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Abstract

In this paper, we present a general formula for the coefficients of F -polynomials in terms of C-matrix

entries. We then demonstrate the effectiveness of the formula by using it to derive simple formulas for

specific classes of quivers. Work has been done to do these cases in ad-hoc combinatorial ways, but our

formula recovers them with a general method. Secondly, we investigate convergence for F -polynomials.

In themselves, they do not converge, but by changing bases using the C-matrix, they conjecturally do.

Since our formula relates C-matrix entries to coefficients, we are able to apply it to make considerable

progress on the conjecture. In particular, we show stability for green mutation sequences. Finally, we look

at exact formulas for these stable deformed F -polynomials in instances where they illustrate properties

that the F -polynomials themselves do not.

1 Introduction

Cluster algebras, introduced by Fomin and Zelevinsky in 2002 [4], are commutative algebras with a dis-
tinguished set of generators, known as cluster variables. Their original motivation came from an algebraic
framework for total positivity and canonical bases in Lie Theory. In recent years, connections have been
made to other areas, such as physics, quiver representations, Calabi-Yau categories, and Poisson geometry.

The cluster variables are grouped into sets of constant cardinality v, the clusters, and the integer v is
called the rank of the cluster algebra. Start with an initial cluster x (together with a skew symmetrizable
integer v×v matrix B and a coefficient vector p =

〈
(p+1 , p

−
1 ), (p

+
2 , p

−
2 ), ..., (p

+
v , p

−
v )

〉
whose entries are elements

of a torsion-free abelian group. We denote the entry in the kth row and ith column of B as B[k, i]. The set
of cluster variables is obtained by repeated application of so called mutations. To perform a mutation at
k, replace xk in the cluster with

x′
k =

1

xk


p+k

∏

B[k,i]>0

x
B[k,i]
i + p−k

∏

B[k,i]<0

x
−B[k,i]
i




This creates a new cluster variable. By a result of Fomin and Zelevinsky [4] known as the Laurent phe-
nomenon, this new cluster variable will always be a Laurent polynomial. There is also a corresponding
change to the matrix B and vector p, which will be defined properly in a later section. When one sets each
initial xi to 1 and initial p vector as 〈y1, ..., yv〉, each cluster variable is a polynomial with indeterminates
〈y1, ..., yv〉. These polynomials are called F -polynomials. It turns out that the coefficients of monomials in
F -polynomials are the same as those we would have gotten by setting each initial yi to 1 and leaving the
initial x vector as indeterminates 〈x1, ..., xv〉. As such, results about coefficients of F -polynomials also apply
to cluster variables.

F -Polynomials have been an interesting area of study since the inception of the field. Fomin and Zelevin-
sky conjectured in [4] that every F -polynomial has all positive coefficients. This conjecture was later proven
in the skew-symmetric case in [11] and then the entire skew-symmetrizable case in [7]. Nonetheless, we are



far from completely understanding them. For one, not very many explicit formulas exist for the coefficients
of F -polynomials. Since they are defined through recurrence relations, it is not clear that we can actually
get a closed form formulation instead. The main result of our paper is to derive a closed form based only on
the C-matrix entries, which are related to the p-vectors defined above. Some of the most general previous
results regarding F -polynomial explicit forms are the following:

• A formula in terms of the Euler-Poincare characteristic of quiver Grassmannians obtained in [2].

• A combinatorial interpretation for cluster algebras from surfaces given in [14].

• A formula for cluster variables corresponding to string modules as a product of 2 × 2 matrices obtained
in [1].

• A formula using broken lines and reflections in [7].

The last result is the only one that is completely general; the others are restrictive in the cluster algebras
they account for. The first is mostly general, restricting only in that it only applies to skew-symmetric
cluster algebras. However, the first and last have limited computational power, as the coefficients involve
objects that are hard to understand and compute.

As said earlier, the main result of this paper is to present a formula for the F -polynomial that is completely
general and completely explicit. This is in itself interesting, because it shows that the recurrence relation
for F -polynomials can be solved out. Moreover, we show that our formula is useful. We demonstrate
that this formula has computational power, meaning its terms are easy to understand, unlike the formula
using the Euler-Poincare characteristic of quiver Grassmannians. We demonstrate this by using it to easily
obtain algebraic formulas for F -polynomials of specific classes of quivers, that are as simple or simpler
than previously known. Though our formula is general, our examples and applications of it restrict to the
skew-symmetric case, because that is where patterns are most evident. Furthermore, the formula has an
application to geometry in this case, where the cluster algebra can be interpreted with quivers. The formula
for the F -polynomial in terms of the Euler-Poincare characteristic of quiver Grassmannians mentioned earlier
in [2] says the following:

Fn =
∑

e

χ(Gre(φn))

v∏

i=1

yeii

Here, e is a vector in Nv and φn is a representation of the original quiver defined by certain mutation
rules. As such, our expression for the coefficient of a given monomial in an F -Polynomial also gives a formula
for the corresponding Euler-Poincare characteristic of quiver Grassmannians associated to dimension vectors
parameterized by e. This is interesting, because these are often very difficult to understand and compute.
Finally, it is well known that F -polynomial coefficients for specific quivers represent various combinatorial
objects; for example pyramid partitions [3], paths in surfaces with marked points [17], and snake graphs
[15]. Therefore, our F -polynomial formula also provides a way to count these combinatorial objects.

Secondly, we use our formula to make progress on a conjecture made by Eager and Franco in Section 9.5
[3]. They explore convergence of F -polynomials in the skew symmetric case. In themselves, F -polynomials do
not converge, but when one changes basis; i.e. acts with an appropriate linear operator on the exponent vector
of each monomial, they appear to converge. This phenomenon and precise linear operator was conjectured
in [3] and formalized by Grace Zhang in [18]. This bears a striking resemblance to our formula for the
coefficients of F -Polynomials, and we use our results to prove Eager and Franco’s conjecture for a certain
class of quivers known as green quivers. This includes the quiver they originally conjectured stabilization for,
the dP1 quiver, known in combinatorics for giving rise to the Somos-4 sequence. This also extends results
[18], which prove stabilization for some specific green quivers.

2 Definitions

We start with the general definitions, and later state the simplified definitions for the skew-symmetric case,
since that is the case we study most closely. The way we define F -polynomials is purely combinatorial; we

2



do not use the cluster algebra notation directly. In both cases, we would start with a matrix B and mutation
sequence v1, ..., vn to obtain the F -polynomial Fn. In our definitions, the matrix B is essentially replaced by
the notion of a generalized quiver defined below in Section 2.1. An interested reader should look at [4] and
[5] to understand why the cluster algebra definition of an F -polynomial is the same.

2.1 General Definitions

Definition 2.1 (Generalized Quiver). A generalized quiver Q is a directed graph on vertices 1, ..., |Q|,
where every edge is associated to one of its incident vertices, along with a Laurent polynomial label at every
vertex. However the edges must satisfy certain properties:

• There are no 2-cycles involving edges both associated to the same vertex.

• When written in a matrix B with entry B[i, j] being the number of edges associated to j going from
j → i (negative if edges go in), B is skew-symmetrizable.

Intuitively, a generalized quiver is a generalized version of a quiver, reflecting the fact that the “adjacency
matrix” B need not be skew-symmetric.

Definition 2.2 (Generalized Quiver Mutation). An generalized quiver mutation at vertex i is defined
by changing both the quiver around vertex i and the Laurent polynomial at vertex i. The quiver changes
are defined as follows.

• For every path j → i → k with the first edge associated to i and the second to k, draw a new edge
from j to k associated to k.

• For every path j → i → k the first edge associated to j and the second to i, draw a new edge from j
to k associated to k. Reverse the direction of every edge pointing with i as a vertex.

• Delete all 2-cycles involving edges both associated to the same vertex.

The Laurent polynomial is replaced as follows. Let Vk denote the Laurent polynomial currently on vertex
k. Replace Vi with the following function P .

P =

∏
j∈S1

Vj +
∏

j∈S2
Vj

Vi

where S1 is the set of vertices with multiplicity pointing into i associated to i and S2 is the set of vertices
with multiplicity of edges pointing out of i associated to i.

Notice that the vertex i may no longer have a Laurent polynomial label. However, the following theorem
by Fomin and Zelevinsky rectifies that.

Theorem 2.3 (Laurent Phenomenon [4]). Take a generalized quiver Q with starting polynomials x1, ..., xv

at each corresponding vertex. For any mutation sequence, the function P as defined above is actually a
Laurent polynomial.

Definition 2.4 (Framed Generalized Quiver). The framed generalized quiver of a generalized quiver Q
with labels (polynomials) 1 at every vertex is the quiver formed by adding a vertex i′ for every vertex i with
an edge pointing from i′ to i associated to i. The new vertices i′ have the label yi. A base vertex of the
framed generalized quiver is a vertex that is also a vertex of the original quiver.

