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Abstract. After Feichner and Yuzvinsky introduced the Chow ring associated to ranked
atomistic lattices in 2003, little study of them was made before Adiprisito, Huh, and Katz
used them to resolve the long-standing Heron-Rota-Walsh conjecture, proving along the
way that the Chow rings of geometric lattices satisfy versions of Poincaré duality, the hard
Lefschetz theorem, and the Hodge-Riemann relations. Here, we seek to remedy the lack
of basic knowledge about the Chow rings of atomic lattices by providing some general
techniques for computing their Hilbert series, by making detailed study a few fundamental
examples, and by providing a number of interesting conjectures based on our observations.
Using the incidence algebra, we give a compact formula for the Hilbert series of Chow rings
associated to both ranked atomic lattices and products of them. In a special case, we define
a generalization of the Hilbert series and give a formula for the Hilbert series of the product
in terms of differential operators.

In addition to general techniques, we study in detail the Chow rings associated to the
lattices of flats of uniform and linear matroids. We show that the Hilbert series of uniform
and linear matroids take forms of combinatorial interest; in particular, the Hilbert series
of the linear matroid associated to an n-dimensional vector space over a finite field Fq can
be described in terms of the q-Eulerian polynomial defined by Shareshian and Wachs in
[SW10], and the Hilbert series of the Chow ring of a uniform matroid can be described in
terms of elementary statistics on Sn. We also compute the Charney-Davis quantities of the
rings, which come out to linear combinations of the secant numbers in the uniform case, and
to a linear combination of the q-secant numbers of Foata and Han in the case of the linear
matroids. Finally, we assert that Poincaré duality holds for the Chow rings a a slightly more
general class of ranked atomistic lattices than those studied by Adiprasito, Huh, and Katz,
and make a conjecture about the class of ranked atomic lattices for which Poincaré duality
holds.
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1. Introduction

Since Stanley’s 1975 proof of the upper bound conjecture for simplicial spheres via the
Stanley-Reisner ring, the study of graded rings associated to combinatorial objects has
yielded many deep insights into combinatorics (and vice versa). An important example
of this pattern is found in Stanley’s use of the Chow ring of a toric variety and the geo-
metric hard Lefschetz theorem to establish (one direction of) the famed g-theorem, which
characterizes the numbers of faces of a simplicial polytope.

More recently, Feichtner and Yuzvinsky defined another useful graded ring, the Chow ring
of an atomistic lattice, and provided a Gröbner basis for the ring in [FY04]. The power of
the construction of [FY04] was demonstrated by Adiprasito, Huh, and Katz, who applied
a slight variation of it to the lattice of flats of a matroid in order to resolve the following
long-standing conjectures of Heron, Rota, and Walsh

Conjecture 1.1 (Resolved by [AHK15]). LetM be a matroid of rank r+1 with characteristic
polynomial χM(λ). Let wk be the absolute value of the coefficient of λr−k+1 in χM(λ). Then
the sequence (wk)k is log-concave.

Conjecture 1.2 (Resolved by [AHK15]). If M is as above, and fk is the number of inde-
pendent sets of cardinality k then the sequence (fk)k is log-concave.

In their paper, [AHK15] also use techniques inspired by Peter McMullen’s combinatorial
proof of the g-theorem [McM93] to prove that Chow rings arising from geometric lattices
satisfy Poincaré duality and versions of the hard Lefschetz theorem and the Hodge-Riemann
relations.

In the course of proving Conjectures 1.1 and 1.2, Adiprasito, Huh, and Katz show that
Chow rings associated to geometric lattices (that is, to the lattice of flats of a matroid)
satisfy versions of Poincaré duality, the hard Lefschetz theorem, and the Minkowski-Riemann
relations. However, little more is known about basic properties of the Chow rings of geometric
lattices, let along about those of more general lattices. Accordingly, our work here is primarily
concerned with one of the most basic invariants of a Chow ring: its Hilbert series.
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1.1. Organization. This report is organized as follows. In the remainder of this section, we
summarize some of our main results; full definitions of all the objects involved are given in
Section 2. In Section 3, we discuss a mild generalization of the Poincaré duality theorem of
[AHK15]. Next, in Section 4, we provide a few methods for calculating the Hilbert series of a
Chow ring. Section 5 contains explicit determinations of the Hilbert series of some example
of special interest, and in Section 6 we present conjectures and ideas for further work.

1.2. Summary of main results. The results in this section are numbered according to
their numbers in the body of the paper proper. We define a set of lattices that we call
nice lattices, and state the following:

Theorem 1.3. The Chow ring of a nice lattice exhibits Poincaré duality.

Next, we provide three results allowing one to more easily calculate the Hilbert series of a
Chow ring of a graded, atomic lattice L. Our first result in this direction uses the incidence
algebra (Q[t])[L] of the ranked atomistic lattice L with coefficients in Q[t] to simplify a
formula of [FY04]. Define the elements ζL, ηL, γL by

ζL(x, y) = 1

αL(x, y) = rank y − rankx

ηL(x, y) =

{
t−trank y−rank x−1

1−t rank y − rankx− 1 ≥ 1

0 rank y − rankx < 1

γL = ζL(1− ηL)−1.

Proposition 1.4. For ζL, ηL, γL as above, we have

αL = (1− t)(1− ηL) + tζL

ηL =
1

t− 1
(αL − tζL)

γL(x, y) = H(A([x, y]), t)

where [x, y] = {z ∈ L : x ≤ z ≤ y}.

The incidence algebra also allows us to derive a formula for the Hilbert series of the Chow
ring of a product of lattices L×K in terms of the Hilbert series of the Chow rings of L and
K. In particular, with the notation above, we show

Proposition 1.5.

γL×K = (γL ⊗ γK)(1− t(1− γL)⊗ (t− γK))−1

Next, we make use of the results of [AHK15] in order to derive a recurrence relation for
the Hilbert series of the Chow ring of a sufficiently symmetric lattice L (examples include
boolean lattices, partition lattices, and lattices of subspaces) in terms of the Hilbert series of
intervals of the form [z,>]. For such a lattice of rank r+ 1, there are elements z2, . . . , zr ∈ L
such that

Proposition 1.6.

H(L, t) = [r + 1]t + t
r∑
i=2

|Li| [i− 1]tH([zi,>], t).
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Finally, we use differential operators to compute the Hilbert series of the Chow rings of
some special products.

After presenting general methods for computing the Hilbert series, we make use of them
to establish properties of Chow rings associated to (the lattices of flats of) two matroids
of special importance: uniform matroids and linear matroids over finite fields. The Hilbert
series and Charney-Davis quantities of these Chow rings have interpretations in term of
elementary and Mahonian statistics on permutations.

Corollary 1.7 (Later Corollary 5.6). The Hilbert function of the Chow ring of the uniform
matroid of rank r on n elements A(Un,r) is given explicitly by

dimA(Un,r)k = # {σ ∈ Sn : exc(σ) = k} −
n−1∑
i=r

# {σ ∈ En,n−i : exc(σ) = i− k}

where En,k is the set of permutations in Sn with at least k fixed points and exc(σ) is the
number of excedances of σ; that is, the number of i ∈ [n] such that σ(i) > i.

Theorem 1.8 (Later Theorem 5.8). For even r, the Charney-Davis quantity for the uniform
matroid, Un,r of rank r on [n] is 0. For odd r, the Charney-Davis quantity for Un,r is

r−1
2∑

k=0

(
n

2k

)
E2k

where E2` is the `th secant number.

Let Mr(Fnq ) be the matroid of subspaces of Fnq with rank at most r. The Hilbert series of
the Chow ring of the lattice of flats of Mr(Fnq ) is a q-analogue of the Hilbert series of the
corresponding uniform matroid. The full rank case is particularly pleasing; its Hilbert series
is the q-Eulerian polynomial defined by Shaeshian and Wachs in [SW10] and [SW07].

Corollary 1.9 (Later Corollary 5.26). The Hilbert series of A
(
Mr(Fnq )

)
is given by

H
(
A(Mr(Fnq )), t

)
=
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ) −
n−1∑
j=0

∑
σ∈En,n−r

qmaj(σ)−exc(σ)tr−exc(σ)

The Charney-Davis quantities also have a nice form.

Theorem 1.10 (Later Theorem 5.28). The Charney-Davis quantity of the chow ring A
(
Mr(Fnq )

)
is

1 + [n]q!
k∑
a=1

(−1)a

[n− 2a]q!
∆a

for ∆a the determinant

∆a = det


1

[2]q !
1 0 · · · 0

1
[4]q !

1
[2]q !

1 · · · 0
...

...
... . . . ...

1
[2a−4]q !

1
[2a−6]q !

1
[2a−8]q !

· · · 1
1

[2a−2]q !
1

[2a−4]q !
1

[2a−6]q !
· · · 1

[2]q !

 .



CHOW RINGS OF MATROIDS AND ATOMISTIC LATTICES 5

The Charney-Davis quantities of Mr(Fnq ) can be expressed as a linear combination of
the q-secant numbers defined by Foata and Han in [FH10]. As corollaries of the theorems
above, we give new proofs of recurrences for the Eulerian and q-Eulerian numbers, provide
another interpretation of the q-secant and q-tangent numbers, and give an alternate proof
of unimodality and symmetry of the Eulerian and q-Eulerian numbers.

After concluding our study of uniform and linear matroids, we offer a pair of conjectures.
The first is our best guess as to the family of lattices whose Chow rings exhibit Poincaré
duality, and the second relates the Hilbert series of uniform matroids to the h-vector of the
order complex of a truncated boolean poset.

2. Definitions and Background

In this section, we will cover most of the combinatorics and commutative algebra back-
ground used later in the paper. Readers with a background in commutative algebra and
combinatorics may wish to skim the next few sections to pick up our notation, and then skip
to Section 2.6, where we define the Chow ring associated to an atomic lattice.

2.1. Posets. In this section, we review some facts about partially ordered sets that will be
relevant in our later writing. In particular, we define atomistic lattices and the incidence
algebra. For more background, see [Sta12].

Definition 2.1. A partially ordered set or poset is a pair P = (E,≤), where E is a set and
≤ is a partial order relation on E satisfying

(1) If a ∈ E, then a ≤ a.
(2) If a, b ∈ E and both a ≤ b and b ≤ a then a = b.
(3) If a, b, c ∈ E and if both a ≤ b and b ≤ c, then a ≤ c.

We call an element p ∈ P maximal if there does not exist any q 6= p ∈ P such that q ≥ p.
Likewise, we all p minimal if there is no q 6= p such that q ≤ p. If P has a unique maximal
(resp. unique minimal) element, we denote it by > (resp. ⊥). We call P bounded if it has
both a unique minimal and unique maximal element. An element p ∈ P is said to cover a
different element q ∈ P if p ≥ q and there is no p′ ∈ P such that p ≥ p′ ≥ q. When this is
the case, we will write p � q.

Two elements p, q ∈ P are comparable if either p ≤ q or q ≤ p; otherwise, they are
incomparable. A subset S ⊆ P is totally ordered if every pair of elements of S are comparable.
A chain of P is a totally ordered subset of P . An antichain is a subset in which every pair
of elements is incomparable. For S ⊆ P , the order ideal P≤S defined by S is the set of all
elements q ∈ P such that there exists s ∈ S with s ≥ q. Likewise, the order filter P≥S is the
set of all elements q ∈ P such that there exists s ∈ S with q ≥ s.

