, 3, 3, 1).

A r-dimensional polytope is called a simple polytope if and only if each vertex has
exactly r incident edges. For example, a cube is a simple polytope. A simple polytope has
extremely nice structure, which is encoded in its symmetric h-vector.

Theorem 2.1.2. (Dehn-Sommerville equation) For a r-dimensional simple polytope P, de-
note its h-vector h(P) := (h0, . . . , hr). Then for any i, hi = hr−i.

2.2 Face Lattice and cd-index

Given a polytope P with dimension r, define the face lattice of P as L = {faces of P}∪ {0̂, 1̂}
ordered by inclusion of faces. It’s known that L is a finitely graded lattice of rank r+ 1 with
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0̂ and 1̂.
We use the terminology of posets from [5]. Let ρ denote the rank function of L, where
ρ(0̂) = 0 and ρ(1̂) = r+ 1. Let S ⊆ [n] = {1, 2, . . . , n}. The rank-selected poset LS of L is

LS = {x ∈ L|ρ(x) ∈ S} ∪ {0̂, 1̂}.

Define the flag f-vector α(S) = αL(S) as the number of maximal chains in LS. Based on
that, define the flag h-vector β(S) = βL(S) as:

β(S) =
∑
T⊆S

(−1)#(S−T)α(T),

or,

α(S) =
∑
T⊆S

β(T).

Now, we want to encode all flag h-vector into one polynomial. Consider the free algebra
ring C[a, b] where a and b are non-commutative. Given set S ⊆ [n], define its characteristic
monomial as uS = unun−1 · · ·u1, where

ui =

{
a, if i /∈ S
b, if i ∈ S.

For example, if n = 5 and S = {2, 5}, then uS = baaba. Now we define

ΦP(a, b) = ΦL(a, b) =
∑
S⊆[n]

β(S)uS, ΥP(a, b) = ΥL(a, b) =
∑
S⊆[n]

α(S)uS.

The polynomial φP is called the ab-index of polytope P. We have a simple relation between
ΦP and ΥP:

ΥL(a, b) = ΦP(a+ b, b), ΦP(a, b) = ΥP(a− b, b).

One amazing result is from [4, Theorem 6.1]

Theorem 2.2.1. For any polytope P, there exists a polynomial ΨP(c, d) in the non-commuting
variables c and d such that

ΦP(a, b) = ΨP(a+ b, ab+ ba).

ΨP(c, d) is also called the cd-index of polytope P.

2.3 Finite Coxeter Group

In order to discuss the Maxwell’s results in depth, we need to know about Coxeter groups
and their properties. We now define these.
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Definition 2.3.1. A Coxeter presentation for a group W is of the form

W ∼= 〈s1, . . . , sn | s2i = e, (sisj)
mij = e〉

for somemij ∈ {2, 3, 4, . . . }∪{∞}. In such case, W is called a Coxeter Group. IfW is finite,
then W is called a Finite Coxeter Group. S = {s1, s2, . . . , sn} is called the Generating
Set of W.

One way to view a Coxeter group that will be useful later on is the following

Definition 2.3.2. Given a Coxeter presentation (W,S), we can encapsulate it in the Cox-
eter Diagram, denoted Γ(W), a graph with V = S and if mij = 3, si and sj are connected
with no label and if mij > 3, si and sj are connected with label mij.

From now on, we work with a Coxeter Group W with generating set S.

Definition 2.3.3. For any set X ⊆ S, define WX = 〈X〉 as the subgroup generated by
elements in X. Specifically, W =WS. First, define XT to be the largest subset XT ⊆ X such
that no connected component of XT on the Coxeter diagram lies entirely in T . Define the set
X⊥ ⊆ S as the set of those s ∈ S which commute with every element of X. We also define
X∗ := XT ∪ (XT)

⊥.

Definition 2.3.4. For any w ∈W, define the length of w, or len(w), as the minimal integer
such that w can be decomposed into the product of len(w) elements in S.

Proposition 2.3.5. For any w ∈ W, if w = s1s2 · · · slen(w), then the set {s1, s2, . . . , slen(w)}

is independent of the choice of such decomposition. We denote that set as Sw.