Definition 2.5 (F -Polynomial). The nth F -Polynomial of a framed generalized quiver Q accompanied
with a mutation sequence v1, ..., vn of vertices is the polynomial at vertex vn after performing mutations at
v1, ..., vn sequentially.
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Definition 2.6 (Vn(i) or Vi). Given a quiver Q and a sequence of mutations v1, ..., vn, Vn(i) is the F -
polynomial on vertex i after the n mutations. We will usually denote this F -polynomial more simply as Vi

if we are otherwise clear about the termination point n for the sequence of mutations.

Definition 2.7 (C-matrix). The C-matrix of the framed generalized quiver Q and mutation sequence
v1, ..., vn with |Q| base vertices is the |Q| × |Q| matrix with entry (i, j) as the number of edges from frozen
vertex i′ to base vertex j associated to j. It is denoted Cn.

Definition 2.8 (Ai). Given a framed generalized quiver Q and a sequence of mutations v1, ..., vi, let A
g
i be

the identity matrix with entry (vi, vi) replaced with −1 and for every arrow pointing from vi to another base
quiver vertex v associated to v, add 1 to the entry (vi, vv). Ar

i is defined analogously with arrows pointing
into vi. We will just refer to the relevant Ag

i or Ar
i by Ai, where the relevant one is what corresponds to the

color of ri as will be defined soon. The other one will be A∗
i .

Lemma 2.9 (C-Matrix Facts, Theorem 5.6 [10]). Given a framed quiver Q and a sequence of mutations
v1, ..., vn, Cn = A1A2 · · ·An, where for each i you choose g if all the arrows are pointing into vi before the
ith mutation, and r otherwise. Also, Cn is invertible.

Definition 2.10 (Ei). Given a framed generalized quiver Q and a sequence of mutations v1, ..., vi, let E
g
i be

the identity matrix with entry (vi, vi) replaced with −1 and for every arrow pointing from vi to another base
quiver vertex v associated to vi, add 1 to the entry (vi, vv). A

r
i is defined analogously with arrows pointing

into vi. We will just refer to the relevant Eg
i or Er

i by Ei, where the relevant one is what corresponds to the
color of ri as will be defined soon. The other one will be E∗

i .

Definition 2.11 (D-Matrix). The D-matrix is similar to the C-matrix, defined slightly differently though:
Dn = E1 · · ·En. Note that Dn is also invertible. The D-matrix between two steps is defined as follows. For
two indices m and n, let Dm,n be DnD

−1
m . By extension, Dn = D0,n.

Definition 2.12 (ri). Given the quiver formed by a framed quiver Q and a mutation sequence v1, ..., vi, let
ri be the monomial that is the product of the frozen nodes pointing into/from vertex vi. The ri is called
green if the frozen nodes are pointing in before the final mutation (out afterwards) and red if they are all
pointing out.

Theorem 2.13 (Sign Coherence [7]). Given the quiver formed by a framed quiver Q and a mutation sequence
v1, ..., vi, all the frozen vertices pointing into any vertex v at the end of the process are in the same direction
(all in or all out), and there will be at least one arrow. Thus, every vertex will be green or red.

We call a mutation sequence green if all the mutations are green. We often just say the quiver is green
if it is clear what mutation sequence we are referring to.

The next two definitions bare no obvious significance, but simplify expressions in future sections. Loosely,
the particular values ai,j and bi,j are important because they are the building blocks of coefficients of
monomials in the F -polynomials.

Definition 2.14 (ai,j and bi,j). Given a framed quiver Q and a mutation sequence v1, v2, ...,, for two indices
i ≤ j, let ai,j = D−1

i,j [vj , vi]. Similarly, let bi,j = E∗
jEjD

−1
i,j [vj , vi], or equal to 0 when i = j. Let δi,j be 1 if

ri and rj are the same color, and −1 otherwise. Mutation 0 counts as red for the purposes of assigning δ0,i.

Definition 2.15 (W ). Given a framed quiver Q and a mutation sequence v1, ..., vn, and a sequence of indices
w1, ..., wk where the wi’s are all between 1 and n inclusive, let

W (n,w1, ..., wk) =

k∏

i=1


(awi,n) +

k∑

j=i+1

(−awi,wj
+ bwi,wj

)


 .

Definition 2.16 (φ). We define φ(w1, ..., wk) to be the number of distinct permutations of w1, ..., wk

divided by k!. Note that this is just 1
∏

ai!
where the ai are the number of occurrences of each of the distinct

values taken on by w1, ..., wk.
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2.2 Simplifications in the Skew-symmetric Case

In the case whereB is skew-symmetric, for any edge between two base vertices, the number of edges associated
to each vertex is the same. As such, we can define the quiver, rather than generalized quiver, so that only one
set of edges is included, and association can be disregarded. The analogous definitions are straightforward,
but we redefine for completeness. To understand that all proofs completed in the general case also apply
here, one should check that all the variables defined, C, A, ai,j , bi,j, ri, etc. are all the same when returning
the quiver to its generalized quiver form.

Definition 2.17 (Quiver). A quiver Q is a directed graph, along with a Laurent polynomial label at every
vertex. |Q| denotes the number of vertices in Q. The directed graph must have no 2-cycles.

Any quiver can be viewed, instead, as a generalized quiver by replacing each edge with two edges, one
associated to each incident vertex.

Definition 2.18 (Quiver Mutation). An quiver mutation at vertex i is defined by changing both the
quiver around vertex i and the Laurent polynomial at vertex i. The quiver changes are defined as follows.

• For every path j → i→ k, draw a new edge from j to k.

• For every path j → i→ k, draw a new edge from j to k. Reverse the direction of every edge pointing
with i as a vertex.

• Delete all 2-cycles.

The Laurent polynomial is replaced as follows. Let Vk denote the Laurent polynomial currently on vertex
k. Replace Vi with the following polynomial P .

P =

∏
j∈S1

Vj +
∏

j∈S2
Vj

Vi

where S1 is the multiset of edges pointing into i associated to i and S2 is the multiset of edges pointing out
of i.

Definition 2.19 (Framed Quiver). The framed quiver of a quiver Q with labels 1 at every vertex is the
quiver formed by adding a vertex i′ for every vertex i with an edge pointing from i′ to i. The new vertices i′

have the label yi. A base vertex of the framed quiver is a quiver that is also a vertex of the original quiver.

Definition 2.20 (C-matrix). The C-matrix of the quiver formed by a framed quiver Q and mutation
sequence v1, ..., vn with |Q| base vertices is the |Q|× |Q| matrix with entry (i, j) as the number of edges from
frozen vertex i′ to base vertex j. It is denoted Cn. The C-matrix between two steps is defined as follows.
For two indices m and n, let Cm,n be CnC

−1
m . It is worth noting that Cn = C0,n.

Definition 2.21 (Ai). Given a framed quiver Q and a sequence of mutations v1, ..., vi, let A
g
i be the identity

matrix with entry (vi, vi) replaced with −1 and for every arrow pointing from vi to another base quiver vertex
v, add 1 to the entry (vi, vv). Ar

i is defined analogously with arrows pointing into vi. We will just refer to
the relevant Ag

i or Ar
i by Ai, where the relevant one is what corresponds to the color of ri as will be defined

soon. The other one will be A∗
i .

The A-matrix is the same as the E-Matrix. Both will be denoted by A. The C-matrix is the same as the
D-matrix. Both will be denoted by C. Also note the following:

Definition 2.22 (ai,j and bi,j). Given a framed quiver Q and a mutation sequence v1, v2, ..., for two indices
i ≤ j, let ai,j = C−1

i,j [vj , vi]. Similarly, let bi,j = A∗
jAjC

−1
i,j [vj , vi], or equal to 0 when i = j. Let δi,j be 1 if

ri and rj are the same color, and −1 otherwise. Mutation 0 counts as red for the purposes of assigning δ0,i.
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Definition 2.23 (W ). Given a framed quiver Q and a mutation sequence v1, ..., vn, and a sequence of indices
w1, ..., wk where the wi’s are all between 1 and n inclusive, let

W (n,w1, ..., wk) =
k∏

i=1


(awi,n) +

k∑

j=i+1

(−awi,wj
+ bwi,wj

)


 .

We will use ai,j , bi,j and W regardless of whether we are dealing with a quiver or generalized quiver.

2.3 Definitions for Stabilization

Definition 2.24 (Matrix Action on Polynomial). Given an v×v matrix M and a polynomial P in x1, ..., xv,
we let M(P ) denote the polynomial formed when M acts on the vector of exponents for each monomial in
P .

Definition 2.25 (Deformed F -Polynomial). The nth S-polynomial (deformed F -polynomial) of a framed
quiver Q with a mutation sequence v1, ..., vn is defined as −C−1(Fn).

Definition 2.26 (Fundamental ri). An ri of a framed quiver Q and mutation sequence v1, v2, ... is called
fundamental if it is not expressible as the product of at least 2 other rj ’s with j < i. Let the set Mn

denote the set of fundamental ri for a framed quiver Q and sequence of mutations v1, ..., vn. M is the set of
fundamental ri for the entire mutation sequence v1, v2, ....