Example 2.2. Subsets of the real numbers form a poset under their usual ordering. Since
the real numbers are totally ordered, every pair of elements in comparable, so every subset
of the reals forms a chain. An order ideal of the real numbers is simply a ray (−∞, r], while
an order filter is of the form [r,∞) for some r ∈ R.

Example 2.3. The subsets of [n] form a poset under inclusion. We call this poset the boolean
algebra or boolean poset of rank n, and denote it by Bn. In B3, {{1, 2}, {2, 3}} form an an-
tichain because neither element contains the other. An example of a chain is {∅, {1}, {1, 2}}.
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The order ideal generated by {{1, 2}, {2, 3} is {∅, {1}, {2}, {3}, {1, 2}, {2, 3}}. The order fil-
ter generated by the same two elements is {{1, 2}, {2, 3}, {1, 2, 3}}.
Definition 2.4. A lattice is a poset L such that for all p, q ∈ L,

(1) p and q have a unique least upper bound p ∧ q ∈ L, called the join of p and q.
(2) p and q have a unique greatest lower bound p ∨ q ∈ L called the meet of p and q.

Every finite lattice L has > and ⊥. The atoms of a finite lattice are the element a ∈ L
such that a � ⊥. If every element of L can be written as join of atoms, then we call L
atomistic.

Example 2.5. Bn is an atomistic lattice. The meet of two elements is their intersection, the
join of two elements is their union, and the atoms are the 1-element subsets of [n].

Example 2.6. A set partition of [n] is a collection of disjoint sets Π = {S1, . . . , Sk} such that⋃
i∈[k] Si = [n]. We say a partition Π′ = {T1, . . . , T`} refines Π if for all i ∈ [`], there exists

j ∈ [k] such that Ti ⊆ Sj. The collection Πn of set partitions of [n] forms a lattice when
ordered by refinement.

2.1.1. The Incidence Algebra of a Poset. The incidence algebra of a poset is a commutative
algebra associated to the poset. It can be used to concisely express many quantities related to
the structure of the poset, such as the number of chains of various lengths. Many important
functions, such as the Möbius function of number theory, can be thought of as elements of
the incidence algebra of particular posets. Throughout this section, P will be a finite poset.

Definition 2.7. Let R be a commutative ring. The incidence algebra of P over R, denoted
R[P ], is the free R-module on the set {(a, b) ∈ P×P : a ≤ b}. Multiplication in the incidence
algebra is defined by

(a, b)(c, d) =

{
(a, d) b = c

0 b 6= c

and extends R-linearly to other elements.

When defining or referring to an element of an incidence algebra, we sometimes write
f(x, y) to refer to the coefficient of (x, y) in f ∈ R[P ]. We will use the following well-known
facts about the incidence algebra of a poset:

Proposition 2.8. Let P be a poset and f ∈ R[P ]. Then f is invertible in R[P ] if and only
if f(x, x) is invertible in R for all x ∈ P .
Proposition 2.9. Let P be a poset and f ∈ R[P ]. If f(x, x) = 0 for all x ∈ P , then f is
nilpotent of order k, where k is the maximum length of a chain in P . In particular, 1− f is
invertible and (1− f)−1 =

∑k
i=0 f

i.

2.2. Matroids. Matroids are combinatorial structures that capture many seemingly differ-
ent notions of independence, such as linear independence, acyclicness of graphs, and algebraic
independence. One can axiomatize matroids in many equivalent ways; a few of the more
common ones are described below. Throughout the following definitions, we will let E be a
finite set, called the ground set.

Definition 2.10 (Independent sets). A matroid is a pair M = (E, I) where I ⊆ 2E is the
collection of independent sets of M and satisfies
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(1) The empty set is in I.
(2) If I ∈ I, then 2I ⊆ I.
(3) If I, J ∈ I and #I > #J , then there exists i ∈ I such that J ∪ {i} ∈ I.

The rank of a subset S of a matroid, denoted rank(S), is the cardinality of the largest
independent set it contains. In particular, the rank of a matroid is the size of its largest
independent set. The set of maximal independent sets are called bases, and provide another
way to define matroids.

Definition 2.11 (Bases). A matroid is a pair M = (E,B) where B ⊆ 2E is the collection
of bases of M and satisfies

(1) B is nonempty
(2) If A,B ∈ B are distinct and a ∈ A − B, then there exists b ∈ B − A such that

(A− {a}) ∪ {b} ∈ B.

Example 2.12. Any vector space V over finite field can be turned into a matroid M(V )
by taking the vector space as the ground set and the independent sets to be the linearly
independent subsets of the vector space. The bases of the vector space are also the bases
of the matroid. More generally, for an n-dimensional vector space V over the finite field Fq
and for 0 ≤ r ≤ n, let Mr(V ) denote the matroid with ground set E = V and independent
sets collections of at most r independent vectors in E. Then M(V ) = Mn(V ).

Example 2.13. The uniform matroid of rank r on [n] is defined by independent sets as

Un,r :=
(
[n],
{
S ∈ 2[n] : #S ≤ r

})
Example 2.14. Let G = (V,E) be a graph and let T ⊆ 2E be the set of acyclic subgraphs
of G. The graphic matroid of G is defined by independent sets as M(G) := (E, T ). A case
of special interest is when G = Kn, the complete graph on n vertices. We call M(Kn) the
complete graphic matroid of rank n.

One might wish to “take the span” of a subset of a matroid. To do this, we define a closure
operator

cl : 2M → 2M

S 7→ {m ∈M : rank(S ∪ {m}) = rank(S)}

Definition 2.15. A subset S ⊆M such that cl(S) = S is called a flat ofM . The set of flats,
ordered by inclusion, is the lattice of flats of M , denoted L(M). The lattices of flats of finite
matroids are precisely lattices that are both atomistic and semimodular, a term that will
not be defined or directly used here. See definition 3.9 in chapter 3 of [Sta+04] for further
details.

Example 2.16. The lattice of flats of Un,n is Bn.

Example 2.17. The lattice of flats of M(Kn) is Πn.

Example 2.18. The lattice of flats of Mr(Fnq ) is collection of subspaces of Fnq of dimension at
most r, ordered by inclusion, together with the top dimensional subspace > = Fnq .

Some common operations on matroids include contractions and restrictions.
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Definition 2.19. Given a matroid M on E and an element e ∈ E, the restriction matroid
M\e is the matroid on E − {e} whose independent sets are given by

I(M\e) = {I ∈ I(M) : e 6∈ I}
For Z ⊆ E with E \ Z = {a1, . . . , ak}, define the restriction

MZ = (· · · ((M\a1)\a2) · · · \ak).

Example 2.20. Let r ≤ m ≤ n. The restriction of Un,r with respect to Z = [m] is (Un,r)
Z =

Um,r.

Example 2.21. The restriction of a graphic matroid, M(G), about an edge e is the matroid
of the graph G′ obtained from G by removing e.

Definition 2.22. Given a matroid M on E and an element e ∈ E, the contraction matroid
M/e is the matroid on E − {e} whose independent sets are given by

I(M/e) = {E ⊆ E − {e} : E ∪ {e} ∈ I(M)} .
For Z = {a1, . . . , ak}, set

MZ = (· · · ((M/a1)/a2) · · · /ak).

Example 2.23. The contraction of the uniform matroid Un,r at a set Z = [k] is the uniform
matroid (Un,r)Z = Un−k,r−k

Example 2.24. The contraction of a graphic matroid M(G) about an edge e is the matroid
of the contraction graph G′ = G/e.

2.3. q-analogs. In general, a q-analog of an identity is an expression in terms of a variable
q that specializes to the original identity when one sets q = 1. Many statistics relating
to binomial coefficients and statistics on Sn have natural q-analogues which allow one to
refine many combinatorial theorems and identities. In particular, q-analogues often appear
as invariants associated to vector spaces over finite fields.

Definition 2.25. For any n ∈ N, we define the q-analog of n to be

[n]q =
1− qn

1− q
= 1 + q + · · ·+ qn−1

and the q-analog of n! to be

[n]!q = [n]q[n− 1]q · · · [2]q[1]q.

Definition 2.26. For any natural numbers 0 ≤ k ≤ n, we define the q-binomial coefficient
to be [

n

k

]
q

=
[n]!q

[k]!q[n− k]!q
.

Proposition 2.27. The q-binomial coefficient
[
n
k

]
q
is a polynomial in q.

When q is a prime power, the q-binomial coefficient
[
n
k

]
q
computes the number of k-

dimensional subspaces of Fnq . Also note that when q = 1, the above definitions specialize to
the usual factorial and binomial coefficient.
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2.4. Simplicial Complexes. Simplicial complexes are geometric and combinatorial struc-
tures strongly related to both posets and commutative algebra. Here, we give the minimal
set of definitions needed for our own purposes.

Definition 2.28. A simplicial complex ∆ on a vertex set V (∆) is a subset of 2V (∆) such
that if S ∈ ∆, then 2S ⊆ ∆.

We call the elements of ∆ the faces of ∆. The face poset of ∆, denoted P (∆) is the poset
whose ground set is ∆ under the inclusion order. The maximal elements of P that are proper
subsets of V (∆) are the facets of ∆. The dimension of a face F ∈ ∆ is dimF := #F − 1,
and dim ∆ := max{dimF}F∈∆. A simplicial complex is pure if all of its facets have the same
dimension.

Example 2.29. The d-simplex is ∆d := 2[d+1]. ∆d can be realized geometrically as the convex
hull of a basis of Rd+1; the dimension of this geometric realization is d.

Definition 2.30. The order complex of a poset P is

∆(P ) := {S ⊆ P : S is a chain}

Example 2.31. See Figure 1.

1 2 3

>

⊥

>

⊥

1 2 3

Figure 1. A poset P (left) and its order complex ∆(P ) (right). Each edge
of the order complex corresponds to a chain of length two in P , and each two
dimensional face corresponds to one of the maximal chains of length three.

2.4.1. The Stanley-Reisner ring. The Stanley-Reisner ring of a simplicial complex provides
a bridge between simplicial complexes and commutative algebra that has proved enlightening
for both fields. For more information, see [Sta96].

Definition 2.32. Let k be a field. The Stanley-Reisner ring or face ring of a simplicial
complex ∆ is k[∆] := k[xv : v ∈ V (∆)]/I∆ where

I∆ := (xv1xv2 · · ·xvk : {v1, . . . , vk} 6∈ ∆)

Proposition 2.33. If ∆ is a simplicial complex of dimension n, then the Stanley-Reisner
ring has Krull dimension n+ 1.
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2.5. Graded Rings and Modules. Our main objects of study, Chow rings, belong to a
class of rings called graded rings.

Definition 2.34. A graded ring or N-graded ring R is a ring together with a decomposition
of abelian groups

R =
⊕
n≥0

Rn

such that for any v ∈ Rn and w ∈ Rm, the product vw is in Rmn. The direct summand Rn

in this decomposition is called the nth homogeneous component of R. An element r ∈ Rn is
called homogeneous of degree n or said to be of degree n, written deg r = n.