Proposition 2.3.6. For any w ∈W and X ⊆W,

w ∈WX ⇐⇒ Sw ⊆ X.
Proposition 2.3.7. For any w ∈ W and s ∈ S, if w commutes with s, then either s ∈ Sw
or s ∈ S⊥w.

Proposition 2.3.8. For any X, Y ⊆ S and a ∈W, double coset WXaWY contains a unique
element w of minimal length. When w = a, we say a is (X, Y)-reduced.

Theorem 2.3.9. Finite Coxeter Groups W are reflection groups.

We can thus think of any Coxeter group as acting on a Euclidean space, so we can
consider the orbits of vectors under these groups.

Definition 2.3.10. For T ⊆ S, define the shadow poset L(W,T) = {gWXWT |g ∈ W,X ⊆ S}
ordered by inclusion.

Theorem 2.3.11 ([2], Theorem 5.11). L(W,T) is isomorphic to the face lattice of the poly-
tope Pλ, where T ⊂ S such that WT is the stabilizer of λ.

In order to actually understand the poset, we emphasize the following results of Maxwell

Proposition 2.3.12 ([2], Proposition 2.2). We have gWXWT ⊂ hWYWT iff XT ⊂ YT and
Sw ⊂ XT , where w is the (X, Y)-reduction of g−1h

Proposition 2.3.13 ([2], Corollary 2.3). We have gWXWT = hWYWT iff XT = YT (so that
X∗ = Y∗) and gWX∗ = hWY∗.
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2.4 Coxeter Invariant Polytopes

Given a finite Coxeter system (W,S), we know from the previous that it can be thought of
as a finite reflection group in some Euclidean Rn.

Definition 2.4.1. Given λ ∈ Rn, we define the weight polytope Pλ to be the convex hull
of {w · λ | w ∈W}.

Definition 2.4.2. If λ is chosen so that Pλ is a simple polytope, we call J(λ) combinato-
rially smooth.

For a simple polytope, the h-vector encodes a tremendous amount of geometric infor-
mation about Pλ. In order to derive generating functions for their f-polynomials, we need a
theorem of Renner, which gives the facial structure of a weight polytope Pλ in terms of the
Weyl group (W,S) and J(λ) = {s ∈ S | s(λ) = λ}.

Theorem 2.4.3 (Renner, [3] Corollary 1.3). Let W be a Weyl group and let r :W → GL(V)
be the usual reflection representation of W. Let C ⊂ V be the rational Weyl chamber and let
λ ∈ C. Then

• Pλ has exactly one W orbit of faces for each I ⊂ S such that no connected component
of I lies entirely in J(λ). The collection of all such I is S(λ).

• This W-orbit is represented by a face FI whose relative interior intersects C and has
parabolic subgroup WI = 〈s〉s∈I stabilizing FI, but acting nontrivially on FI.

• The W-stabilizer of FI is WI∗ where I∗ = I ∪ {s ∈ J(λ) : st = ts, ∀ t ∈ I}.

Remark 2.4.4. Renner’s result is stated for Weyl groups, not all finite reflection groups.
Our calculations of generating functions for f-vectors in Section 3 only uses Weyl groups,
but more generally the structural result holds for all finite reflection groups. See Section 4
for details about this.

This theorem is the primary method of deriving generating functions. More specifically,
the above statement about stabilizers implies the W-orbit of FI for I ∈ S(λ) in Pλ has the
coset structure W/WI∗ . We then have

Corollary 2.4.5.

fi(Pλ) =
∑

I∈S(λ),|I|=i

|W|

|WI∗ |

and

fPλ(t) =
∑
I∈S(λ)

|W|

|WI∗ |
t|I|
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3 Results on Simple Polytopes

In this section, we derive generating function expressions for new cases of simple polytopes.
Renner’s classification result gives the exact cases for simple weight polytopes arising from
irreducible Dynkin diagrams:

Theorem 3.0.1 ([3], Corollary 3.5). For the infinite families An, Bn, Dn, the subsets {J ⊂
S | J is combinatorially smooth} are the following

1. An

(a) J = ∅
(b) J = {s1, . . . , si}, 1 ≤ i < n
(c) J = {sj, . . . , sn}, 1 < j ≤ n.