Definition 2.27 (Basic). Given a framed quiverQ and a mutation sequence v1, ..., vn, a monomialm is called
basic if its coefficient is nonzero in a polynomial that appears on one of the vertices after n mutations. In
other words, its coefficient is nonzero in some element of the cluster. Let Pn denote the set of basic monomials
after n mutations.

3 F -Polynomial Formula

3.1 Derivation

Theorem 3.1. Given a framed quiver or a framed generalized quiver Q and a mutation sequence v1, ..., vn,
Fn can be calculated as follows. Let W be the set of sequences w with 1 ≤ w1 ≤ ... ≤ wk ≤ n.

Fn =
∑

w∈W

φ(w1, ..., wk)W (n,w1, ..., wk)

v∏

i=1

y
∑k

j=1 δ0,wj
C0,wj

[i,vwj
]

i (1)

Consequently, the coefficient of a given monomial p is the sum of all sequences 1 ≤ w1 ≤ ... ≤ wk ≤ n so
that

p =

v∏

i=1

y
∑k

j=1 δ0,wj
C0,wj

[i,vwj
]

i

of
φ(w1, ..., wk)W (n,w1, ..., wk).

Proof. It suffices to prove the statement in the case of framed generalized quivers.
Consider the steps v1, ..., vn of the mutation process on the quiver Q that results in Fn. At each step i,

define ≻i and ≺i as follows. If ri is green, any edge in the quiver before the ith mutation associated to a
denoted a → b is now denoted a ≻i b. Similarly, a ← b is denoted a ≺i b. If ri is red, the reverse occurs:
≻i replaces ←, and ≺i replaces →. Thus, ≻ replaces → or ← corresponding to the direction of the frozen
vertices into vi. At each step i, the following occurs to calculate Fi. We have

FiVvi =
∏

vi≻j

Vj + ri
∏

vi≺j

Vj .
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We modify this mutation process: instead of plugging in the monomial ri, replace ri with the variable zi.
Define the analog of Fi as Zi and the analog of Vj as ZVj , so ZVj is the Z polynomial at the jth vertex.
Thus, Zn will be some rational function in the zi’s, computed by the following recurrence relation:

ZiZVvi =
∏

vi≻j

ZVj + zi
∏

vi≺j

ZVj

and ..., F−1, F0 = 1. When we plug in ri for each zi, we get back Fn. As such, to get the coefficient of a
given monomial p, do the following: express Zn in its MacLaurin series form, i.e. an element of C[[z1, ..., zn]].
Then, add the coefficients over all sequences w1, ..., wk so that p = rw1 · · · rwk

.
Now, we compute the coefficient of a given zw1 · · · zwk

. We show it is equal to

φ(w1, ..., wk)W (n,w1, ..., wk).

Encode the sequence w instead as two sequences q and m where q consists of the distinct terms of w in
increasing order, and m is the corresponding multiplicity of each. Let l = |q|. The coefficient of the term

zw1 · · · zwk
= zm1

q1 · · · z
ml
ql

in Zn is the same as the one in the polynomial computed as follows: look at the entire modified mutation
process, except on a mutation step i not corresponding to a qj , replace zi with 0. This is because replacing
all irrelevant zi’s with 0 does not affect the coefficient of the desired term. Call this new polynomial Yn.
Y Vvi is defined analogously as well. Consider the following polynomials, L1, ..., Ll.

L1 = (1 + zq1)

L2 =
(
1 + zq2(1 + zq1)

−aq1,q2+bq1,q2

)

.

.

.

Ll =
(
1 + zqlL

−aql−1,ql
+bql−1,ql

l−1 · · ·L−aq1,ql
+bq1,ql

1

)

(2)

Let

Hi :=

r∏

j=1

L
aqj,i

j .

where r is the final qr preceding i (so Hn would be
∏l

j=1 L
aqj,i

j ). We show that at any given step i, Yi = Hi.
We do so by induction.

Base Case: i ≤ q1: This case is clear. We have

Yq1 = Hq1 = (1 + zq1)

and for i < q1, we have
Yi = Hi = 1.

We have the following recurrence relation.

YiY Vvi =
∏

vi≻j

Y Vj + zi
∏

vi≺j

Y Vj

I claim that the relation
HiHVvi =

∏

vi≻j

HVj + zi
∏

vi≺
HVj

holds as well. Because of the inductive hypothesis, proving this recurrence relation would suffice to show the
polynomials are equal.
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Case 1: i 6= qr: We have zi = 0, so we want to show

HiHVvi =
∏

vi≻j

HVj + zi
∏

vi≺j

HVj

⇐⇒ Hi =

∏
vi≻j HVj

HVvi

.

We look at the exponent for each Ls in Hi and show that it is, in fact, the same on both sides of the

equation. The exponent on the right hand side, denoted es

(∏

vi≻j
HVj

HVvi

)
is calculated as follows:

∑

vi≻j

es(HVj)− es(HVvi).

Let ij be the last index of a mutation at vertex j. By the inductive hypothesis,

es

(∏
vi≻j HVj

HVvi

)
=

∑

vi≻j

aqs,ij − aqs,ivi .

Recall that
Di,j = Ei+1 · · ·Ej =⇒ D−1

i,j = Ej · · ·Ei+1

since the Ei are involutions. Multiplication by any Ei only changes the corresponding row, so since ai,j =
D−1

i,j [j, i], we can replace terms of the form aqs,ij with D−1
qs,i−1[j, vqs ], since no entry in the row of the

corresponding matrix changes. It’s useful to note this also stays 0 when Ls corresponds to a term that
appears after one of our HV terms is calculated. Thus, we have as our expression:

es

(∏
vi≻j HVj

HVvi

)
=

∑

vi≻j

D−1
qs,i−1[j, vqs ]−D−1

qs,i−1[vi, vqs ].

However, the right hand side is exactly the operation corresponding to obtaining the entryD−1
qs,i

[vi, vqs ] = aqs,i
from how Ei is defined: add the contributions from all the vertices pointing opposite of the frozen vertices,
and subtract the current vertex’s contribution. This exactly proves our desired statement that

es(Hi) = es

(∏
vi≻j HVj

HVvi

)
.

Case 2: i = qr: Just as in the last case, we can try to compute
∏

vi≻j HVj + zi
∏

vi≺j HVj

HVvi

.

By the first case, ∏
vi≻j HVj

HVvi

is Hi without the contribution from Lr. We now have to show that adding
zi

∏

vi≻j HVj

HVvi

gives the same

contribution as multiplying by Lr. By the same logic as the proof from the first case, we find the term
∏

vi≺j HVj

HVvi

.

Again we find es of the expression for each k. We get

es

(∏
vi≺j HVj

HVvi

)
=

∑

j≻vi

D−1
qs,i−1[j, vqs ]−D−1

qs,i−1[vi, vqs ].
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This is exactly the operation of E∗
i , so we get

es

(∏
j≻vi

HVj

HVvi

)
= bqj ,i.

Now that we have these identities, we can show that our recurrence relation in fact gives Hi.

∏
vi≻j HVj + zi

∏
vi≺j HVj

HVvi

=
r−1∏

j=1

L
aqj,i

j + zi

r−1∏

j=1

L
bqj,i

j

=(1 + zi

r−1∏

j=1

L
bqj,i−aqj,i

j )

r−1∏

j=1

L
aqj,i

j

=Lr

r−1∏

j=1

L
aqj,i

j

=Hi

which is what we desired.
Now we must actually compute the coefficient of zw1 · · · zwk

in Hn =
∏k

j=1 L
aqj,n

j . We prove that it is
φ(w1, ..., wk)W (n,w1, ..., wk) by induction on l = |q|.

Base Case: |q| = 1: Then Hn = L
aq1,n

1 . By the extended binomial theorem, the coefficient of zm1
q1 is in

fact
(aq1,i)(aq1,i − 1), ..., (aq1,i −m1 + 1)

m1!
.

Inductive step: |q| = l: If we instead compute the coefficient of the term qm2
2 · · · qml

l , then by the
inductive hypothesis we get the desired result. The corresponding Li, which we call L′

i, we have are defined
as follows.

L′
2 = (1 + zq2)

L′
3 =

(
1 + zq3(1 + zq2)

−aq1,q2+bq1,q2

)

.

.

.

L′
l =

(
1 + zql)(L

′−aqk−1,qk
+bqk−1 ,qk

l−1 · · ·L′−aq1,qk
+bq1,qk

1

)

(3)

This gives H ′
n =

∏k
j=1 L

aqj,n

j . By inspecting the way the Li’s are formed, we see that we can form

Hn by replacing every instance of zqi with zqi(1 + zq1)
−aq1,qi

+bq1,qi , and multiplying the entire expression
by (1 + zq1)

aq1,n . If we expand only q2, ..., ql, leaving the (1 + zq1) expressions, which corresponds to just
expanding H ′

n, the term
zm2
q2 · · · zml

ql

corresponds to the term

(1 + zq1)
aq1,n+

∑

l
i=2 −miaq1,qi

+mibq1,qi zm2
q2 · · · z

ml
ql

.