One of the most important invariants of a graded ring is its Hilbert series, which records
the free ranks of the abelian groups Rn, n ≥ 0, in a formal power series.

Definition 2.35. The Hilbert series of a graded ring R is the series

H(R, t) :=
∑
n≥0

dimZRnt
n ∈ N[[t]]

The coefficients of the power series are given by the Hilbert function h(R, n) := dimZRn.

The Hilbert series of some rings, including those that we will study, are symmetric, meaning
that there exists a d ≥ 0 such that h(R, n) = 0 for n > d, h(R, d) 6= 0, and h(R, n) =
h(R, d − n) for all 0 ≤ n ≤ d. The information in a symmetric Hilbert series (and more
generally, in a symmetric polynomial) can be reformatted in different and sometimes more
enlightening ways, one of which is the γ-vector.

Definition 2.36. Let h(t) be a symmetric polynomial in t of degree d. The γ-vector of h is
the unique vector γ = (γ0, . . . , γdd/2e−1) such that

h(t) =

dd/2e−1∑
i=0

γit
i(t+ 1)d−2i

Example 2.37. If h(t) = t3 + 5t2 + 5t+ 1, then γ = (1, 2). Indeed,

t3 + 5t2 + 5t+ 1 = (t+ 1)3 + 2t(t+ 1)

A weaker invariant than the Hilbert series is the Charney-Davis quantity of R, defined to
be the value H(R,−1). The Charney-Davis quantity was introduced in [CD95] and is related
to a conjecture of Charney and Davis for posets associated to flag simplicial complexes. See
[RW05] for a more recent framework towards approaching questions stemming from Charney
and Davis’ original conjecture.

2.6. Chow Rings. We now define the main object of study. Following the conventions of
Fiechner-Yuzvinsky, we define the Chow ring for a general atomistic lattice.

Definition 2.38 (From [FY04]). Let L be an atomistic lattice with atoms a1, . . . , ak. The
Chow ring of L is defined to be

A(L) = Z[{xp : p ∈ L, p 6= ⊥,>}]/(I + J)
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where I and J are the ideals

I = (xpxq : p and q are incomparable)

J =

(∑
q≥ai

xq : 1 ≤ i ≤ k

)
.

Chow rings of atomistic lattices are graded by degree in the usual way.

If L is the lattice of flats of a matroid M , then we denote the Chow ring A(L(M)) by
A(M). If we speak of the Hilbert series, γ-vector, or Charney-Davis quantity of a matroid
M , then we are refering to that of its Chow ring A(M).

Theorem 2.39 ([FY04] Corollary 2). Let L be a finite, ranked, atomistic lattice. Then the
Hilbert series of A(L) is

H(A(L), t) = 1 +
∑

⊥=x0<x1<···<xm

m∏
i=1

t(1− trankxi−rankxi−1−1)

1− t
.

where the sum is taken over all chains ⊥ = x0 < x1 < · · · < xm of L.

2.6.1. Chow Rings of Matroids. Chow rings that arise from geometric lattices (that is, from
the lattices of flats of finite matroids) are known to satisfy many nice properties. The main
one that we will use is the fact that Chow rings of matroids satisfy a version of Poincaré
duality; for more information, see [AHK15]. For mild generalizations of these results, see
Section 3.

Let M be a matroid of rank r + 1. By Proposition 6.2 of [AHK15], Aq(M) = 0 for q > r,
and by Corollary 6.11 of [AHK15], Ar(M) ∼= Z. Combining these facts with the following
theorem yields that the Hilbert series of A(M) is symmetric of degree r.

Theorem 2.40 ([AHK15] Theorem 6.19). For any nonnegative integer q ≤ r, the multipli-
cation map

Aq(M)× Ar−q(M)→ Ar(M)

defines an isomorphism between groups

Ar−q(M) ∼= HomZ(Aq(M), Ar(M))

Observe that Theorem 2.40 above implies that the Charney-Davisquantity of a matroid
M is 0 if M is of even rank, and is dimZA

(rankM−1)/2(M) if rankM is odd.

2.7. Eulerian Polynomials, Tangent/Secant Numbers and Statistics on Sn. Let
Sn denote the symmetric group on n letters. At various times in this report, we will refer
to the following statistics on permutations.

Definition 2.41. Let ω ∈ Sn be a permutation. Then, define the statistics

inv(σ) = # {(i, j) : σ(i) > σ(j)}

des(σ) = # {i ∈ [n− 1] : σ(i+ 1) < σ(i)}
exc(ω) = # {i ∈ [n] : ω(i) > i}

maj(ω) =
∑

i, ω(i)<ω(i+1)

i
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The Eulerian polynomial An(t) is the polynomial

An(t) =
∑
ω∈Sn

texc(ω)

These polynomials are classical and have many interesting applications; see [Pet15] for further
exposition. We note here that the polynomials An(t) satisfy the following identities

Proposition 2.42. ([Pet15], thm 1.4) An(t) =
n−1∑
k=0

(
n

k

)
Ak(t)(t+ 1)k.

Proposition 2.43. ([Pet15], Quadratic polynomial recurrence, thm 1.5)

An(t) = An−1(t) + t

n−2∑
i=0

(
n− 1

i

)
Ai(t)An−1−i(t).

Proposition 2.44. ([Pet15], thm 1.6) The exponential generating function of the An(t) is∑
n≥0

An(t)
xn

n!
=

t− 1

t− ez(t−1)
.

We also note that the h-polynomial of the n-dimensional permutohedron is given by An(t).
The coefficient of tk in An(t) can be expressed as,

A(n, k) =

[
n

k

]
= # {σ ∈ Sn : exc(σ) = k} .

These quantities are referred to as the Eulerian numbers.

Definition 2.45. The n-th tangent/secant number En is the n-th coefficient in the expo-
nential generating function

tanh(x) + sech(x) =
∑
n≥0

En
xn

n!

Remark 2.46. In the literature, the numbers E2n are often referred to as the Euler numbers.
To avoid confusion with the Eulerian numbers, we will refrain from using this language.

Since tanh(x), resp. sech(x), is odd, resp. even, it follows that

tanh(x) =
∑
n≥0

E2n+1
x2n+1

(2n+ 1)!
and sech(x) =

∑
n≥0

E2n
x2n

(2n)!

Moreover, for all n, (−1)nE2n > 0 and (−1)nE2n+1 > 0. Also,

tan(x) =
∑
n≥0

(−1)nE2n+1
x2n+1

(2n+ 1)!
and sec(x) =

∑
n≥0

(−1)nE2n
x2n

(2n)!
.

(Hence, we refer to En as a tangent/secant number.) The following is a well-known combi-
natorial description of En.

Proposition 2.47. ([Pet15], exercise 4.2) The number |En| = (−1)nEn counts the number
of down-up permutations in Sn. That is, |En| is the number of permutations ω ∈ Sn such
that

ω(1) > ω(2) < ω(3) > · · ·
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In the sequel, we will also make use of the following standard recurrence for the secant
numbers.

Proposition 2.48 ([Sun05]). For all n, E2n = −
n−1∑
k=0

(
2n

2k

)
E2k.

3. Generalizations of Poincaré Duality to nice Atomic Lattices

Here, we give some extensions of the results of [AHK15], including Poincaré duality, to an
expanded class of lattices. We will define the class of lattices shortly. With such lattices, it is
possible to make definitions so that the original proofs of [AHK15] essentially just go through,
so we defer most definitions, proofs, and intermediate results to Appendix A because they
will not be used directly.

Definition 3.1. Let L be a ranked atomistic lattice with atoms E = {α1, . . . , αk}. For any
x, y ∈ L with x < y, let d(x, y) be the minimum number d of atoms αi1 , . . . , αid such that

y = x ∧
d∧
j=1

αij .

Say that L is nice if d(x, y) = rank(y)− rank(x) for all x, y ∈ L.

Having defined the lattices under consideration, we give the definitions and results regard-
ing these lattices that we will make direct use of.

Let L be a nice lattice with atoms E, and for I ⊆ E, let clL(I) :=
∧
Z∈I Z. Next, let

I(L) :=
{
I ∈ 2E : #I = rank(clL(I))

}
.

We can now define the Chow ring of a lattice with respect to a filter.

Definition 3.2. Let L be a lattice with set of atoms E and let P be an order filter on L.
As in [AHK15], let SE∪P := Z[xi, xF | i ∈ E,F ∈ P], and define A(L,P) := SE∪P/(J1 +
J2 + J3 + J4) where

J1 =
(
xF1xF2 : F1, F2 incomparable in L

)
J2 =

(
xixF : F ∈P, i ∈ E \ F

)
J3 =

(∏
i∈I

xi : I ∈ I(L), clL(I) ∈P ∪ {E}

)

J4 =

((
xi +

∑
i∈F

xF

)
−

(
xj +

∑
j∈F

xF

)
: i 6= j ∈ E

)
With the above definitions, the machinery of [AHK15] in the proof of Poincaré duality

largely runs without change. In particular, we have the following results. Let P− be a filter
in L, and let P+ = P− ∪ {Z} where Z is a maximal element of L \P−.

Proposition 3.3 (c.f. [AHK15] Proposition 6.6). The pullback homomorphism

ΦZ : A(L,P−)→ A(L,P+)



14 THOMAS HAMEISTER, SUJIT RAO, CONNOR SIMPSON

defined by taking xF 7→ xF and

xi 7→

{
xi + xF if i ∈ Z
xi if i 6∈ Z

is a well-defined graded ring homomorphism. We will use the notation Φq
Z to denote the

group homomorphism induced by ΦZ on the degree-q component of A(L,P−).

Proposition 3.4 (c.f. [AHK15] Proposition 6.8). For p, q > 0 integers, there are group
homomorphisms

Ψp,q : Aq−p([Z,>])→ Aq(L,P+) and Γp,qZ : Aq−p([⊥, Z])→ Aq(L)

sending xF 7→ xpZxF .

Theorem 3.5 (c.f. [AHK15] Theorem 6.18). For any q > 0,

Φq
Z ⊕

rank(Z)−1⊕
p=1

Ψp,q
Z :

Aq(L,P−)⊕
rk(Z)−1⊕
p=1

Aq−p([Z,>])

→ Aq(L,P+)

is an isomorphism of groups.

Theorem 3.6 (c.f. [AHK15] Theorem 6.19). For q ≥ r, the multiplication map

Aq(L,P)× Ar−q(L,P)→ Ar(L,P)

defines an isomorphism

Ar−q(L,P) ' HomZ(Aq(L,P), Ar(M,P))

Remark 3.7. Theorem 3.6 implies that the Hilbert series of A(L) for L a nice ranked atomistic
lattice is a symmetric polynomial. In particular, this allows one to consider its associated
γ-vector and can be suggestive of further structure. (i.e. Whether natural isomorphisms
can be written between symmetric graded components via multiplication by combinatorial
analogues of ample elements.)