(d) J = {s1, . . . , si, sj, . . . , sn}, 1 ≤ i, i ≤ j− 3, and j ≤ n.

2. Bn

(a) J = ∅
(b) J = {s1, . . . , si}, 1 ≤ i ≤ n
(c) J = {sn}

(d) J = {s1, . . . , si, sn}, 1 ≤ i, i ≤ n− 3

3. Dn

(a) J = ∅
(b) J = {s1, . . . , si}, 1 ≤ i < n− 1

(c) J = {sn−1}

(d) J = {sn}

(e) J = {s1 . . . , si, sn−1}, i ≤ n− 4

(f) J = {s1 . . . , si, sn}, i ≤ n− 4

Here we use the convention that for type B/D, the fork and doubled edge are on the
right. In [1], Golubitsky derives the following generating functions for the weight polytopes
of type An in the case that J(λ) = ∅ and J(λ) = {1, . . . , k}:

Theorem 3.0.2 (Golubitsky). For An, denote the f-polynomial as Fn(t) for J = ∅ and Fn,k(t)
for J = {1, . . . , k}. Then we have the generating functions∑

n≥0

Fn(t) ·
xn+1

(n+ 1)!
=

etx − 1

t+ 1− etx

and ∑
n≥k≥0

Fn,k(t) ·
xn+1yk

(n+ 1)!
=

exy

y− 1
·
(
y+

etxy − t− 1

t+ 1− etx

)
− 1
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Renner’s classification implies that there is one more type A class of simple polytopes.
We find a generating function for f-polynomial of these simple polytopes.

Theorem 3.0.3. Let Fn,a,b(t) be the f-polynomial associate to the type-An polytope with
J(λ) = {1, . . . , a, . . . , n− b+ 1, . . . n}. Then we have the generating function

∑
a,b≥0

∑
n>a+b

Fn,a,b(t) ·
xn+1yazb

(n+ 1)!
=

1

y2 − y

(
x+

(xy− exy + 1)
(
xz− exz)

)
y

+

(
tz+ (t+ 1)exz − t− e(t+1)xz

)(
ty+(t+1)e(xy)−t−e((t+1)xy)

(t−e(tx)+1)y
− e(xy)

)
t(y− 1)z

+
e(xy+xz)

ty
+

(
ze(txy) − ye(txz)

)
e(xy+xz)

t(y− z)y

)

To prove this fact, we will rely on this incredibly useful recurrence.

Proposition 3.0.4. We have the recurrence of f-polynomials as

Fn,a,b(t) = Fn,a,b−1(t) − Fn−b−1,a,0(t) ·
(
n+ 1

b+ 1

)
· (t+ 1)

b+1 − t− 1

t

Proof. Label the vertices of the Dynkin diagram [1], . . . , [n]. Let Sa,b,n be the permissible
subsets such that no connected components lies in J = {1, . . . , a, n − b + 1, . . . , n}. Then
Sa,b,n ⊂ Sa,b−1,n, so it suffices to find the discrepancy between these two sets. The elements of
Sa,b−1,n\Sa,b,n are subsets T such that [n−b] /∈ T but [n−b+1], [n−b+2], . . . , [n−b+k] ∈ T
such 1 ≤ k ≤ b, and these are the only elements larger than n− b in T . The first n− b− 1
vertices are free to choose. Using Corollary 2.3.5, for fixed k we can write the f-polynomial
as Fn−b−1,a,0(t) · tk · (n+1)!(n−b)!

· 1
(k+1)!(b−k)!