Any other terms cannot have a monomial that has the correct number of factors of all of zq2 , ..., zql . Thus,
we only need to find the coefficient of zw1 · · · zwk

in this monomial. The corresponding term in H ′
n already

9



has coefficient φ(wm1+1, wk)W (n,wm1+1, ..., wk), so the monomial itself is that times

(1 + zq1)
aq1,n+

∑

l
i=2 −miaq1,qi

+mibq1,qi zm2
q2 · · · z

ml
ql

.

To find the total coefficient, we multiply this by the coefficient of zm1
q1 in the expansion of

(1 + zq1)
aq1,n+

∑

l
i=2 −miaq1,qi

+mibq1,qi

which by extended binomial theorem is

aq1,n +
∑l

i=2−aq1,qi + bq1,qi · · · aq1,n +
∑l

i=2−miaq1,qi +mibq1,qi −m1 + 1

m1!
.

Since ai,i is 1 and bi,i is 0, this can be rewritten as

∏m1

j=1

(
aw1,n +

∑k
i=m1+1−awj ,wi

+ bwj ,wi

)

m1!
.

This, in turn, is exactly φ(w1, ..., wk)W (n,w1, ..., wk), thus proving our inductive step.

3.2 Formula Discussion

In this section, we discuss the formula, its terms, and implications.
The formula has the unfortunate property that it is summing over an infinite set of sequences. However,

this is easily remedied; it is fairly simple to find an upper bound on the degree of Fn. For example, take the
maximum number of edges in the quiver at any stage m and raise this value to the nth power. This must
be an upper bound, because at each step the maximum degree of a label on the quiver must be less than m
times the previous maximum value. Then, simply sum only over sequences where the expression

v∏

i=1

y
∑

k
j=1 δ0,wj

C0,wj
[i,vwj

]

i

has degree less than our upper bound. This is clearly finite, since each C0,wi
[j, vwi

] is positive. Consequently,
this at least limits us to only checking sequences with length less than the upper bound on the degree. In the
next few sections, we apply our formula to get simpler formulas for specific cases where we know what the
relevant entries of the C-matrix are. In many of the cases, we do not limit the sequences we are summing
over, if there isn’t a specifically interesting way to do so. It is therefore valuable to keep in mind that this
procedure would work.

Secondly, let us understand what the C-matrix entries mean. Recall that Cn[i, j] is the number of arrows
pointing into vertex j from vertex i′ after n mutation steps on the mutation sequence used to obtain Cn.
Similarly, Cm,n[i, j] is the number of arrows pointing into vertex j from vertex i′ after n−m mutation steps
where the initial base quiver is actually the original quiver after m mutation steps. There is a caveat though:
the color sequence must be the same as it was on the original quiver. If not, we can force it to be the same,
loosely by turning a red mutation into a negative analog of a green mutation and vice versa. Cm,n[i, j] also
makes sense for n < m (simply do the mutations from j to i in reverse), so this lets us understand what the
entries of inverse matrices mean, since Cm,n[i, j] = C−1

m,n[j, i]
Another thing to understand is the following. The formula doesn’t do a good job of highlighting which

sequences of ri’s are going to contribute negatively and positively to the coefficient of a given monomial.
There might be a way to group the sequences, so each group of sequences will be a nonnegative contributor.
It would be very cool if we could recover positivity using this formula. It could also help simplify the formula,
by reducing the set of sequences we have to sum over, if we know certain groups give 0.

Now we state the analog of the F -polynomial formula for deformed F -polynomials.

10



Corollary 3.2. Given a framed quiver Q and a mutation sequence v1, ..., vn, we have that Sn can be calculated
as follows. Let W be the set of sequences w with 0 ≤ w1 ≤ ... ≤ wk ≤ n− 1.

Sn =
∑

w∈W

φ(w1, ..., wk)W (n, n− wk, ..., n− w1)

v∏

i=1

y

∑

k
j=1 δn−wj,n

C−1
n−wj,n

[i,vn−wj
]

i (4)

Consequently, for a given monomial p, over all sequences 0 ≤ w1 ≤ ... ≤ wk ≤ n− 1 so that

p =

v∏

i=1

y

∑

k
j=1 δn−wj,n

C−1
n−wj,n

[i,vn−wj
]

i

the value of the coefficient is the sum over all the sequences of

φ(w1, ..., wk)W (n, n− wk, ..., n− w1).

Proof. This is Theorem 3.1, with the yi exponents transformed according to the stabilization rule.

This is interesting when we consider the full form of the formula, namely

Sn =
∑

0≤w1...wk≤n−1

φ(w1, ..., wk)

k∏

i=1

(
(an−wi,n) +

i−1∑

j=1

(−C−1
n−wj ,n−wi

[vn−wi
, vn−wj

]+

A∗
n−wi

An−wi
C−1

n−wj ,n−wi
[vn−wi

, vn−wj
])

) v∏

i=1

y

∑

k
j=1 δn−wj,n

C−1
n−wj,n

[i,vn−wj
]

i .

The terms C−1
n−wj ,n[i, vn−wj

] appear both in the exponents of the yi terms and as a part of the coefficient

calculation. This alludes to why C−1
n is a natural operation, and also why it might cause convergence.

4 Exact F -Polynomials

4.1 Symmetric Quivers

We aspire to compute Fn for graphs with useful symmetry properties. We then use this to directly do the
next two cases.

Definition 4.1. Let a Symmetric Quiver Q be one with the following properties. Take a quiver Q with base
quiver B and the periodic mutation sequence 1, ..., v, 1, ..., with the following properties.

• The base quiver B is reversible; that is reversing all the arrows and relabeling vertex i with v + 1 − i
returns the same quiver.

• The sequence of mutations is cyclic; that is mutating B at 0 returns the original quiver upon relabeling
vertex i with i− 1, where 1 is relabeled with v.

• The base quiver is symmetric; that is swapping i with v + 2− i returns a quiver with the same arrows
pointing in and out of vertex 1, and fixing vertex 1.

• The quiver is entirely green.

For the quiver Q define

f(x1, ..., xv) = −x1 +
∑

edge in B 1→i

xi

and
g(x1, ..., xv) = −x1 +

∑

edge in B i→1

xi.

Define the recurrence relation si = f(si−1, ..., si−v) and ..., s−2 = s−1 = 0, s0 = 1. Let s′i = g(si−1, ..., si−v)

11



Lemma 4.2. Take a symmetric quiver Q and mutation sequence 1, ..., v, 1, .... with the definitions above.
Then,

rk =

v∏

i=1

y
sk+1−i

i .

Proof. We prove the statement by induction.

Base Case: step k = 1: We have ri = y1 and
∏v

i=1 y
s1−i

i = y1.

Inductive Step: step k 6= 1: We are mutating at mutation step k. We need to find the contributors
to the frozen vertices pointing into k. Consider the previous cycle of mutation steps, and possible things
pointing into or out of vertex k when the vertex was mutated (thus contributing to vertex k) Due to symmetry
and cyclicity, the things that were pointing in must be precisely what is pointing out of vertex k now, and
vice versa. This easily gives the relation ei = f(ei−1, ..., ei−v) where ei is the exponent vector of a given ri.
It is worth verifying that this logic also holds when k < v (vertices that have not yet been mutated will have
contribution 0). In turn, the relation proves the desired result for k by induction, and so we have proven the
lemma.

Theorem 4.3. Take a symmetric quiver Q and mutation sequence 1, ..., v, 1, .... Let W be the set of sequences
0 ≤ w1 ≤ ... ≤ wk ≤ r Then

Fn =
∑

w∈W

φ(w1, ..., wk)




k∏

i=1

sn−wi
+

k∑

j=i

−swj−wi
+ s′wj−wi




v∏

i=1

y
∑k

j=1 swj+1−i

i .

Proof. We have

Fn =
∑

1≤w1,...,wk≤n

φ(w1, ..., wk)

k∏

i=1


(awi,n) +

k∑

j=i+1

(−awi,wj
+ bwi,wj

)




v∏

i=1

y
∑k

j=1 −C0,wj
[i,vwj

]

i .

Since the quiver is reversible, note that C−1
k = Ck after swapping indices 0 and v − 1, 1 and v − 2 etc.

Furthermore, Ci,k = Ck−i after cyclic shifting the indices. With a little work, one can therefore see that
ai,k = ak−i and same for b. Further, one can see that a0,i = si and b0,i = s′i because of the lemma. Therefore,

Fn =
∑

1≤w1,...,wk≤n

φ(w1, ..., wk)
k∏

i=1


(sn−wi

) +
k∑

j=i+1

(−swj−wi
+ s′wj−wi

)




v∏

i=1

y
∑

k
j=1 −C0,wj

[i,vwj
]

i

By lemma 4.2, −C0,r[i, vr] = sk−i. This therefore gives

Fn =
∑

1≤w1...wk≤n

φ(w1, ..., wk)

k∏

i=1


(sn−wi

) +

k∑

j=i+1

(−swj−wi
+ s′wj−wi

)




v∏

i=1

y
∑k

j=1 swj+1−i

i

which is the desired expression.