4. Methods for calculating Hilbert series of Chow rings

4.1. Incidence algebra. Let L be a ranked lattice and consider the incidence algebra
(Q(t))[L] of L with coefficients in the ring Q(t) of rational functions. Define distinguished
elements in (Q(t))[L] as

ζL(x, y) = 1

αL(x, y) = trank y−rankx

ηL(x, y) =

{
t−trank y−rank x

1−t rank y − rankx− 1 ≥ 1

0 rank y − rankx− 1 < 1

γL = (1− ηL)−1ζL.

To describe the relations of these elements, we have the following proposition.
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Proposition 4.1. Let L be a ranked atomistic lattice. We have

1− ηL =
1

t− 1
(αL − tζL)

αL = (1− t)(1− ηL) + tζL

γL(x, y) = H(A([x, y]), t)

where [x, y] = {z ∈ L : x ≤ z ≤ y}.

Proof. The first identity follows straightforwardly from the second. To verify the second, let
x ≤ y. If x = y then

(1− t)(1(x, x)− ηL(x, x)) + tζL(x, x) = (1− t)(1− 0) + t

= 1

= αL(x, x).

Similarly, if rank y = rankx+ 1 we have

(1− t)(1(x, y)− ηL(x, y)) + tζL(x, y) = (1− t)(0− 0) + t

= t

= αL(x, y)

and if rank y − rankx ≥ 2 then

(1− t)(1(x, y)− ηL(x, y)) + tζL(x, y) = −(1− t)t− t
rank y−rankx

1− t
+ t

= trank y−rankx

= αL(x, y).

For the last identity, we have by Theorem 2.39 that

H(A([x, y]), t) = 1 +
∑

⊥=x0<x1<···<xm

(
m∏
i=1

ηL(xi, xi+1)

)
ζL(xm, y)

= η0
L(x, y)ζL(x, y) +

∞∑
m=0

ηmL (x, y)ζL(x, y)

= (1− ηL)−1(x, y)ζL(x, y)

with the last line using the fact that ηL is nilpotent, since L is finite. �

In particular, the above proposition shows that γL(⊥,>) = H(L, t). It can be shown that

γL(⊥,>) =
∑
x∈L

(1− ηL)−1(⊥, x)

and it can further be shown that (1− ηL)−1(⊥, x) can be computed using O(N) operations
in the ring Q[t], where N is the number of elements in L. Thus H(A(L), t) can be com-
puted using O(N2) operations in Q[t]. Since all polynomials involved will have degree at
most rankL, this gives an algorithm for computing H(A(L), t) which uses O((rankL)N2)
arithmetic operations. (Note that N may not be polynomial in rankL.)
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4.1.1. Application to products. Let L and K be two ranked lattices. Recall that for any ring
R we have the R-algebra isomorphism

R[L]⊗R[K] R[L×K]

(a1, b1)⊗ (a2, b2) ((a1, a2), (b1, b2))

and the existence of this isomorphism does not depend on L or K being ranked or being
lattices.

Proposition 4.2. We have

γL×K = (γL ⊗ γK)(1− t(1− γL)⊗ (1− γK))−1.

Proof. We have

1− ηL×K =
1

1− t
(αL×K − tζL×K)

= (1− t)(1− ηL)⊗ (1− ηK) + t(ζL ⊗ (1− ηK) + (1− ηL)⊗ ζK)− tζL ⊗ ζK
= (1− ηL)⊗ (1− ηK)− t(1− ηL − ζL)⊗ (1− ηK − ζK)

= ((1− ηL)⊗ (1− ηK))(1− t(1− γL)⊗ (1− γK))

so

(1− ηL×K)−1 = (1− t(1− γL)⊗ (1− γK))−1((1− ηL)−1 ⊗ (1− ηL)−1)

γL×K = (1− t(1− γL)⊗ (1− γK))−1(γL ⊗ γK)

which can be rewritten as

γL×K =

min(rankL,rankK)∑
k=0

tk((1− γL)kγL)⊗ ((1− γK)kγK)

because (1− γL) is nilpotent of order rankL for any finite ranked lattice L. �

Example 4.3. WhenK = {0 ≤ 1}, we have that (1−γK)2 = 0 and γK(1−γK) = (1−γK)γK =
1− γK . Thus

γL×K = γL ⊗ γK + t((1− γL)γL)⊗ ((1− γK)γK)

= γL ⊗ γK + tγL ⊗ 1K − tγ2
L ⊗ 1K − tγL ⊗ γK + tγ2

L ⊗ γK

which gives
H(A(L1 × L2), t) = (1− t)H(A(L1), t) + tγ2

1(⊥,>).

In the case that L1 = Bn is the Boolean algebra on n elements, we have

H(A(Bn+1), t) = (1− t)H(A(Bn), t) + t
n∑
k=0

(
n

k

)
H(A(Bk), t)H(A(Bn−k), t)

which gives the well-known quadratic recurrence for the Eulerian polynomials. By taking
K = Bk, it is possible to get k-th order recurrences. However, these are not obviously equiv-
alent to the k-th order recurrences given by repeatedly applying the quadratic recurrence.
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4.2. Applications of results of Adiprasito-Huh-Katz to lattices.
Let M be a matroid of rank r+1 on a ground set E. For z ∈ E, let Mz be the contraction

of M at z, and recall that L(Mz) ∼= [{z},>] ⊆ L(M). This fact, combined with the results
of [AHK15] can be applied to find formulas for the Hilbert series of Chow rings of certain
matroids in terms of their contractions. More generally we can find a formula for the Hilbert
series of any graded lattice L of rank r + 1 with the property that [z,>] ∼= [z′,>] for all
z, z′ ∈ L with rank(z) = rank(z′). In the following, we assume that L has this property.

Let P− be an order filter of L, and let P+ = P− ∪ {z} for some maximal z ∈ L \P−.
Next, recall from Propositions 3.3 and 3.4 the pullback homomorphism in degree q > 0,

Φq
z : Aq(L,P−)→ Aq(L,P+)

and the Gysin homomorphism

Ψp,q
z : Aq−p([z,>])→ Aq(L,P+).

By Theorem 3.5, Φq
z⊕
⊕rank(z)−1

i=1 Ψp,q
z is an isomorphism. Hence, if Pi is the order filter of L

obtained by removing from L all elements of rank less than or equal to i and (z1, . . . , zr) is a
sequence of elements of L with rank(zi) = i for all i, then for all q > 0, we have isomorphisms

Aq(L) = Aq(L,P0) ∼= Aq(L,P1) ∼= Aq(L,P2)⊕
(
Aq−1([z2,>])

)⊕|L2| ∼=

· · · ∼= Aq(L,Pr)⊕

 r⊕
i=2

(
i−1⊕
p=1

Aq−p([zi,>])

)⊕|Li|
 .

Since Aq(L,Pr) ∼= Z, it follows that

dimZA
q(L) = 1 +

r∑
i=2

|Li|
i−1∑
p=1

dimZA
q−p([zi,>]).

This recurrence for the dimension of a homogeneous component can be lifted to a recurrence
for the Hilbert series of A(L) in the following manner. For a fixed 0 ≤ k ≤ r − 1, let
(z1, . . . , zr) be a sequence of elements of L with rank(zi) = i for all i. Then

H(L, t) =
r∑
q=0

dimZA
q(L) tq

=
r∑
q=0

(
1 +

r∑
i=2

|Li|
i−1∑
p=1

dimZA
q−p([zi,>])

)
tq

= [r + 1]t +
r∑
i=2

|Li|
i−1∑
p=1

r∑
q=0

dimZA
q−p([zi,>]) tq

Since dimZA
q−p([zi,>]) = 0 when q − p < 0 by convention, the innermost sum above really

only runs from q = p to q = r. Making this change and setting k = q − p, we can rewrite
the above as

[r + 1]t +
r∑
i=2

|Li|
i−1∑
p=1

tp
r−p∑
k=0

dimZA
k([zi,>]) tk.
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Now, observe that rank([zi,>]) = r + 1 − i and that p ≤ i − 1 implies r − p ≥ r − i + 1.
Hence,

∑r−p
k=0 dimZA

k([zi,>])tk = H([zi,>], t) for every p and i, so we obtain the following
expression for H(L, t).

Proposition 4.4. If L is a ranked atomistic lattice such that [z,>] ∼= [z′,>] for all z, z′ ∈ L
with rank(z) = rank(z′), and if (z1, . . . , zr) be a sequence of elements of L with rank(zi) = i
for all i, then

H(L, t) = [r + 1]t + t
r∑
i=2

|Li| [i− 1]tH([zi,>], t).

We will now state the Hilbert series that one gets by applying 4.4 to several matroids of
special interest.

Uniform matroids. Each upper interval of L(Un,r+1) is the lattice of flats of a uniform matroid
on a smaller ground set and of lower rank. Hence

H(Un,r+1, t) = [r + 1]t + t
r∑
i=2

(
n

i

)
[i− 1]tH(Un−i,r+1−i, t).

Subspaces of vector spaces over finite fields. The formula for vector spaces over finite fields
is a q-analog of the one for the uniform matroid.

H
(
A
(
Mr+1(Fnq )

)
, t
)

= [r + 1]t + t
r∑
i=2

[i− 1]t

[
n

i

]
q

H
(
A
(
Mr+1−i(Fnq )

)
, t
)

Complete graphic matroids. If S(n,m) is the Stirling number of the second kind, then

H
(
A
(
M(Kn+1)

)
, t
)

= [n]t + t
n−1∑
i=2

S(n+ 1, i) [i− 1]t h
(
A
(
M(Kn+1−i)

)
, t
)
.

4.3. Computing Hilbert series of A(L×B1) using differential operators. While
the incidence algebra provides a general and concise way to write the Hilbert series of a prod-
uct, it is slightly unsatisfying in that, given the Hilbert series of both lattice in the product,
one must still make reference to posets to write the Hilbert series of the product. Here, we
present a very simple case, in which one can write the Hilbert series of a product without
reference to any information except for the Hilbert series’ of the two lattices being multiplied
together. Let L be a ranked atomistic lattice. For a chain C = {x0 < x1 < · · · < xm} in L
and 0 < i ≤ m, let

mC,i =
t− trankxi−rankxi−1

1− t
.

Let s be a new variable, and in analogy to Theorem 2.39, write

H(A(L), t, s) := 1 +
∑

C={⊥=x0<x1<···<xm}

m∏
i=1

((1 +mC,i) e
s − 1) .

Observe that H(A(L), t, 0) = H(A(L), t). Finally, let ∂s : Q[s, t] → Q[s, t] be the formal
derivative operator with respect to s.
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Proposition 4.5.

H
(
A(L×B2), t

)
= (1 + t ∂s)H

(
A(L), t, s

)∣∣
s=0

Proof. Strict chains in L×B2 that begin at ⊥ take three different forms. If C = {⊥ = x0 <
x1 < · · · < xm} is a chain in L, then a chain in L×B2 must look like one of the following:

(⊥, 0) < (x1, 0) < · · · < (xm, 0)

(⊥, 0) < (x1, 0) < · · · < (xi, 0) < (xi+1, 1) < · · · < (xm, 1)

(⊥, 0) < (x1, 0) < · · · < (xi, 0) < (xi, 1) < (xi+1, 1) < · · · < (xm, 1)(1)

Since rank(xi, 0) = rank(xi, 1)− 1, chains like the one in (1) contribute 0 to the sum in the
statement of Theorem 2.39. Hence, by Theorem 2.39,

(2) H(A(L×B2), t) = 1 +
∑

C={⊥=x0<x1<···<xm}

 m∏
i=1

mC,i +
m∑
k=1

t(1 +mC,i)
m∏
i=1
i 6=k

mC,i


By the product rule for the derivative, if f(t) ∈ Q[t] ⊆ Q[s, t], then

∂s
(
(1 + f(t))− 1

)
= (1 + f(t))es.