, so summing over all n yields

Fn−b−1,a,0(t) ·

(
b∑
k=1

(
n+ 1

b+ 1

)(
b+ 1

k+ 1

)
tk

)
= fn−b−1,a,0 ·

(
n+ 1

b+ 1

)
· (t+ 1)

b+1 − (b+ 1)t− 1

t

Meanwhile, we also need to consider cases in Sa,b−1,n where the coefficient from Corollary
2.3.5 changes. Note that |I| and |W| are unchanged, but the set I∗ changes depending on
whether J = {1, . . . , a, n − b + 2, . . . , n} or J = {1, . . . , a, n − b + 1, . . . , n}. The elements
such that the coefficient changes are those where [n − b + 1] commutes with T , which are
subsets where the last [n− b], [n− b+ 1], . . . , [n] are not in the set. In one case, there is an
extra element s such that st = ts for all t ∈ T , so |WI∗ | should be multiplied by b + 1. We
can write the difference between the two f-polynomials of these cases as

Fn−b−1,a,0(t) ·
(

(n+ 1)!

(n− b)!(b+ 1)!
−

(n+ 1)!

(n− b)!b!

)
= Fn−b−1,a,0(t) ·

(
n+ 1

b+ 1

)
· (1− (b+ 1))
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Combining all these terms yields

Fn,a,b(t) = Fn,a,b−1(t) − Fn−b−1,a,0(t) ·
(
n+ 1

b+ 1

)
· (t+ 1)

b+1 − (b+ 1)t− 1

t
− Fn−b−1,a,0(t) ·

(
n+ 1

b+ 1

)
· b

= Fn,a,b−1(t) − Fn−b−1,a,0(t) ·
(
n+ 1

b+ 1

)
· (t+ 1)

b+1 − t− 1

t

Note that this sum includes cases where n = a + b + 1, which are actually nonsimple.
The reason for this is that it significantly simplifies our recursion.

In order to prove this, we need to understand a preliminary result about hypersimplices:

Proposition 3.0.5.∑
a,b≥0

Fa+b+1,a,b(t)
yazb

(a+ b+ 2)!
= ey+z

(
zety − yetz + y− z

tyz(y− z)

)
Proof. Note that subsets that have no connected component in J(λ) subsets T that are
connected components of the graph and have [a + 1] ∈ T . Let the endpoints of T be
[u+ 1], [n− v]. Then |WI∗ | = u!v!(n− u− v+ 1)! and |W| = (n+ 1)!, so that

Fa+b+1,a,b(t) =
∑

u,v≥0,w≥1
u+v+w=n+1

(a+ b+ 2)!

u!v!w!
tw−1

Summing over all possible a, b yields∑
a,b≥0

Fa+b+1,a,b(t)
yazb

(a+ b+ 1)!
=
∑
a,b≥0

∑
u,v≥0,w≥1
u≤a,v≤b

u+v+w=a+b+2

(a+ b+ 2)!

u!v!w!
tw−1

yazb

(a+ b+ 2)!

=
∑
a,b≥0

∑
u,v≥0,w≥1
u≤a,v≤b

u+v+w=a+b+2

tw−1

u!v!w!
yazb

=
∑
r,s≥0

∑
u,v≥0

tr+s+1yuzv

u!v!(r+ s+ 2)!
yrzs

=
∑
u,v≥0

yuzv

u!v!
·
∑
r,s≥0

yrzstr+s+1

(r+ s+ 2)!

=
∑
u,v≥0

yuzv

u!v!
·
∑

r,s≥0,r+s=n

tn+1

(n+ 2)!

n∑
k=0

ykzn−k

=
1

t(y− z)
·

(∑
u≥0

yu

u!
·
∑
v≥0

zv

v!

∑
n≥0

tn+2

(n+ 2)!
· (yn+1 − zn+1)

)
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=
ey+z

tyz(y− z)

(
z
∑
n≥0

tn+2yn+2

(n+ 2)!
− y
∑
n≥0

tn+2zn+2

(n+ 2)!

)

=
ey+z

tyz(y− z)

(
z(ety − ty− 1) − y(etz − tz− 1)

)
=

ey+z

tyz(y− z)

(
zety − z− yetz + y

)
as desired.

Proof of Theorem 3.0.3. Using the the recurrence from Proposition 3.0.3, when summing
over all x, y, z we get a nice recurrence which only depends on the ability to calculate the
sum in Proposition 3.0.5 and Golubitsky’s formula for J(λ) = {1, . . . , k}. Solving for our
generating function yields the desired formula.