4.2 Kr

Definition 4.4. The framed quiver Kr is the quiver with base quiver having two vertices, 0 and 1, and r
arrows from 0 to 1. K3 is illustrated below.
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1 2

1’ 2’

Definition 4.5. Define the sequence s as ..., s−2 = s−1 = 0, s0 = 1 and sk+2 = nsk+1 − sk for k ≥ 0.

The main focus of the papers [12] and [13] are to find explicit formulas for the F -Polynomials of the
quivers Kr. The former derives an algebraic expression that appears to be more complicated than ours.
The latter interprets the coefficients as the count of a combinatorial object, and thus is incomparable to our
work. It is interesting that an explicit formula follows as a simple corollary of our general formula.

Theorem 4.6. We can compute Fn for Kr as follows. Let W be the set of sequences w with 1 ≤ w1 ≤ ... ≤
wk ≤ n.

Fn = 1 +
∑

w∈W

φ(w)

k∏

i=1


sn−wi

−
k∑

j=i+1

swj−wi
+ swj−wi−2


 y

∑k
i=1 swi−1

1 y
∑k

i=1 swi−2

2

Proof. Notice that Kr is a symmetric quiver. Recall Theorem 4.3 which states that

Fn =
∑

w∈W

φ(w1, ..., wk)




k∏

i=1

sn−wi
+

k∑

j=i

−swj−wi
+ s′wj−wi




v∏

i=1

y
∑k

j=1 swj+1−i

i .

Here, s is defined exactly as in 4.5, and s′i = −s′i−2. Plugging in therefore gives

Fn =
∑

1≤w1...wk≤n

φ(w1, ..., wk)
k∏

i=1


(sn−wi

)−
k∑

j=i+1

(swj−wi
+ swj−wi−2)


 y

∑

k
j=1 swj−1

1 y
∑

k
j=1 swj−2

2

This is exactly our desired expression.

Note that the degree in y1 of Fn is sn−1, so we only have to sum over sequences with

k∑

i=1

swi−1 ≤ sn−1

4.3 Gale Robinson Quivers

We now aspire to compute Fn for Gale Robinson Quivers specifically.

Definition 4.7. Define the Gale Robinson Quiver Gv,r,t as follows.

• There are v vertices labeled 1, ..., v.

• For all 1 ≤ i ≤ v − r, draw an arrow i→ i + r, and for all 1 ≤ j ≤ r, draw an arrow j → v − r + j.

• For all 1 ≤ i ≤ v − t, draw an arrow t+ i→ i, and for all 1 ≤ j ≤ t, draw an arrow v − s+ j → j.

• For all 1 ≤ i ≤ v − r − t, draw an arrow from r + i → t+ i and for all 1 ≤ j ≤ t − r, draw an arrow
r + j → v − t+ j.

13



• Delete any 2-cycles created in the above process.

We illustrate G7,2,3 below.

1

2

3

45

6

7

1’

2’

3’

4’5’

6’

7’

Lemma 4.8. Gv,r,t has the following properties.

• The base quiver B is reversible.

• The sequence of mutations is cyclic.

• The quiver is entirely green.

• Only 1 + r and v + 1 − r point out of vertex 1 and 1 + t and v + 1 − t point into 0 (this implies it is
symmetric).

Proof. The first statement is easy to check, since the arrows are explicitly stated. The second and third are
well-known [8]. The fourth, again, is easy to check since the arrows are explicitly stated.

Theorem 4.9. Take the quiver Gv,r,t. Define a sequence s with si as the number of partitions of i into parts
r, v− r (0 for negative values of i, 1 for 0). Let W be the set of sequences with 1 ≤ w1 ≤ ... ≤ wk ≤ n. Then

Fn =
∑

w∈W

φ(w1, ..., wk)




k∏

i=1

sn−wi
+

k∑

j=i

−swj−wi
− swj−wi−v + swj−wi−t + swj−wi−v+t




v∏

i=1

y
∑

k
j=1 swj−i

i

Proof. A Gale Robinson Quiver is in fact a symmetric quiver. Therefore, we can just plug into the formula
in the previous section. Define si as in the previous section. It is not difficult to see that si is the number of
partitions of i into parts r, v − r (0 for negative values of i, 1 for 0). We also have s′i = si−t + si−v+t − si−v.
Thus, literally plugging in to Theorem 4.3 gives the desired equation of

Fn =
∑

w∈W

φ(w1, ..., wk)




k∏

i=1

sn−wi
+

k∑

j=i

−swj−wi
− swj−wi−v + swj−wi−t + swj−wi−n+t




v−1∏

i=0

y
∑k

j=1 swj−i

i
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Gale Robinson quivers have been specifically studied in depth already. A paper by Jeong, Musiker
and Zhang [8] has a combinatorial interpretation for the coefficients in terms of brane tilings. As graphs
admissible on surfaces, they also have combinatorial interpretations in terms of snake graphs and paths on
marked surfaces. Furthermore a paper by Glick and Weyman [6] has an explicit formula for the coefficients
formed by summing a function over order ideals of a poset. An advantage of our formula over the ones listed
is that it is more explicit; it does not abstractly summing over a combinatorial object we do not know how to
count, which is a pitfall of all the above formulas. Ours only involves understanding the partition function,
which is simple when there are only two possible parts the number can be divided into.

5 Positivity of Exponents for Deformed F -Polynomials

In this section, we begin our study of deformed F -polynomials the deformed F -polynomial is, in fact, a
polynomial.

Lemma 5.1. Take a quiver Q and a sequence of mutations v1, ..., vn. Every monomial in any Fn is express-
ible as the product of not necessarily distinct ri with i ≤ n.

Proof. Assume there is a framed quiver Q and sequence of mutations v1, v2, ... such that some Fn has a
monomial not expressible as the product of the ri’s. Take the smallest n for which this is true, and the let
monomial of smallest degree in Fn for which this is true be m. Let Vvn be the old label of vertex vn. Let S1

be the vertices corresponding to the set of base quiver vertices pointing in the same direction as the edges
from frozen vertices. Let S2 be the vertices corresponding to the other edges. Then, we have

FnVvn = rn
∏

i∈S1

Vi +
∏

i∈S2

Vi

It is easy to see that each Fi has a positive constant term of 1; namely Vvn does, so then m is a term on
the left hand side. Since there are no negative coefficients, the coefficient of m on the left hand side must be
positive. However, every term on the right hand side is expressible as a product of ri’s since every term in
every Fi is, which is what the Vi’s are, and so is rn.

Recall our set Mn for quiver Q and mutations v1, ..., vn which is the set of fundamental ri (ri not
expressible as the product of other rj).

Lemma 5.2. Every monomial in any Fn is expressible as the product of not necessarily distinct elements
of Mn. In fact, it’s expressible as the product of not necessarily distinct elements of Mm for any m ≥ n,
including M itself.

Proof. By the previous lemma, we know every monomial is the product of ri’s. Now, if an ri is not funda-
mental, express it as a product of other ri’s. Repeating this process must result in a product of fundamental
ri’s, since degrees are decreasing.

Lemma 5.3. Given a framed quiver Q and a sequence of mutations v1, ..., vn, m ∈ Mn, its coefficient can
be computed as follows:
Let g be the number of j ≤ n such that m = rj and rj is green, and let r be the number of such j ≤ n so
that rj is red. Let cf(m,Vi) be the coefficient of m in Vi. Then

−(g − r)C−1
n (m) = 〈cf(m,V1), cf(m,V2), ..., cf(m,Vv)〉

Proof. First, we compute the coefficient of m in Ft for any t. If m is fundamental, the only possible sequences
of ri’s producting to m consists of the individual ri’s themselves that equal m. For all such ri, plugging
into our formula for F -polynomials gives that the inner expression φ(w1, ..., wk)W (n,w1, ..., wk) simplifies to
−C−1

i,t [vn, vi]. Since

−C−1
i,t [vn, vi] = δ(0, i)C−1

t (m)[vt],
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summing over all the ri equaling m gives −(g − r)C−1
t (m)[vt]. Now, we compute Vi. Take t so that t is the

last step less than or equal to n where vertex vt is mutated. If no occurrences of m as an ri are between
t+ 1 and n inclusive, then the coefficient of m is in fact −(g − r)C−1

t (m)[vt], where the g and r correspond
to number of occurrences of m preceding n. Note that

C−1
n = An · · ·At+1C

−1
t

where each mutation Ai for t+1 ≤ i ≤ n corresponds to a vertex vi. It is easy to see that left multiplication
by this matrix only affects the vith row of the matrix. As such, no mutation affects row vt, so C−1

t (m)[vt] =
C−1

n (m)[vt].
Now we have the second case, where some occurrence of m proceeds spot t in the mutation sequence.

Take a such occurrence of this to be at index s. Then, by the way the C matrix is defined, C−1
s (m) is the

identity vector with a 1 at the spot vm 6= vt. Then, recalling that the vtth row of the C−1-matrix does not
change between spot t and s and m, we have

C−1
t (m)[vt] = C−1

s (m)[vt] = C−1
n (m)[vt] = 0.