Hence, equation (2) is equal to

H(A(L), t, 0) + t ∂sH(A(L), t, s)
∣∣
s=0

= (1 + t ∂s)H(A(L), t, s)
∣∣
s=0

. �

Similarly, suppose we instead define

H(A(L), t, s) = 1 +
∑

C={⊥=x0<x1<···<xm}

m∏
i=1

tes − trankxi−rankxi−1ets

1− t
.

Then we have

Proposition 4.6.
H(A(L×B1), t, s) = (1 + ∂s)H(A(L), t, s).

Proof. Similarly to the proof of Proposition 4.5, define

mC,i =
tes − trankxi−rankxi−1ets

1− t
for a chain C = {x0 < x1 < · · · < xm}. A similar casework argument on the structure of
chains in L×B1 gives

H(A(L×B1), t, s) = 1 +
∑

C={⊥=x0<x1<···<xm}

 m∏
i=1

mC,i +
m∑
k=1

t(es +mC,k)
m∏
i=1
i 6=k

mC,i


= (1 + ∂s)H(A(L), t, s)
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using the fact that

∂s
tes − trankxi−rankxi−1ets

1− t
=
tes − t(rankxi−rankxi−1)+1ets

1− t

= t

(
es +

tes − trankxi−rankxi−1ets

1− t

)
.

�

5. Explicit determination of Hilbert series and Charney-Davis quantities

5.1. The Uniform Matroid. Recall the uniform matroid of rank r and dimension n is the
matroid Un,r on ground set E = [n] with independent sets all subsets of [n] of size at most
r. Un,r has lattice of flats

L(Un,r) = (Bn)[r] = {S ∈ Bn : #S < r or S = >} .
That is, Un,r has lattice of flats L(Un,r) equal to the collection of all subsets of [n] of size at
most r, ordered under inclusion, together with a unique top element > = [n].

For σ ∈ Sn, let
fix(σ) = {i ∈ [n] : σ(i) = i} .

Also let
Dn = {σ ∈ Sn : fix(σ) = ∅}

be the set of derangements of n and put

En,k = {σ ∈ Sn : σ has at least k fixed points} .

5.1.1. Hilbert Series of A
(
Un,n

)
. Recall the Stanley-Reisner ring over Z of L(Un,n) is S :=

Z[xF ]F∈L(M)/I, where

I := (xFxG : F,G ∈ L(M), F 6≤ G, G 6≤ F ) .

Moreover, since L(Un,n) has dimension n, S has Krull dimension n+ 1. For each i ∈ [n], let
γi :=

∑
F3i xF and αi := γi − x> be in S.

Lemma 5.1. {αi − αn : i ∈ [n− 1]} is algebraically independent

Proof. First, observe that

{αi − αn : i ∈ [n− 1]} = {γi − γn : i ∈ [n− 1]} .
Furthermore, if {γi : i ∈ [n]} is algebraically independent, then so is {γi − γn : i ∈ [n− 1]},
since any polynomial in {γi − γn : i ∈ [n− 1]} can be expanded out into a polynomial in
{γi : i ∈ [n]}.

Hence, we have reduced to showing that {γi : i ∈ [n]} is algebraically independent. Let

p(y1, . . . , yn) :=
∑

i=(i1,...,in)∈Zn
≥0∑

j ij≤m

ai y
i1
1 · · · yinn ∈ R[y1, . . . , yn]

be a polynomial of total degree m and let NZ(i) := {j ∈ [n] : ij 6= 0} be the set of indices
of nonzero entries of i. Suppose that p(γ1, . . . , γn) = 0. If this is the case, we will show that
ai = 0 for all i by induction on # NZ(i).

First, if # NZ(i) = 0 then ai = 0 because none of the γi’s have constant terms. Now,
assume that ai = 0 for all i with i < k, and let ai be the coefficient of a term of p with
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NZ(i) = {j1 < . . . < jk}. When multiplied out, the term γi11 · · · γinn of p(γ1, . . . , γn) has a
monomial

∏
`∈[k] x

ij`
F`

where {F1 < F2 < . . . < Fk} ⊆ L(Un,n) is an increasing chain, with
F` 3 j` for each `. No other term of p(γ1, . . . , γn) has such a monomial, so ai = 0. Therefore,
p(y1, . . . , yn) = 0 and {γi : i ∈ [n]} is algebraically independent. �

Theorem 5.2. The dimension of the ith graded component of A(Un,n) =
⊕n−1

i=0 A
i is dimZA

i =
A(n, i), the (n, i)th Eulerian number.

Proof. By inspection of the defining relations, it is evident that the Chow ring A(Un,n) is
equal to S/J , where

J := (x>, x⊥) + (αi − αn : i ∈ [n− 1]) ⊆ S.

Since neither x> nor x⊥ appear in any element of {αi − αn : i ∈ [n− 1]}, J is generated by
a maximal set of algebraically independent elements. Therefore, ([BGS82], Corollary 4.5)
gives a monomial basis for S whose m-th graded component is indexed by permutations in
Sn with m excedences. Hence, we conclude that dimZA(Un,n)m = A(n,m). �

5.1.2. Hilbert Series of A
(
Un,r

)
for r < n. For any r ≤ n, there is a surjective graded map

of rings πn,r : A(Un,r+1)→ A(Un,r) acting on variables xF by

xF 7→

{
xF if rank(F ) < r

0 if rank(F ) = r

Let Kn,r be the kernel of this ring map.

Theorem 5.3. The Hilbert function of Kn,r is given by the formula

dimZ(Kn,r)k = # {σ ∈ En,n−r : exc(σ) = r − k}

To prove theorem 5.3, we will use the monomial basis of [FY04]. Let the variable x>
denote the element

∑
F3i xF ∈ A(Un,r+1) for any fixed i ∈ E. From the linear relations

defining the chow ring, x> is uniquely defined in A(Un,r+1). From [FY04], set of monomials
of the form

xα1
F1
· · ·xα`

F`
,

where F1 ( F2 ( · · · ( F` is a flag of nonempty flats in L(Un,r) and for ri = rank(Fi), we
have the inequalities 1 ≤ αi ≤ ri − ri−1 − 1, forms a Z-basis for the ring A(Un,r). Moreover,
under πn,r each such basis element, b, of A(Un,r+1) is either carried to the corresponding
basis element of A(Un,r) or is sent to 0, the latter case holding if and only if b = xa>x

α1
F1
· · ·xα`

F`

for a ≥ 0, Fi and αi as above, and rank(F1) = r − a.
To prove theorem 3, we consider the following refinement.

Lemma 5.4. Consider the numbers

γnr,k,a := #
{
xa>x

α1
F1
· · · xα`

F`
: F>)F1)···)F` is a flag of nonempty flats in L(Un,r+1)

a+
∑
αj=k, 1≤αi≤ri−ri+1−1, and rank(F1)=r−a

}
and

Γnr,k,a := # {σ ∈ Sn : #fix(σ) = n− r + a and exc(σ) = r − k}
Then, γnr,k,a = Γnr,k,a.
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Proof. We immediately make the following reductions. Partitioning by the choice of a flag
F1 ∈ L(Un,r+1)r−a,

γnr,k,a =

(
n

r − a

)
·#
{
xα1
> x

α2
F2
· · ·xα`

F`
: F>)F2)···)F` is a flag of nonempty flats in L(Ur−a,r−a)∑

αj=k−a and 1≤αi≤ri−ri+1−1

}
,

while, partitioning on the choice of fixed points,

Γnr,k,a =

(
n

r − a

)
·# {σ ∈ Sr−a : #fix(σ) = 0 and exc(σ) = r − k}

Hence, it suffices to show equality of the latter two sets. In particular, set

Θn,k =
{
xα1
> x

α2
F2
· · ·xα`

F`
: F>)F2)···)F` is a flag of nonempty flats in L(Un,n)∑

αj=k and 1≤αi≤ri−ri−1−1

}
Dn,k = {σ ∈ Dn : exc(σ) = n− k}

We will show that #Θn,k = #Dn,k for all n, k.
We proceed by induction on k. The base case k = 0 is trivial as both sets are empty.

Assume k ≥ 1. Set

Sn,k =
{
xα1
F1
xα2
F2
· · ·xα`

F`
: F1)F2)···)F` is a flag of nonempty flats in L(Un,n)∑

αj=k and 1≤αi≤ri−ri+1−1

}
and

Sn,k,a =
{
xa>x

α1
F1
· · ·xα`

F`
: F>)F1)···)F` is a flag of nonempty flats in L(Un,n)
a+

∑
αj=k, 1≤αi≤ri−ri+1−1, and rank(F1)=n−a

}
Consider the map of sets ϕn,k : Θn,k → Sn,k−1 taking xα1

> x
α2
F2
· · ·xα`

F`
7→ xα1−1

> xα2
F2
· · ·xα`

F`
. Then,

ϕn,k is injective and Sn,k−1 decomposes into a disjoint union

(3) Sn,k−1 = Image(ϕn,k) t
∐
a≥1

Sn,k−1,a.

Considering the choice of second highest element,

#Sn,k−1,a =

(
n

n− a

)
#Θn−a,k−a−1.

Also note that #Sn,k computes the Eulerian numbers from 5.2. Then, using the decomposi-
tion 3 and applying the induction hypothesis,

#Θn,k = #Sn,k−1 −
∑
a≥1

#Sn,k−1,a

= # {σ ∈ Sn : exc(σ) = n− k} −
∑
a≥1

(
n

n− a

)
# {σ ∈ Dn−a : exc(σ) = n− k}

Then, using that
(
n

n−a

)
# {σ ∈ Dn−a : exc(σ) = n− k} = # {σ ∈ Sn : #fix(σ) = a and exc(σ) = n− k}

for all a ≤ n, we can reduce the above to

#Θn,k = # {σ ∈ Sn : exc(σ) = n− k} −
∑
a≥1

# {σ ∈ Sn : #fix(σ) = a and exc(σ) = n− k}

= # {σ ∈ Sn : exc(σ) = n− k} −# {σ ∈ En,1 : exc(σ) = n− k}
= # {σ ∈ Dn : exc(σ) = n− k} = #Dn,k

Hence, #Θn,k = #Dn,k by induction and the lemma is proven. �
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Remark 5.5. Theorem 5.3 follows from the lemma above since the difference in dimensions
dimZA(Un,r+1)k − A(Un,r)k can be summed to∑

a≥0

γnr,k,a =
∑
a≥0

Γnr,k,a = # {σ ∈ Sn : #fix(σ) ≥ n− r and exc(σ) = r − k}

= # {σ ∈ En,n−r : exc(σ) = r − k} .