We obtain similar generating functions for the simple polytope cases of Bn, according to
Renner’s classification:

Theorem 3.0.6. In Bn, denote the f-polynomial as Fn(t) when J = ∅, and as Fn,k(t) when
J = {1, . . . , k} Then we have the generating functions∑

n≥1

Fn(t) ·
xn

n!
=

tetx

t+ 1− e2tx
− 1

∑
n>k≥0

Fn,k(t) ·
xnyk

n!
=

1

y− 1

(
e(t+2)xy +

etx ·
(
e2(t+1)xy − (t+ 1) e2xy + t− ty

)
(t+ 1− e2tx)y

)

We use the following lemma, similar to Lemma 3.0.4

Lemma 3.0.7. Define Hk =
∑

n>k Fn,k(t)
xn

n!
, then

Fn,k−1 − Fn,k = Fn−k−1,0 · 2k+1
(

n

k+ 1

)
· (t+ 1)

k+1 − (t+ 1)

t
.

Hk−1 −Hk = (t+ 2)k
xk

k!
+ (H0 + 1) ·

2k+1xk+1

(k+ 1)!
· (t+ 1)

k+1 − (t+ 1)

t
.

Theorem 3.0.8. In Bn, denote the f-polynomial as Fn(t) when J = {n}, and as Fn,k(t) when
J = {1, . . . , k, n}. Then we have the generating functions∑

n≥1

Fn(t) ·
xn

n!
=
tetx − (t+ 1)tx

t+ 1− e2tx
− 1
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∑
n−2>k≥0

Fn,k(t)
xn+1yk

(n+ 1)!
=

1

y2 − y

(
xy+

(
y+

(t+ 1)e(2 xy)

t
−
e(2 (t+1)xy)

t
− 1

)(
(t+ 1)tx− te(tx)

t− e(2 tx) + 1
+ 1

)

− x−

(
(t+ 1)xy+ 1

t
+ 1
)
e(2 xy) − e(2 (t+1)xy)

t
− e((t+2)xy)

y

)
We actually end up having the same recurrence as in the case with no {n} ⊂ J, the only

difference being the initial conditions.

Lemma 3.0.9. Define Hk =
∑

n≥k+2 Fn,k(t)
xn

n!
, then

Fn,k−1 − Fn,k = Fn−k−1,0 · 2k+1
(

n

k+ 1

)
· (t+ 1)

k+1 − (t+ 1)

t
.

Hk−1 −Hk = Fk+1,k−1
xk+1

(k+ 1)!
+ (H0 + x) ·

2k+1xk+1

(k+ 1)!
· (t+ 1)

k+1 − (t+ 1)

t
,

where

Fk+1,k−1(t) = −2k(k+ 1)(t+ 1) + 2k+1
(t+ 1)k+1 − 1

t
+ (t+ 2)k+1 − 2k+1.

4 Maxwell implies Renner

This section provides a complete proof of Renner’s result about the facial structure of weight
polytopes. First, we prove the following fact

Proposition 4.0.1. Let (g, X, T) ≤ (h, Y, T) under the Maxwell poset. Say a face (g ′, X ′, T)
is X-type if X ′T = XT . Then, a X-type face is inside a Y-type face iff XT ⊆ YT , and the number
of X-type face inside a fixed Y-type face is

|WY |

|WXT | · |WY∩X⊥ |

Proof. By 2.3.12, we have that gWXWT ⊂ hWYWT iff XT ⊂ YT and Sw ⊂ X⊥. In other
words, w ∈ WXWX⊥WY. WLOG, by writing h−1gWXWT ⊂ WYWT we can assume that
h = 1. Therefore, the number of possible orbits is the size |WXWX⊥WY |. By definition of X⊥,
WXWX⊥ = WX⊥WX commute, so this size is actually |W⊥XWXWY | = |WX⊥WY | since X ⊂ Y.
By 2.3.13, the stability consists of all elements such that h−1gWX∗ = WX∗ , which implies
g−1h ∈WX∗ . So the size of the stabilizer is |WX∗ |. We thus have that the number of faces is
the number equality modulo the stabilizer, which is

|W⊥XWY |

|WX⊥ |
=

|WX⊥ ||WY |

|WX⊥∩Y |
=

|WY |

|WX⊥∩Y |
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Note that if Y = S, then we just get the formula |W|

|WXT ||X
⊥|

= |W|

|WX∗ |
, which the formula

derived from Renner’s theorem. We are now in a position to prove Renner’s theorem.