As such, the coefficient of m, which is −(g− r)C−1
t (m)[vt] is 0, but this is also equal to −(g− r)C−1

n (m)[vt]
since this is also 0. Thus, in both cases, the expression simplifies to −(g−r)C−1

n (m)[vt], and we are done.

Theorem 5.4. Take a framed quiver Q and a mutation sequence v1, ..., vn, with the following property: For
any fundamental m ∈ Mn, the number of occurrences of i ≤ n such that ri = m and ri is green is greater
than the number where ri is red. Then, Sn is a polynomial; that is none of the monomial terms have negative
exponents if the rn satisfy this property.

Proof. Express any monomial in Sn as a product of fundamental terms. Choose a sequence of fundamentals
m1, ...,mk and express as

∏
mi. Since matrix operations are linear, we have that

−C−1
n

(∏
mi

)
=

∏
−C−1

n (mi).

We know that each monomial−C−1
n (mi) has all positive exponents because of the following. Due to positivity

of coefficients of Fn, every m ∈Mn is a valid monomial when acted on by −C−1
n , since the coefficient vector

multiplied by (g − r) is the same as the exponent vector of −C−1
n (mi), and the multiplication by (g − r)

preserves sign.

Corollary 5.5. Given a framed quiver Q and a mutation sequence v1, v2, ... with every ri green, Sn is a
polynomial.

Proof. This is clear; for any ri the number of green occurrences must be at least the number of red occurrences
since there are only green occurrences. Thus, this follows from Theorem 5.4.

Almost conversely to Theorem 5.4, we have the following.

Corollary 5.6. Take a framed quiver Q and a mutation sequence v1, ..., vn, with the following property:
there exists a fundamental m so that the number of occurrences of i ≤ n such that ri = m and ri is red is
greater than the number where ri is green. Then, Sn is not a polynomial.

Proof. Consider the monomial corresponding to m: −C−1
n (m). We claim it will have all negative exponents.

Its coefficient vector in the original cluster of F -polynomials is −(g − r)C−1
n (m). This has to be always

positive due to positivity of coefficients. Since r > g, this gives us that −C−1
n (m) has all negative entries, as

desired.

Since we expect that the deformed F -polynomial is always a polynomial, we expect that the implied
statement is always true.
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Conjecture 5.7. Given a framed quiver Q and a mutation sequence v1, v2, ..., it is true that for any m ∈M ,
for any n the number of occurrences of i ≤ n such that ri = m and ri is green is at least the number where
ri is red.

The reason we cannot get an if and only if statement with this method directly is that the case where
g = r for a fundamental monomial m is tricky to deal with. Replacing basic with fundamental provides an
approach that circumvents this, though we do not know how to carry it through.

Conjecture 5.8. Given a framed quiver Q and a sequence of mutations v1, ..., vn, p ∈ Pn, the coefficient of
p is the following:

−C−1
n (p) = 〈cf(p, V1), cf(p, V2), ..., cf(p, Vv)〉

Theorem 5.9. If Conjecture 5.8 is true, then for any framed quiver Q and mutation sequence v1, ..., vn, Sn

is a polynomial.

Proof. For any basic monomial, the coefficient vector is the same as the exponent vector, by the conjecture.
Any monomial can be rewritten as the product of basics. Each of these primes has positive coefficient vector,
and therefore positive exponent vector, so the product will have positive exponent vector.

Conjecture 5.10. Take a quiver Q and a sequence of mutations v1, ..., vn. Let φn,i be the representation
on the base quiver corresponding to the last step of the mutation process up to and including the nth step
that occurred at vertex i. Let a monomial p be prime if any subrepresentation of φn,i with dimensions
corresponding to the degree vector of p is indecomposable. Then the space of subrepresentations of φn,i

with dimensions corresponding to the degree vector of p has Euler-Poincare characteristic of the quiver
Grassmannian equal to −C−1

n (p)i

Theorem 5.11. If Conjecture 5.10 is true, then for any framed quiver Q and mutation sequence v1, ..., vn,
Sn is a polynomial.

Proof. For any prime monomial, the coefficient vector is the same as the exponent vector, by the conjecture.
Any monomial can be rewritten as the product of primes; rewrite it as the direct sum of two representations,
and inductively decompose it into primes. Each of these primes has positive coefficient vector, and therefore
positive exponent vector, so the product will have positive exponent vector.

6 Convergence in Periodic Case for Green Quivers

Lemma 6.1. Take a framed quiver Q and a green mutation sequence v1, ..., vn. For any ri, we have that
−C−1

n (ri) is a monomial with positive exponents.

Proof. We show each ri is the product of fundamentals. Assume ri is not a fundamental. Then, by definition,
it is the product of other rj ’s. Repeating recursively, it is the product of fundamentals. Then, by a similar
argument as before, −C−1

n (ri) has to have all positive components, since −C−1
n of all its components in the

decomposition into fundamentals is positive.

Lemma 6.2. Given a green quiver Q and a mutation sequence v1, v2, ..., all the ri’s are distinct.

Proof. Assume monomial m is both ri and rj for j > i. Consider the quiver after j mutation steps. First
we show m is fundamental. If not, we will have

−C−1
j (m) =

∏
−C−1

j (ra).

However, the left side is just the 0 vector with a 1 at vj , and this has degree 1 so it cannot be the product of
other terms. Now we know that the coefficient vector of a fundamental ri is simply −(g − r)C−1

j (ri) which
is 0 everywhere and 2 at vi. In order for this to be true, at the previous step, the coefficient vector had to be
0 everywhere and −1 at vi. This is because nothing other than vi changed; the new ri contributes 1, so the
old term must contribute 1, and it was negated so must have been −1 before. This contradicts positivity of
coefficients.
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Lemma 6.3. Take a green quiver Q, and a periodic mutation sequence v1, ..., vp, ..., vn. For any monomial
m in the stabilized polynomial, there exists a constant c so that for any sequence w1, ..., wk −C−1

n (rw1) · · · −
C−1

n (rwk
) = m, then n− c ≤ w1, ..., wk, independent of n.

Proof. Consider instead the monomials after acted on by−C−1
n . Let the sequence of mutations be 1, ..., p, 1, ...,

ending in a. We have
−C−1

n = An · · ·A1 = Aa · · ·A1Ap · · ·A1 · · ·A1.

For fixed a, consider each of the monomials Aa · · ·A1 · · · (eva), at each possible termination point of the
matrix product, and assume two of them are equal. Say the length of the sequences at these two termination
points are b and c. Then take k larger than both b and c and equal to a mod p;. Then

−C−1
k−b,k(eva) = −C−1

k−c,k(eva)

However then
C(−C−1

k−b,k(eva)) = C(−C−1
k−c,n(eva)) =⇒ Ck−b(evk−b

) = Ck−c(evk−c
)

This means both rvk−b
and rvk−c

are equal. However, we already showed that all the ri are distinct in a green
quiver. Thus, there is some k for any monomial p so that the only occurrence of p has to be at mutation
n − k after stabilizing the corresponding ri, assuming n ≡ a mod p. Now, take the max of this value k
(call it max(k) for all monomials p|m over all the congruence classes mod p (hence over all n)). Since only
monomials p|m can contribute to m, we get that all contributors must be after n−max(k), as desired.

Theorem 6.4. Given a green quiver Q, and a periodic mutation sequence v1, ..., vp, ..., for any i, Si, Si+p, ...
converges.

Proof. Consider any monomial m and we show its coefficient converges. Take n larger than the c value for
monomial m from the previous lemma. Thus, we have our equation:

Sn =
∑

0≤w1...wk≤n−1

φ(w1, ..., wk)W (n, n− wk, ..., n− w1)
v−1∏

i=0

y

∑

k
j=1 δn−wi,n

C−1
n−wi,n

[j,vn−wi
]

i

which can be rewritten as

Sn =
∑

0≤w1...wk≤c

φ(w1, ..., wk)W (n, n− wk, ..., n− w1)
v∏

i=1

y

∑k
j=1 δn−wj,n

C−1
n−wj,n

[j,vn−wj
]

i

It would be clear these expressions were equal for sets of n where we could show C−1
n−w,n was only dependent

w; i.e. for a fixed w, the same regardless of n. However, this is a property true of all n in a congruence class
mod p. Thus, the expression is in fact equal for all n > c.

Recall from before that stability was originally conjectured by Eager and Franco in their paper Color
BPS, using the dP1 quiver. As a green quiver, our paper proves this case. We also write an explicit formula
for the deformed F -polynomial in the proceeding section.

7 Exact Formulas for Deformed F -Polynomials

In this section, we present some exact formulas for these limit deformed F -polynomials we have now shown
to exist. We restrict to the green quiver case, since that’s where we have shown convergence.
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7.1 Symmetric Quivers

For this subsection, we write the exact deformed F -polynomials for symmetric quivers. It does not illustrate
much, but allows for simpler proofs in proceeding sections.