Corollary 5.6. The Hilbert function of A(Un,r) is given explicitly by

dimZA(Un,r)k = # {σ ∈ Sn : exc(σ) = k} −
n−1∑
i=r

# {σ ∈ En,n−i : exc(σ) = i− k}

In particular, when r = n− 1, the Hilbert function of A(Un,n−1) is

(4) dimZ(A(Un,r))k = # {σ ∈ Dn : exc(σ) = k + 1}

Proof. Theorem 3 implies the series of equalities

dimZ(A(Un,r))k = dimZ(A(Un,r+1))−# {σ ∈ En,n−r : exc(σ) = r − k}

= · · · = dimZ(A(Un,n))−
n−1∑
i=r

# {σ ∈ En,n−i : exc(σ) = i− k}

= # {σ ∈ Sn : exc(σ) = k} −
n−1∑
i=r

# {σ ∈ En,n−i : exc(σ) = i− k}

where the latter equality follows from the characterization of the Hilbert series of A(Un,n)
given by theorem 1.

In the case r = n− 1, this becomes

# {σ ∈ Sn : exc(σ) = k} −# {σ ∈ En,1 : exc(σ) = n− 1− k}

By Poincaré duality for A(Un,n),

# {σ ∈ Sn : exc(σ) = k} = # {σ ∈ Sn : exc(σ) = n− 1− k}

So 4 follows from the equality of sets

{σ ∈Sn : exc(σ) = n− 1− k}
= {σ ∈ En,1 : exc(σ) = n− 1− k} t {σ ∈ Dn : exc(σ) = n− 1− k} . �

Corollary 5.7. The total dimension of the chow ring A(Un,n−r) is given by

dimZA(Un,n−r) = #Dn −
r−1∑
k=1

#En,k

for all r ≥ 1. Equivalently,

dimZA(Un,n−r)

n!
= E[1−min(#fix(σ), r)]

for all r ≥ 0, where σ is chosen uniformly from Sn.
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Proof. The total dimension of Kn,r can be computed as∑
k≥0

# {σ ∈ En,n−r : exc(σ) = r − k} = #En,n−r.

Hence, the corollary follows by descending induction on r. �

5.1.3. Charney-Davis Quantities for A
(
Un,r

)
. We now compute the Charney-Davis quanti-

ties of A
(
Un,r

)
in terms of the secant numbers E2k. We show that in the full rank case, the

formula for the Charney-Davis quantity as a linear combination of the secant numbers can
be interpreted as a recurrence for the tangent numbers.

Theorem 5.8. For even r, the Charney-Davis quantity for the uniform matroid, Un,r of
rank r on [n] is 0. For odd r, the Charney-Davis quantity for Un,r is

r−1
2∑

k=0

(
n

2k

)
E2k

where E2` is the `th secant number.

Proof. When r is even, the Charney-Davis quantity being zero is an immediate consequence
of Poincaré duality. From here on, assume that r is odd. We proceed by induction on ` for
r = 2`+ 1. If ` = 0, then A(M) = Z and the theorem follows trivially.

Let ` > 0. By [FY04], Hilbert series of A(Un,r) is given by

H(A(Un,r), t) = 1 +
∑
r

k(r)∏
i=1

{[
1 +

t(1− tr−rk(r)−1)

1− t

]
t(1− tri−ri−1−1)

1− t

}
+
t(1− t`−1)

1− t

where the sum is over all subsets r = (0 = r0 < r1 < · · · < rk(r) < r). Then, evaluating at
t = −1 gives

1 +
∑

r, rk<r
∀i,ri−ri−1 is even

(−1)k(r)

k(r)∏
i=1

(
n− ri−1

ri − ri−1

)

Then, this quantity can be expressed as a sum1 +
∑

r, rk<r−2
∀i,ri−ri−1 is even

(−1)k(r)

k(r)∏
i=1

(
n− ri−1

ri − ri−1

)+


∑

r, rk=r−1
∀i,ri−ri−1 is even

(−1)k(r)

k(r)∏
i=1

(
n− ri−1

ri − ri−1

)
This former term is exactly the Charney-Davis quantity for Ur−2,n, so by induction, it suffices
to show that the latter summand is equal to Er−1

(
n
r−1

)
. Let this term by denoted by T`.
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Reindexing and then summing over r such that rk−1 = 2a, we get the recursion

Tr = −
∑

r, rk<r−2
∀i,ri−ri−1 is even

(−1)k(r)

(
n− rk

r − rk − 1

) k(r)∏
i=1

(
n− ri−1

ri − ri−1

)

= −
`−1∑
a=0

(
n− 2a

r − 2a− 1

) ∑
r, rk=2a

∀i,ri−ri−1 is even

(−1)k(r)

k(r)∏
i=1

(
n− ri−1

ri − ri−1

)

= −
`−1∑
a=0

(
n− 2a

r − 2a− 1

)
Ta

Then, by induction, we conclude

Tr = −
`−1∑
a=0

(
n− 2a

r − 2a− 1

)(
n

2a

)
E2a = −

`−1∑
a=0

(
n

r − 1

)(
r − 1

2a

)
E2a

=

(
n

r − 1

)(
−

`−1∑
a=0

(
r − 1

2a

)
E2a

)
=

(
n

r − 1

)
Er−1

where the last equality follows from the recursion E2` = −
∑`−1

k=0

(
2`
2k

)
E2k (see [Pet15], pg 88,

ex 4.2). The theorem is therefore proved. �

Remark 5.9. When r = n is odd, the Charney-Davis quantity given above is equal to the
tangent number En via the following proposition.

Proposition 5.10. For any n ≥ 0, E2n+1 =
n∑
k=0

(
2n+ 1

2k

)
E2k.

Proof. Consider the series expansion of tanh(x). We have

tanh(x) = sinh(x) sech(x) =

(∑
k≥0

x2k+1

(2k + 1)!

)(∑
k≥0

E2k
x2k

(2k)!

)

=
∞∑
n=0

(
n∑
k=0

(
2n+ 1

2k

)
E2k

)
x2n+1

(2n+ 1)!

Since also tanh(x) =
∑

n≥0E2n+1
x2n+1

(2n+1)!
, equating coefficients gives the relation

n∑
k=0

(
2n+ 1

2k

)
E2k = E2n+1

as desired. �

5.1.4. γ-Vectors of A(Un,n) and A(Un,n−1). By inspection, H
(
A(Un,n), t

)
is the h-vector of

the permutohedron of dimension n. Hence, [PRW06] gives the following characterization of
γ-polynomial of A(Un,n)
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Proposition 5.11. ([PRW06], Thm 11.1) The γ-polynomial of A(Un,n) is of the form∑
w∈S̃n

tdes(w)

where S̃n denotes the set of permutations in Sn which do not contain any final descents or
double descents.

Since H
(
A(Un,n−1), t

)
=
∑

w∈Dn
tdes(w) is the local h-vector of the barycentric subdivision

of the permutohedron, Athanasiadis’ survey [Ath16] gives the analogous interpretation of
the γ-vector of H

(
A(Un,n−1), t

)
.

Proposition 5.12. The γ-vector of A(Un,n−1) is given by γ = (γn,i) where γn,i denotes the
number of permutations in Sn with i descending runs and no descending run of size one.

5.2. Matroid of subspaces of vector spaces over finite fields. Let V be an n-dimensional
vector space over the finite field Fq. Recall, for 0 ≤ r ≤ n, Mr(V ) denotes the matroid with
ground set E = V and independent sets collections of at most r independent vectors in E.
We also put M(V ) := Mn(V ). For the purposes of computing the Chow ring A

(
Mr(V )

)
,

it suffices to consider the simplification-the matroid with ground set PV whose independent
sets consist of all subspaces in PV of size at most r.

The lattice of flats of Mr(Fnq ) is given by the collection of subspaces of Fnq of dimension at
most r ordered by inclusion together with the top dimensional subspace Fnq .

The Gröbner basis in [FY04] gives a formula for the Hilbert series of A
(
M(Fnq )

)
,

H
(
A
(
Mr(Fnq )

)
, t
)

= 1 +
∑
r

k(r)∏
i=1

t(1− tri−ri−1−1)

1− t

[
n− ri−1

ri − ri−1

]
q

where the sum is over all tuples r = (0 = r0 < r1 < · · · < rk(r) ≤ r). In particular, this
specializes to the formula for h

(
A(Un,r), t

)
when q = 1. Consequently, Mr(Fnq ) is best seen

as a q-analogue of A(Un,r).

5.2.1. Hilbert Series of A
(
M(Fnq )

)
. We show that the the Hilbert series of A

(
M(Fnq )

)
agrees

with the definition of Shareshian and Wachs in [SW10] and whose generating function is
studied in [SW07]. To characterize the Hilbert series of A

(
M(Fnq )

)
, we first compute its q-

exponential generating function, and we use this result to give a combinatorial interpretation.

Proposition 5.13. Define h0 := 1. The q-exponential generating function of hn(t) :=

H
(
A
(
M(Fnq )

)
, t
)
is given by

F (t, x) =
∑
n≥0

hn(t)
xn

[n]q!
=

(t− 1)eq(t)

teq(t)− eq(tx)

where eq denotes the q-exponential function eq(x) :=
∑

n≥0
xn

[n]q !
.

Proof. From the recurrence 4.2, we have the relation

hn = 1 + t
n−1∑
i=1

[i− 1]t

[
n

i

]
q

hn−i
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Then, the generating function F (t, x) satisfies

F (t, x) = 1 +
∑
n≥1

xn

[n]q!
+ t
∑
n≥1

(
[i− 1]t

[
n

i

]
q

hn−i

)
xn

[n]q!

= eq(x) + t
∑
n≥1

n∑
i=1

(
[i− 1]t

xi

[i]q!

)(
hn−i

xn−i

[n− i]q!

)
= eq(x) + tF (t, x)G(t, x)

for G(t, x) =
∑

i≥1[i− 1]t
xi

[i]q !
. We can evaluate G by

G(t, x) =
1

t− 1

∑
i≥1

(ti−1 − 1)
xi

[i]q!
=

1

t− 1

(
eq(tx)

t
− eq(x)

)
=

1

t2 − t

(
eq(tx)− teq(x)

)
Substituting into the equation above and solving for F , we get

F (t, x) =
eq(x)

1− 1
t−1

(
eq(tx)− teq(x)

) =
(t− 1)eq(x)

teq(x)− eq(tx)
�

From [SW07], this generating function uniquely classifies the polynomials hn(t) as the
q-Eulerian polynomial An(q, t) defined as follows.

Definition 5.14. The q-Eulerian polynomial An(q, t) is the polynomial

An(q, t) := Amaj,exc
n (q, tq−1) =

∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ)

Also set the q-Eulerian number
[
n
j

]
q
to be[

n

j

]
q

=
∑
σ∈Sn

exc(σ)=j

qmaj(σ)−exc(σ) =
∑
σ∈Sn

exc(σ)=j

qmaj(σ)−j

Clearly,

An(q, t) =
n−1∑
j=1

[
n

j

]
q

tj

Theorem 5.15. For all n and all prime powers q,

h
(
A
(
M(Fnq )

)
, t
)

= An(q, t).

Next, we prove a recurrence for An(q, t). We need the following lemmas.