proof of 2.4.3. We have a natural action of W on L(W,T) via w(hWXWT) → whWXWT .
Fixing T = J(λ), note that the subsets that have no connected component lying entirely in
J are precisely the sets X such that XJ = X. Given subsets K, L ⊂ S, if KJ 6= LJ then 2.3.13
implies they cannot be in the same orbit. Alternatively, if KJ = LJ then we claim any two
sets gWKWJ and hWLWJ are in the same W-orbit. This statement boils down to the fact
that WKWJ =WLWJ, which is true by 2.3.13.
For the second statement we consider the face WIWJ where IT = I. Through Maxwell’s
bijection, one fundamental chamber corresponds to elements (id, X) = WXWJ. Therefore,
taking X = J gives the desired face. Note then that WI acts on WIWJ, but non trivially as
the action of a nontrivial group on itself permutes the elements.
The third statement about the stabilizer follows immediately from setting Y = S in 2.3.13.

5 The nonsimple case: flag-f vectors and ab-index

We now turn to the case of nonsimple weight polytopes. We wish to find generating functions
for the ab and cd-indices, as these carry more information about the polytope than the f
and h-polynomials.

5.1 Hyper-simplices

Definition 5.1.1. For integers n, k where n ≥ k ≥ 1, the (n, k)-hypersimplex, denoted
∆(n, k), is the convex hull of the Sn orbit of (1, 1, . . . , 1, 0, 0, . . . , 0) where there are k 1’s
and n− k 0’s.

Note that k = 1 yields the normal n-dimensional simplices. When looking at the An−1
diagram, these are the weight polytopes where J(λ) = S\{sk}, where we have included all the
generators except for the kth element. By Renner’s classification of combinatorially smooth
J(λ) for the type A Dynkin diagram, ∆(n, k) is nonsimple unless k = 1, n. Recall in Section 3
that in finding a generating function for the last simple case, we actually found a generating
function for the f-polynomial for ∆(n, k). But instead, we would like to have a generating
function for cd-index. For the sake of notational convenience, we define

D(x) :=
e(a−b)x − 1

a− b
=

∞∑
k=1

(a− b)k−1
xk

k!

We now give our generating function for the ab-index of the hypersimplex
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Theorem 5.1.2. Let Φn,k(a, b) denote the ab-index of the hypersimplex ∆(n, k). Then we
have the generating function∑

n≥k≥1

Φn,k(a, b)
yk

(n+ 1)!
= (1−D(y+ 1) · b)−1(D(y)D(1)b+

1

y− 1
(D(y) − yD(1)))

Proof. we have the following simple recurrence for ΥP:

ΥP = Υ0̂1̂ =
∑
0̂<x<1̂

aρ(x,1̂)−1bΥ0̂x + a
ρ(0̂,1̂)−1.

This recurrence comes from the fact that ΥP is a sum over all possible chains that doesn’t
contain 0̂ or 1̂ in P. Now, we group all chains according to the highest-ranked element. We
say it is x. Then, the sum of all chains in this group is the same as Υ0̂x, which gives us the

recurrence formula. The coefficient aρ(x,1̂)−1b means x is being there while all higher-ranked
elements are absent. The constant term comes from the unique empty chain.

To derive a similar recurrence for the ab-index, replace a with a− b and we have

ΦP = Φ0̂1̂ =
∑
0̂<x<1̂

(a− b)ρ(x,1̂)−1bΦ0̂x + (a− b)ρ(0̂,1̂)−1.