Theorem 7.1. Let Sn be the deformed F -polynomial for the symmetric quiver Q. Then

Sn =
∑

w∈W

φ(w1, ..., wk)




k∏

i=1

sn−wi
+

k∑

j=i

−swj−wi
+ s′wj−wi




v∏

i=1

y
∑k

j=1 sn−wj+1−i

vn+1−i .

Proof. For this proof, consider vertices by their value mod v. Recall the formula from Theorem 4.3 which
states

Fn =
∑

w∈W

φ(w1, ..., wk)




k∏

i=1

sn−wi
+

k∑

j=i

−swj−wi
+ s′wj−wi




v∏

i=1

y
∑

k
j=1 swj+1−i

i .

We simply need to deform the exponents of the monomials. By Lemma 4.2,

rk =
v∏

i=1

y
sk+1−i

i

so the latter part of the expression can be rewritten as

k∏

j=1

rwj
.

Now we deform the exponents to get
k∏

j=1

−C−1
n (rwj

)

which is
k∏

j=1

C−1
wj ,n(evwj

).

Now since the quiver is symmetric, each Ai is the same, with the vertices cyclic shifted according to vi. Thus
C−1

wj ,n will just be AvnAvn−1 · · ·Awj
where there can be many periods in between. Mapping vn to vertex

1, vn − 1 to vertex 2 and so on, we get that C−1
wj ,n(evwj

) is C0,n−wj
(evn+1−vwj

) under the new labeling.

However, this is just rn−wj
. Then we can use Lemma 4.2 to see that this is

rn−wj
=

v∏

i=1

y
sn−wj+1−i

i .

Returning the vertices to their original labels, we get that each original rk deforms to
∏v

i=1 y
sn−k+1−i

vn+1−i and
thus

Sn =
∑

w∈W

φ(w1, ..., wk)




k∏

i=1

sn−wi
+

k∑

j=i

−swj−wi
+ s′wj−wi




v∏

i=1

y
∑

k
j=1 sn−wj+1−i

vn+1−i .
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7.2 Ã1,r

Definition 7.2. The quiver Ã1,r is on vertices 1, ..., r + 1 with the following edges:

• An edge from i→ i+ 1 for 1 ≤ i ≤ r.

• An edge from r + 1→ 1.

In this section, we look for explicit formulas for deformed F -polynomials for the quiver Ã1,r. In her paper

[18], Grace Zhang looks at the quiver Ã1,1. She shows the following. Let S∞ be the deformed F -polynomial

for the quiver Ã1,2. Then, up to swapping y1 and y2, we have

S∞ = 1 +
y1

(1− y1y2)2
.

Our theorem generalizes this result.

Theorem 7.3. Let S∞ be the deformed F -polynomial for the quiver Ã1,r. Then

S∞ = 1 +
yr+1(1 + yr + yryr−1, ..., yr · · · y2)

(1− y1 · · · yr+1)2

up to cyclic shift of variables.

Proof. Let W be the set of sequences 1 ≤ w1 ≤ ... ≤≤ n. By Theorem 7.1 we know that

Sn =
∑

w∈W

φ(w1, ..., wk)




k∏

i=1

sn−wi
+

k∑

j=i

−swj−wi
+ s′wj−wi




v∏

i=1

y
∑

k
j=1 sn−wj+1−i

vn+1−i

where si =
⌈
i
r

⌉
.

Consider any monomial m that we are trying to find the coefficient of in the stabilized polynomial which
has nonzero coefficient. We claim that the exponent of yvn is one greater than the exponent of yvn+1 in
any term m with nonzero coefficient. Because s increases every r terms and there are r + 1 vertices, the
difference between the exponent of yvn and yvn+1 is going to be k. This also means that all sequences
creating a given monomial are all the same length. Thus, we just have to show that the only terms with
nonzero coefficient in the limit are the ones with all corresponding sequences w having length 1. Assume
some sequence w with length greater than 1 corresponds to some monomial which has nonzero coefficient in
the limit, specifically for Sn and all future Sn+k(r+1). In Sn it corresponds to w1, ..., wk. Then consider the
polynomial Sn+n(r+1). The sequences w1 + n(r + 1), ..., wk + n(r + 1) would contribute to this monomial in
Sn+n(r+1). However, in the original un-deformed polynomial, this would mean the corresponding sequence
rw1+n(r+1) · · · rwk+n(r+1) products to the corresponding term. However, this terms clearly has degree too
large in the original polynomial, so must have 0 coefficient. Therefore, it suffices to sum over all sequences
w with length 1. Then we get

S∞ =
∑

1≤w≤n

sn−w

v∏

i=1

y
sn−w+1−i

vn+1−i

where si =
⌈
i
r

⌉
. This simplifies to the following. Let W be the set of sequences

⌈
n
r

⌉
≥ wvn ≥ ... ≥ wvn+1 ≥ 0

where wvn is one more than wvn+1. Then taking limit over sequences that end in the same mutation step
vn,

S∞ =
∑

w∈W

wvn

r+1∏

i=1

y
wvn

vn+1−i.

This can be seen to rewrite to

S∞ = 1+
yr+1(1 + yr + yryr−1 + ...+ yr · · · y2)

(1− y1 · · · yr+1)2

up to cyclic shift of variables, dependent on the last mutation step.
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7.3 Kr

In this section, we investigate the deformed F -polynomial for the Kr quiver. It is worthwhile to note that
K2 = Ã1,1. As such, this case can be viewed as a different generalization of the Zhang’s result for the Ã1,1

quiver.

Definition 7.4. Define the sequence s as ..., s−2 = s−1 = 0, s0 = 1 and sk+2 = nsk+1 − sk for k ≥ 0. Let

p = r+
√
r2−4
2 Let the norm at b of a sequence 1 ≤ w1 ≤ ... ≤ wk be

Nb(w) =
k∑

i=1

bwi .

The explicit value of any given si for i ≥ 0 can be calculated as follows:

si =
1√

r2 − 4
pi − 1√

r2 − 4
p−i.

Theorem 7.5. The deformed F -polynomial S∞ is calculated as follows. Let Q be the set of sequences w
with 0 ≤ w1 ≤ ... ≤ wk with N1/p(w) at most 1.

S∞ = 1 +
∑

w∈W

φ(w)

k∏

i=1


swi

−
i∑

j=1

swi−wj
+ swi−wj−2


 y

∑k
i=1 swi

1 y
∑k

i=1 swi−1

1

Alternately,

S∞ = 1 +
∑

w∈W

φ(w)

k∏

i=1


swi

−
i∑

j=1

swi−wj
+ swi−wj−2


 y

⌊

1√
r2−4

pNp(q)

⌋

1 y

⌊

1√
r2−4

Np(w)

⌋

2

up to a permutation of variables.

Proof. Recall the statement of our formula from Theorem 7.1:

Sn =
∑

w∈W

φ(w1, ..., wk)




k∏

i=1

sn−wi
+

k∑

j=i

−swj−wi
+ s′wj−wi




v∏

i=1

y
∑

k
j=1 sn−wj+1−i

vn+1−i .

Noting that there are only two vertices, this simplifies to

Sn =
∑

1≤w1...wk≤n

φ(w1, ..., wk)

k∏

i=1


(swi

)−
i−1∑

j=1

(swj−wi
+ swj−wi−2)


 y

∑k
j=1 swi

1 y
∑k

j=1 swi−1

2

where y1 and y2 are swapped if n is even. We ignore this distinction in the proof that follows. This is exactly
our desired expression, except we need to limit the set of sequences we are summing over, using the norm
condition. We take a monomial m with degree in y1 being d. Then, all possible sequences w that allow for
this monomial have at most d terms and all wi < d (d is a very crude bound, but suffices). Take n extremely
large. Now, we look at the degree of the term corresponding to w in the original F -polynomial. We want to
show both that if the norm is at most 1, the degree will be this must be less than or equal to sn−1, and if
norm is greater than 1 it will be larger. The degree is

k∑

i=1

sn−wi
=

1√
r2 − 4

(pnN1/p(w) −
∑

i=1

(1/p)n−wi)
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by using the explicit form of the si. sn−1 can be expressed as

1√
r2 − 4

pn − 1√
r2 − 4

pn

When n goes to infinity, the first term of each expression dominates, and this easily proves the desired result;
the first is smaller when norm is less than 1, and larger otherwise. If the norm is exactly 1, the first terms
of each expression are equal, so we compare the second term. The first expression clearly has a smaller first
term, so the result holds in this case as well.

Now we prove the second part; that

k∑

j=1

swi
=

⌊
1√

r2 − 4
Np(q)

⌋

and
k∑

j=1

swi−1 =

⌊
1√

r2 − 4
pNp(q)

⌋

for a sequence with norm at most 1. For the first part, first rewrite

k∑

j=1

swi
=

1√
r2 − 4

(pNp(w) − p−1N1/p(w))

The second term (after expanding) is strictly greater than 0 and less than 1, and since the expression must
be an integer, we have proven our desired result. We have

k∑

j=1

swi
=

1

p
√
r2 − 4

(Np(w) −N1/p(w))

Again the second term after expanding has to be greater than 0 and less than 1, proving the desired result.