Lemma 5.16. For any positive q and k ≥ 0,
k∑
i=0

(−1)iq(
i
2)
[
k

i

]
q

=

{
1 if k = 0

0 else
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Proof. When k = 0, the lemma is clear. By the q-binomial theorem (see, for example,
[Sta97], ch 3, exercise 119), for k > 0,

k∑
i=0

(−1)iq(
i
2)
[
k

i

]
q

xk−i =
n−1∏
i=0

(x− qi).

Setting x = 1 gives the desired identity. �

Lemma 5.17. For all n ≥ 0,

tn =
n∑
k=0

qn−k
[
n

k

]
q

k∏
i=1

(t− qi)

Proof. We can expand the expression
k∏
i=1

(t− qi) =
k∑
i=0

(−1)i
[
k

i

]
q

q
i(i−1)

2 tn−i

and collect powers of q to see the righthand side of the desired identity is
n∑
k=0

qn−k
[
n

k

]
q

k∏
i=1

=
∑

0≤i≤k≤n

(−1)iqn−kq(
i+1
2 )
[
n

k

]
q

[
k

i

]
q

tn−i

=
n∑
`=0

(
(−1)iq(

i
2)
[
n

`+ i

][
`+ i

i

])
qn−`t`

=
n∑
`=0

(
(−1)iq(

i
2)
[
n− `
i

])[
n

`

]
qn−`t`

Then, applying lemma 5.16 to the latter expression gives the result. �

Remark 5.18. Observe that equation 5.17 is a q-analogue of the binomial expansion

tn =
(
(t− 1) + 1

)n
=

n∑
k=0

(
n

k

)
(t− 1)k

Proposition 5.19. Let Hn(t) = H(A(M(Fnq )), t) denote the Hilbert series of A(M(Fnq )), and
let (a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1) be the Pochhammer symbol. Then, hn satisfies
the recurrence

(5) hn(t) =
n−1∑
k=0

[
n

k

]
q

hk(t)
n−1−k∏
i=1

(t− qi) =
n−1∑
k=0

[
n

k

]
q

tn−1−k · hk(t) · (q/t, q)n−1−k

Proof. Let gn(t) denote the sequence satisfying g0 = 1 and the recurrence 5. Then, the
q-exponential generating function G(t, x) of gn(t) satisfies

G(t, x) =
∑
n≥0

gn(t)
xn

[n]q!
= 1 +

∑
n≥1

n−1∑
k=0

[
n

k

]
q

gk(t)
n−1−k∏
i=1

(t− qi) x
n

[n]q!

= 1 +G(t, x)
∑
n≥1

xn

[n]q!

n−1∏
i=1

(t− qi)
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By proposition 5.13, the q-exponential generating function of hn is

F (t, x) =
(t− 1)eq(t)

teq(t)− eq(tx)
.

Hence, proposition 5.19 above is equivalent to showing∑
n≥1

xn

[n]q!

n−1∏
i=1

(t− qi) =
eq(tx)− eq(x)

(t− 1)eq(x)

Clearly both sides of the above have zero constant term. Therefore, taking the Jackson q
derivative, we are reduced to showing∑

n≥0

xn

[n]q!

n∏
i=1

(t− qi) = Dq

[
eq(tx)− eq(x)

(t− 1)eq(x)

]
=
eq(tx)

eq(qx)

Rearranging the above gives

eq(tx) = eq(qx)
∑
n≥0

xn

[n]q!

n∏
i=1

(t− qi) =
∑
n≥0

(
n∑
k=0

qn−k
k∏
i=1

(t− qi)
[
n

k

]
q

)
xn

[n]q!

Therefore, the conjecture again reduces to proving the identity

(6) tn =
n∑
k=0

qn−k
[
n

k

]
q

k∏
i=1

(t− qi)

But this is precisely the statement of lemma 5.17. We conclude that hn(t) satisfies the desired
recurrence. �

Remark 5.20. When q = 1, proposition 5.19 becomes the well-known recurrence for the
Eulerian polynomials,

An(t) =
n−1∑
k=0

(
n

k

)
Ak(t)(t− 1)n−1−k

To the authors’ knowledge, the recurrence in proposition 5.19 does not yet appear in the
literature.

Corollary 5.21. [
n

k

]
q

= #
{
xα1
V1
. . . xα`

V`
:

V1(···(V` are subspaces of Fn
q

1≤αi≤dimZ Vi−dimZ Vi−1−1,
∑

i αi=k

}
Proof. Both quantities count dimZA(M(Fnq ))k �

5.2.2. Hilbert Series of A(Mr(Fnq )) for r < n. We study the Hilbert series of A
(
Mr(Fnq )

)
by

descending induction on rank. As in the case of the uniform matroids, there are graded,
surjective ring homomorphisms

πn,r,q : A(Mr+1

(
Fnq )
)
→ A

(
Mr(Fnq )

)
defined by taking variables xV ∈ A(Mr+1

(
Fnq )
)
to zero if dimZ(V ) = r + 1 and to the

corresponding variable xV ∈ A
(
Mr(Fnq )

)
otherwise. The Hilbert functions of the kernels

Kn,r,q = ker(πn,r,q) are q-analogues of the numbers
# {σ ∈ En,n−r : exc(σ) = r − k}
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In particular, we can express

dimZ(Kn,r,q)k =
r∑
i=0

[
n

i

]
q

Di,r−k,q =
r∑
i=0

[
n

r − i

]
q

Dr−i,k−i,q

where Dn,k,q is a q-analogue of the number

# {σ ∈ Dn : exc(σ) = r − k}
More explicitly, define

Tn,k,q =
{
xα0
> x

α1
V1
· · ·xα`

V`
:

Fn
q =V0)V1)···)V` are subspaces of Fn

q of rank ≤r∑
αj=k, 1≤αi≤dimZ(Vi)−dimZ(Vi+1)−1

}
and set Dn,k,q := #Tn,k,q. Then, from the Gröbner basis of [FY04], note that

dimZ(Kn,r,q)k = #
{
xi>x

α1
V1
· · ·xα`

V`
:

Fn
q =V0)V1)···)V` are subspaces of Fn

q of rank ≤r
i+

∑
αj=k, 1≤αi≤dimZ(Vi)−dimZ(Vi+1)−1, dimZ(V1)=r−i

}
So summing over possible values of i gives

(7) dimZ(Kn,r,q)k =
r∑
i=0

[
n

r − i

]
q

Dr−i,k−i,q

We will now give a combinatorial description of Dn,k,q. To do so, we establish some notation.
For σ ∈ SA for A = {a1 < · · · ak} an ordered set, let the reduction of σ be the permutation
σ in Sk such that σ(ai) = aσ(i). For σ ∈ Sn, its derangment part dp(σ) is the reduction of
σ along its nonfixed points.

The following lemma of Wachs will be essential.

Lemma 5.22. ([Wac89] Corollary 3) For all γ ∈ Db and n ≥ b,∑
dp(σ)=γ
σ∈Sn

qmaj(σ) = qmaj(γ)

[
n

k

]
q

Corollary 5.23. For any integers n, q, k ≥ 0,∑
σ∈Dn−i

exc(σ)=k

qmaj(σ)−exc(σ)

[
n

n− i

]
q

=
∑
σ∈Sn

exc(σ)=k
#fix(σ)=i

qmaj(σ)−exc(σ)

Proof. From Lemma 5.22, we have the identity∑
γ∈Dn−i

exc(γ)=k

qmaj(γ)−exc(γ)

[
n

n− i

]
q

=
∑

γ∈Dn−i

exc(γ)=k

q−exc(γ)
∑
σ∈Sn

dp(σ)=γ

qmaj(σ) =
∑
σ∈Sn

exc(σ)=k
#fix(σ)=i

qmaj(σ)−exc(σ). �

Theorem 5.24. For Dn,k,q as above,

Dn,k,q =
∑
σ∈Dn

exc(σ)=n−k

qmaj(σ)−exc(σ)
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Proof. We proceed by induction on k. For k = 0, the result is vacuous. For k > 0, set

Sα0 =
{
xα0
> x

α1
V1
· · ·xα`

V`
:

Fn
q =V0)V1)···)V` are subspaces of Fn

q ,
∑
αj=k−1

1≤αi≤dimZ(Vi)−dimZ(Vi+1)−1, dimZ(V1)=n−α0−1

}
S =

{
xα1
V1
· · · xα`

V`
:

V1)···)V` are subspaces of Fn
q∑

αj=k−1, 1≤αi≤dimZ(Vi)−dimZ(Vi+1)−1

}
Then, the map on monomials taking xα0

> x
α1
1 · · ·x

α`
` 7→ xα0−1

> xα1
1 · · ·x

α`
` gives an injective map

ϕ : Tn,k,q → S.

Moreover, S is the disjoint union S = Im(ϕ)t
∐

a≥0 Sa. Considering the choice of the second
largest flag,

#Sa =

[
n

n− a− 1

]
q

Dn−a−1,k−a−1,q

While from Corollary 5.21,

#S =

[
n

k − 1

]
q

=

[
n

n− k

]
q

where the latter equality follows from Poincaré duality for A
(
M(Fnq )

)
. Therefore, by induc-

tion,

Dn,k,q = #Tn,k,q = #S −
∑
a≥0

#Sa =

[
n

n− k

]
q

−
∑
b≥1

[
n

n− b

]
q

Dn−b,k−b,q

=
∑
σ∈Sn

exc(σ)=n−k

qmaj(σ)−exc(σ) −
∑
b≥1

∑
γ∈Dn−b

exc(γ)=n−k

qmaj(γ)−exc(γ)

[
n

n− b

]
q

(8)

Then applying Corollary 5.23, the righthand side of equation 8 can be expanded as∑
σ∈Sn

exc(σ)=n−k

qmaj(σ)−exc(σ) −
∑
b≥1

∑
σ∈Sn

exc(σ)=n−k
#fix(σ)=b

qmaj(σ)−exc(σ) =
∑
σ∈Dn

exc(σ)=n−k

qmaj(σ)−exc(σ)

This completes the induction, and the theorem is proven. �

Recall En,k denotes the set {σ ∈ Sn : #fix(σ) ≥ k}.