According to Maxwell’s Theorem, when P = L(n, k), all sub-lattices [0̂, x] are isomorphic
to the face lattice of some hyper-simplices as well, and the number of x ∈ P such that
[0̂, x] ∼= ΦL(n ′,k ′) is equal to

(n+ 1)!

(n ′ + 1)!(k− k ′)!(n− n ′ + k ′ − k)!
.

If we plug in this fact into the recurrence for Φn,k
yk

(n+1)!
, then in the recurrence expansion,

the coefficient of Φn ′,k ′
yk
′

(n ′+1)!
will be

(a− b)k−k
′
yk−k

′

(k− k ′)!
· (a− b)n−n

′+k ′−k

(n− n ′ + k ′ − k)!
· (a− b)−1b.

Therefore, if we define F =
∑

n≥k≥1Φn,k(c, d)
yk

(n+1)!
, then we can show the following equation

is true be comparing coefficients (the first term comes from the the analysis above, the second
term comes from the terms that looks like atb and rhe last term comes from terms that look
like at):

F =

[(∑
p≥0

(a− b)pyp

p!

)(∑
q≥0

(a− b)q

q!

)
− 1

]
(a− b)−1b · F+

∑
n≥k≥1

(a− b)n−1byk

k!(n− k+ 1)!

+
∑
n≥k≥1

(a− b)nyk

(n+ 1)!

= D(y+ 1) · F+D(y)D(1)b+
1

y− 1
(D(y) − yD(1)).
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which concludes our proof.

Note that since a, b do not commute, it is crucial to write the fraction with an inverse
on the left. As a corollary, we derive a nice generating function for the normal simplices, is:

Corollary 5.1.3. Let Φ(n)(a, b) denote the element ab-index of the n-dimensional simplex.
Then we have the generating function∑

n≥1

Φn(a, b)

(n+ 1)!
= (1−D(1)b)−1 ·D(1)

This result is essentially the same formula as [5] Corollary 1.4.

6 cd-index

Given our formula for the generating function for the ab-index, one might hope we can
rewrite the generating function as a cd-index. The closest we can get to this task is to write
the generating function in terms of

c(x) := cosh((a− b)x) =
1

2
(e(a−b)x + e(b−a)x) =

∞∑
j=0

(a− b)2j
x2j

(2j)!
=

∞∑
j=0

(c2 − 2d)j
x2j

(2j)!

and

s(x) :=
sinh((a− b)x)

a− b
=
e(a−b)x − e(b−a)x

2(a− b)
=

∞∑
j=0

(a− b)2j
x2j+1

(2j+ 1)!
=

∞∑
j=0

(c2 − 2d)j
x2j+1

(2j+ 1)!
,

which are clearly functions of c, d. Denote these functions as c(x), s(x), respectively. We
then have

Theorem 6.0.1.

∑
n≥k≥1

Ψn,k(c, d)
yk

(n+ 1)!
= (1− s(y+ 1) · c+ c(y+ 1))−1 ·

(
c(y+ 1) − c(y) − c(1) + 1

c2 − 2d
· c

− s(y+ 1) +
y+ 1

y− 1
· (s(y) − s(1))

)
First Proof. First we ”multiply” numerator and denominator by z := 1 + e(b−a)(y+1). That
is, we have the equality

(z(1−D(y+ 1) · b))−1 · z(D(y)D(1)b+
1

y− 1
(D(y) − yD(1)))
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Now it suffices to write this numerator and denominator in terms of c, d, c(x), s(x). First,

(1+ e(b−a)(y+1))(1−D(y+ 1) · b) = 1− (e(a−b)(y+1) − 1) · b

a− b
+ e(b−a)(y+1) − (1− e(b−a)(y+1)) · b

a− b

= 1− (e(a−b)(y+1) · b

a− b
− e(b−a)(y+1)) − e(b−a)(y+1)

= 1− s(y+ 1) · 2b+ c(y+ 1) − s(y+ 1) · (a− b)

= 1− s(y+ 1) · c+ c(y+ 1)

Now, for the numerator we have

(1+ e(b−a)(y+1))(D(y)D(1)b+
1

y− 1
(D(y) − yD(1)))