Corollary 7.6. For the deformed F -polynomial S∞ of the quiver Kr, the terms that may have nonzero

coefficient are exactly the ones of the form y
⌊pa⌋+1
1 ya1 for integers a ≥ 0. This coefficient is calculated as

follows. Let W be the set of sequences w with 0 ≤ w1 ≤ ... ≤ wk and
∑

w∈W swi−1 = a

φ(w1, ..., wk)

k∏

i=1


(swi

)−
i−1∑

j=1

(swj−wi
+ swj−wi−2)




Proof. We need to find ⌊
p

(⌊
1√

r2 − 4
Np(q)

⌋)⌋
+ 1

Recall from the previous proof that our expression of
⌊

1√
r2−4

Np(q)
⌋
is also

1√
r2 − 4

Np(q)−
1√

r2 − 4
N1/p(q)

Multiplying by p gives
p√

r2 − 4
Np(q) +

p√
r2 − 4

N1/p(q)

which is
|q|∑

i=1

swi
+

1

p
√
r2 − 4

N1/p(w)− 1√
r2 − 4

N1/p(w)
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which is
|q|∑

i=1

swi
+

p− 1

p

1√
r2 − 4

N1/p(q)

The second term is non-strictly less than 1, but greater than 0, so taking the floor and adding 1 gives

sum
|q|
i=1swi

as desired for the first part.
For the second part, we know that we get a given term by summing the expression

φ(w1, ..., wk)

k∏

i=1


(swi

)−
i−1∑

j=1

(swj−wi
+ swj−wi−2)




over sequences w with 0 ≤ w1 ≤ ... ≤ wk with
∑

w∈W swi−1 = a. Thus, it suffices to prove that a =⌊
p√

r2−4
Np(q)

⌋
. Note that

swi−1 =
1

p
√
r2 − 4

Np(w)− p√
r2 − 4

N1/p(w).

The second term is less than 1, so we get that the overall expression is just the floor of the first part, as
desired.

The deformed F -polynomial is interesting for two reasons: it allows for the convenient norm property to
determine which monomials are included. Further, the renormalization has y1 and y2 uniquely determine
each other.

7.4 Gale Robinson Quivers

We now look at the explicit deformed F -polynomial for the Gale Robinson Quivers. Essentially we just plug
into our explicit formula and nothing extremely interesting happens, but it allows us to completely close the
Eager and Franco’s original conjecture data around the dP1 quiver.

Theorem 7.7. Take the quiver Gv,r,t. Define a sequence s with si as the number of partitions of i into parts
r, v − r (0 for negative values of i, 1 for 0). Let W be the set of sequences w with 0 ≤ w1 ≤ ... ≤ wk.

S∞ =
∑

w∈W

φ(w1, ..., wk)
k∏

i=1


swi

+
i−1∑

j=1

(−swj−wi
− swj−wi−v + swj−wi−t + sqj−qi−n+t)




v∏

i=1

y
∑

k
j=1 swi−j+1

i

Proof. We have by Theorem 7.1 that

Sn =
∑

0≤w1...wk≤n−1

φ(w1, ..., wk)
k∏

i=1


swi

+
i−1∑

j=1

(−swj−wi
− swj−wi−v + swj−wi−t + swj−qi−n+t)




v∏

i=1

y
∑k

j=1 swi−j+1

i

since that is how to calculate the corresponding sequences, and so taking the limit gives

S∞ =
∑

0≤w1...wk

φ(w1, ..., wk)

k∏

i=1


swi

+

i−1∑

j=1

(−swj−wi
− swj−wi−v + swj−wi−t + swj−wi−n+t)




v∏

i=1

y
∑k

j=1 swi−j+1

i

Now we find the exact deformed F -polynomial for the quiver dP1 = G4,2,1. If we can, it is always more
interesting to calculate the coefficient of a given monomial directly, rather than summing up a number of
terms that could possibly be contributing to the same polynomial. We will do this for the dP1 quiver, since
the sequence s is easy to understand.
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Corollary 7.8. Take the quiver dP1 and mutation sequence 1, 2, 3, 4, 1, 2, ... which has n terms. The coef-
ficient of the term ya1y

b
2y

c
3y

d
4 is calculated as follows. Let W be the set of sequences of nonnegative integers

and half-integers so that

• a− c terms are integers.

• b− d terms are half-integers.

• The sum of all the integer terms is c.

• The sum of the floors of all the half integer terms is d.

Then the desired coefficient is

∑

w∈W

φ(w1, ..., wk)
k∏

i=1


 (−1)2wi + 1

2
(wi + 1)−

i−1∑

j=1

(−1)2wj−2wi(2wj − 2wi + 4)




Proof. Let s(k) be k if k is a positive integer, and 0 otherwise. Noting that sk as defined in the Gale Robinson
quiver is k

2 if k is even and 0 otherwise, plugging in gives:

S∞ =
∑

0≤w1...wk,wi

φ(w1, ..., wk)

k∏

i=1


 ((−1)wi + 1)wi

4
−

i−1∑

j=1

(−1)wj−wi(wj − wi + 4)




4∏

i=1

y
∑k

j=1
(−1)wi−j+1+1

4

i

Letting qi =
wi

2 gives the following expression.

S∞ =
∑

q∈Q

φ(q1, ..., qk)

k∏

i=1


q(wi)−

i−1∑

j=1

(−1)2qj−2qi(2qj − 2qi + 4)




4∏

i=1

y
∑k

j=1 s(qj−0.5i)

i

For any term ya1y
b
2y

c
3y

d
4 it is contributed to by the sequences described in the corollary statement. Adding

the contributions proves the desired result.

8 Future Research

8.1 The Formula

Future research involving our formula in Theorem 3.1 mostly consists of finding more use cases for the
formula. For example, it might be possible to group terms and use the formula to recover positivity of
coefficients, at least in certain cases. We might be able to do this by grouping terms of the formula.

Secondly, we know that the Laurent Phenomenon proves that the F -polynomials are in fact polynomials.
However, our formula has nontrivial expansion for the coefficient of all monomials. Thus, for monomials
that are too large, or obviously otherwise have coefficient 0, we get an expression involving the C-matrix
entries that must be zero. We have not yet investigated these; it might be interesting. It might even help
with positivity; one might be able to say that if large terms have coefficient 0, the smaller terms must have
coefficient positive. The following provides intuition for why such a proof might work.

Lemma 8.1. Take a quiver Q and a mutation sequence v1, ..., vn. If each rki can only be constructed as a
product of ri’s, and not any of the other terms, then the coefficient of ri must be positive.

Proof. The coefficient of ri by our formula is ai,n, and the coefficient of rki is

1

k!

k∏

i=1

(ai,n −
k−1∑

j=1

(ai,i − bi,i)
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which is

1

k!

k∏

i=1

(ai,n − k + 1)

This is only 0 for large k when ai,n is positive.

This idea is complicated to generalize, since in large enough monomials, every part-contribution (the
particular sequence we are summing over) need not be 0. However, there might be a clever way to group
terms to deal with this.

Another possible avenue of research would be to see how our work relates to dilogarithm identities. Keller
[9] and Nakanashi [16] discuss these identities, and they appear to be an area where explicit formulas may
allow for better results.

8.2 Deformed F -Polynomials

Regarding deformed F -polynomials, we have the following three conjectures.

Conjecture 8.2. Given a framed quiver Q and a mutation sequence v1, v2, ..., Sn is actually a polynomial;
that is none of the monomial terms have negative exponents.

Conjecture 8.3. Given a framed quiver Q and a mutation sequence v1, v2, ..., Sn is bounded; i.e. for each
monomial term

∏
xai

i , there is some c(a1, ..., an) dependent on Q and the mutation sequence so that the
coefficient of

∏
xai

i in Sn is less than c(a1, ..., an).

Conjecture 8.4. Given a framed quiver Q and a periodic mutation sequence v1, ..., vp, v1, ..., vp, ..., such
that performing the mutations v1, ..., vp on the base quiver returns the quiver back to the original, for every
i, the sequence Si, Si+p, Si+2p, ... converges.

We proved the first and third in the case of green quivers. The first is very related to the coefficients
in our formula being positive. Recall that our proof of positivity in the green case relied on positivity of
coefficients. It might be possible to generalize this, using our formula to understand the coefficient of “basic”
terms via the formula. This would in turn prove Conjecture 5.8, thus proving the result. We might also be
able to achieve a direct proof using a concept like in lemma 8.1.

We have not spent much time investigating the second conjecture. We need to extend the proof used
for convergence in the periodic green case in two ways. We need to remove the condition periodic and the
condition green. It would be especially interesting and probably doable to remove the periodic condition.

For the third conjecture, again, we have proven it in the case of green quivers. The arguments do not
extend directly from the green case, though a proof is likely similar to a full proof of the previous conjectures.
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