= (1+ e(b−a)(y+1))(e(a−b)(y+1) − e(a−b)y − e(a−b) + 1)(a− b)−2b

+(1+ e(b−a)(y+1))((y− 1)(a− b))−1(e(a−b)y − 1+ y− yea−b)

= (e(a−b)(y+1) + 1− e(a−b)y − e(b−a) − e(a−b) − e(b−a)y + 1+ e(b−a)(y+1))(a− b)−2b

+(1+ e(b−a)(y+1))/(a− b) + ((y− 1)(a− b))−1(e(a−b)y + eb−a − yea−b − ye(b−a)y)

= (c(y+ 1) · 2b− c(y) · 2b− c(1) · 2b+ 2b+ a− b+ (a− b)c(y+ 1))(a− b)−2 − s(y+ 1)

+((y− 1)(a− b))−1
(
y+ 1

2
(e(a−b)y − e(b−a)y) −

y− 1

2
(e(a−b)y + e(b−a)y)

−
y+ 1

2
(e(a−b) − e(b−a)) −

y− 1

2
(e(a−b) + e(b−a))

)
= (c(y+ 1) · c− (c(y) + c(1)) · 2b+ c)(a− b)−2 −

c(1) + c(y)

(a− b)
+
y+ 1

y− 1
(s(y) − s(1)) − s(y+ 1)

=
c(y+ 1) − c(y) − c(1) + 1

c2 − 2d
· c− s(y+ 1) +

y+ 1

y− 1
(s(y) − s(1))

The result thus follows.

Second Proof. This result can also be derived directly from Stanley’s recurrence function for
cd-indices. In [5] Theorem 1.1, we have

2ΨP = 2Ψ0̂1̂ =
∑
0̂<x<1̂

ρ(x,1̂)=2j−1

(c2−2d)j−1cΨ0̂x+
∑
0̂<x<1̂
ρ(x,1̂)=2j

(c2−2d)jΨ0̂x+

{
2(c2 − 2d)k−1 if ρ(0̂, 1̂) = 2k− 1

0 if ρ(0̂, 1̂) = 2k.

According to Maxwell’s Theorem, when P = L(n, k), all sub-lattices [0̂, x] are isomorphic
to the face lattice of some hyper-simplices as well, and the number of x ∈ P such that
[0̂, x] ∼= L(n ′, k ′) is equal to

(n+ 1)!

(n ′ + 1)!(k− k ′)!(n− n ′ + k ′ − k)!
.
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Therefore, if we define F =
∑

n≥k≥1Ψn,k(c, d)
yk

(n+1)!
, then

2F = (cosh(y)sinh(1) + sinh(y)cosh(1))c · F
− (sinh(y)sinh(1)(c2 − 2d) + cosh(y)cosh(1) − 1) · F
+ (cosh(y)cosh(1)(c2 − 2d) + sinh(y)sinh(1))c

− (cosh(y)sinh(1) + sinh(y)cosh(1))(c2 − 2d) +
2

y− 1
(sinh(y) − y · sinh(1)).

where

sinh(t) =
∑
j≥0

(c2 − 2d)j
t2j+1

(2j+ 1)!
,

cosh(t) =
∑
j≥0

(c2 − 2d)j
t2j

(2j)!
,

cosh(t) =
∑
j≥1

(c2 − 2d)j−1
t2j

(2j)!
.

which further reduces to the form in Theorem 6.0.1.

7 Future Directions

Here are some ideas for future work:

• [4] and [5] discuss a correspondence between the ab-index of ordinary simplices and
simsun permutations, a special kind of alternating permutation. We attempted to find a
correspondence between pairs of simsun permutations and ab-indices of hypersimplices,
but were unable to do so. Exploring more in this direction could be interesting.

• Find the generating functions for f-polynomials of type D, although we may do this
later.

• We wrote a much faster program for determining the f-polynomials and cd-index with-
out drawing a polytope. From here we can actually calculate all possible f-polynomials
and cd-indices for the exceptional Coxeter groups. Expect such data in a later edition
of the report.
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