Corollary 5.25. The Hilbert series of the kernel Kn,r,q = ker(πn,r,q) is given by

H(Kn,r,q, t) =
∑

σ∈En,n−r

tr−exc(σ)qmaj(σ)−exc(σ)

In particular, its Hilbert function is

(9) dimZ(Kn,r,q)k =
∑

σ∈En,n−r,q

exc(σ)=r−k

qmaj(σ)−exc(σ)
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Proof. Applying theorem 5.24 and corollary 5.23 to equation 7 gives

dimZ(Kn,r,q)k =
r∑
i=0

[
n

r − i

]
q

Dr−i,k−i,q =
r∑
i=0

∑
σ∈Dr−i

exc(σ)=r−k

qmaj(σ)−exc(σ)

=
r∑
i=0

∑
σ∈Sn

#fix(σ)=n−r+i
exc(σ)=r−k

qmaj(σ)−exc(σ)

=
∑

σ∈En,n−r

exc(σ)=r−k

qmaj(σ)−exc(σ). �

Corollary 5.26. The Hilbert series of A
(
Mr(Fnq )

)
is given by

(10) H
(
A(Mr(Fnq )), t

)
=
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ) −
n−1∑
j=0

∑
σ∈En,n−r

qmaj(σ)−exc(σ)tr−exc(σ)

In particular, if r = n− 1, the Hilbert series of A
(
Mn−1(Fnq )

)
is

h
(
A
(
Mr(Fnq )

)
, t
)

=
∑
σ∈Dn

qmaj(σ)−exc(σ)texc(σ)−1

Proof. Equation 10 follows from a direct substitution of 9 into the formula

H
(
A(Mr(Fnq ), t

)
= H

(
A(Mr+1(Fnq )), t

)
+H

(
Kn,r,q, t

)
= · · · = H

(
A(M(Fnq )), t

)
+
n−1∑
j=r

H
(
Kn,j,q, t

)
Recall that En,r = {σ ∈ Sn : #fix(σ) ≥ r}. For the case r = n − 1, Corollary 5.23 implies
that the coefficient of qk in 10 can be simplified as follows.∑

σ∈Sn
exc(σ)=k

qmaj(σ)−exc(σ) −
n−1∑
i=0

∑
σ∈Dn−i−1

exc(σ)=n−k−1

[
n

n− i− 1

]
q

qmaj(σ)−exc(σ)

=
∑
σ∈Sn

exc(σ)=n−k−1

qmaj(σ)−exc(σ) −
n−1∑
i=0

∑
σ∈Sn

exc(σ)=n−k−1
#fix(σ)=i+1

qmaj(σ)−exc(σ)

=
∑
σ∈Sn

exc(σ)=n−k−1

qmaj(σ)−exc(σ) −
∑
σ∈En,1

exc(σ)=n−k−1

qmaj(σ)−exc(σ)

=
∑
σ∈Dn

exc(σ)=n−k−1

qmaj(σ)−exc(σ).

Then,

H
(
A
(
Mr(Fnq )

)
, t
)

=
∑
σ∈Dn

qmaj(σ)−exc(σ)tn−1−exc(σ) =
∑
σ∈Dn

qmaj(σ)−exc(σ)texc(σ)−1

where the last equality follows from Poincaré duality of A(Mn−1(Fnq )). �
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Remark 5.27. Note that the characterization of the Hilbert series of A(Mr(Fnq )) for r =
n− 1, n together with the results of [AHK15] give an alternate proof of the unimodality and
symmetry of the polynomials∑

σ∈Sn

qmaj(σ)−exc(σ)texc(σ) and
∑
σ∈Dn

qmaj(σ)−exc(σ)texc(σ)−1.

It should be noted that in [SW10], Shareshian and Wachs prove more general statements;
namely, the coefficients of the above polynomials are q-unimodal and, in fact, q-γ-nonnegative.
That is, the differences of consecutive coefficients is not only positive when evaluated at a
particular value of q, but it also lies in N[q] as a polynomial in q, and moreover, its γ-vector
has coordinates in N[q] (see subsection 5.2.4 below).

5.2.3. Charney-Davis Quantities of A(M(Fnq )). The Charney-Davis quantities can be com-
puted much the same as in the uniform case.

Theorem 5.28. The Charney-Davis quantity of the chow ring A
(
Mr(Fnq )

)
is

1 + [n]q!
k∑
a=1

(−1)a

[n− 2a]q!
∆a

for ∆a the determinant

∆a = det


1

[2]q !
1 0 · · · 0

1
[4]q !

1
[2]q !

1 · · · 0
...

...
... . . . ...

1
[2a−4]q !

1
[2a−6]q !

1
[2a−8]q !

· · · 1
1

[2a−2]q !
1

[2a−4]q !
1

[2a−6]q !
· · · 1

[2]q !

 .

Proof. As in the uniform case, we proceed by induction on the rank. Let CD(n, r) =

h
(
A
(
Mr(Fnq )

)
,−1

)
. The formula for the Hilbert series from [FY04] is

CD(n, r) = 1 +
∑

r, rk<r
∀i,ri−ri−1 is even

(−1)k(r)

k(r)∏
i=1

[
n− ri−1

ri − ri−1

]
q

.

As in the uniform case, we get a decomposition of the above as1 +
∑

r, rk<r−2
∀i,ri−ri−1 is even

(−1)k(r)

k(r)∏
i=1

[
n− ri−1

ri − ri−1

]
q

+


∑

r, rk=r−1
∀i,ri−ri−1 is even

(−1)k(r)

k(r)∏
i=1

[
n− ri−1

ri − ri−1

]
q


where the former term is CD(n, r − 2) and the latter we denote by Tn,q(r − 1). Then,
partitioning on the rank of the second largest element in the flag, one obtains the recurrence

Tn,q(2a) = −
a−1∑
b=1

[
n− 2b

2a− 2b

]
q

Tn,q(2b) with initial condition Tn,q(2) =

[
n

2

]
q
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Solving this system with Cramer’s rule gives

(11) Tn,q(2a) = (−1)a
[
n

2

]
q

det



[
n−2

2

]
q

1 0 · · · 0[
n−2

4

]
q

[
n−4

2

]
q

1 · · · 0
...

...
... . . . ...[

n−2
2a−4

]
q

[
n−4
2a−6

]
q

[
n−6
2a−8

]
q
· · · 1[

n−2
2a−2

]
q

[
n−4
2a−4

]
q

[
n−6
2a−6

]
q
· · ·

[
n−2a+2

2

]
q


Rewriting the determinant in 11 by pulling out common factors in the numerator, resp.
denominators, of each column, resp. row, gives

Tn,q(2a) = (−1)a
[n]q!

[n− 2a]q!
det


1

[2]q !
1 0 · · · 0

1
[4]q !

1
[2]q !

1 · · · 0
...

...
... . . . ...

1
[2a−4]q !

1
[2a−6]q !

1
[2a−8]q !

· · · 1
1

[2a−2]q !
1

[2a−4]q !
1

[2a−6]q !
· · · 1

[2]q !


= (−1)a

[n]q!

[n− 2a]q!
∆a

Then, the Charney-Davis quantities for r = 2k + 1 odd are

CD(n, r) = CD(n, r − 2) + Tn,q(2k) = · · · = CD(n, 1) +
k∑
a=1

Tn,q(2a)

= 1 + [n]q!
k∑
a=1

(−1)a

[n− 2a]q!
∆a �

Remark 5.29. Note that when q = 1, (−1)a∆a|q=1 = 1
(2a)!

E2a, where E2a denotes the (2a)th
secant number. Hence, when q = 1,

(−1)a[n]q!

[n− 2a]q!
∆a

∣∣∣∣
q=1

=

(
n

2a

)
E2a,

and the formula agrees with the Charney-Davis quantity of A(Un,r).

In analogy with the uniform case, the q-exponential generating functions of the Charney-
Davis quantities, and the corresponding q-Euler numbers can be computed. Let

sinhq(t) =
∑
n≥0

t2n+1

[2n+ 1]q!
and coshq(t) =

∑
n≥0

t2n

[2n]q!

Set sechq(t) = 1/ coshq(t) and tanhq(t) = sinhq(t)/ coshq(t).
Put E2n(q) := (−1)n[2n]q!∆n and

E2n+1(q) := CD(2n+ 1, 2n+ 1) = 1 + [2n+ 1]q!
n∑
a=1

(−1)a

[2n− 2a+ 1]q!
∆a.
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Proposition 5.30. The following identities of q-exponential generating functions hold:

sechq(t) =
∑
n≥0

E2n,q
t2n

[2n]q!

tanhq(t) =
∑
n≥0

E2n+1,q
t2n+1

[2n+ 1]q!
.

Proof. First, consider the generating function

F (t) =
∑
n≥0

E2n,q
t2n

[2n]q!
.

Observe that by expanding by minors in the first column, ∆n satisfies the recurrence

∆n =
n∑
k=1

(−1)n+1

[2n]q!
∆n−k

Then,

F (t) =
∑
n≥0

(−1)nt2n∆n = 1 +
∑
n≥1

(−1)nt2n
n∑
k=1

(−1)k+1

[2k]q!
∆n−k

= 1 +
∑
r≥0

∑
k≥1

(−1)r+1∆r
t2(r+k)

[2k]q!

= 1 +

(∑
k≥1

t2k

[2k]q!

)(∑
r≥0

(−1)r+1∆rt
2r

)
= 1− (coshq(t)− 1)F (t)

Therefore, solving for F (t) gives

F (t) = 1/ coshq(t) = sechq(t)

Now consider the latter generating function. It follows that∑
n≥0

E2n+1,q
t2n+1

[2n+ 1]q!
=

(∑
n≥0

t2n+1

[2n+ 1]q!

)(∑
k≥0

(−1)k∆kt
2k

)
= sinhq(t)/ coshq(t) = tanhq(t) �

In analogy with the classical tangent/secant numbers, we have the following recurrences:

Proposition 5.31. For any integer n ≥ 0,

(12) E2n,q = −
n−1∑
k=0

[
2n

2k

]
q

E2k,q

(13) E2n+1, q =
n∑
k=0

[
2n+ 1

2k

]
q

E2k,q
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Proof. Consider equation 12. Expanding the product 1 = sechq(t) coshq(t) gives

sechq(t) coshq(t) =

(∑
n≥0

E2n,q
t2n

[2n]q!

)(∑
n≥0

t2n

[2n]q!

)

=
∑
n≥0

(
n∑
k=0

E2n,q

[
2n

2k

]
q

)
t2n

[2n]q!

Hence, equating coefficients gives 12. Now, consider equation 13. We expand the product

tanhq(t) = sechq(t) sinhq(t)

=

(∑
n≥0

E2n,q
t2n

[2n]q!

)(∑
n≥0

t2n

[2n]q!

)

=
∑
n≥0

(
n∑
k=0

E2k,q

[
2n+ 1

2k

]
q

)
t2n+1

[2n+ 1]q!

Hence, equating coefficients gives equation 13. �

Remark 5.32. The generating functions in proposition 5.30 imply that the numbers En,q
agree with the q-secant and q-tangent numbers introduced in [FH10]. In particular, we also
have

En,q =
∑
σ∈In

qexc(σ)

where In denotes the number of alternating permutations of size n. The determinantal
formula given above and the recurrences of proposition 5.31 do not yet appear in the literature
to the authors’ knowledge.

5.2.4. γ-polynomials for M(Fnq ) and Mn−1(Fnq ). For σ ∈ Sn, say i is a double descent of σ
if σ(i) > σ(i + 1) > σ(i + 2). We say that σ has a final descent if σ(n − 1) > σ(n) and an
initial descent if σ(1) > σ(2).

The γ-vectors of Mr(Fnq ) were considered in [SW17] for r = n − 1, n. In particular, the
following results were presented.

Theorem 5.33 ([SW17], thm 4.4). Let

Γn,k =
{
σ ∈ Sn : σ has no double descents, no

final descent, and des(σ)=k

}
.

The γ-vector of H
(
A(M(Fnq )), t

)
=
∑

σ∈Sn
qmaj(σ)−exc(σ)texc(σ) is γ = (γn,k(q)) for

γn,k(q) =
∑
σ∈Γn,k

qinv(σ)

Theorem 5.34 ([SW17], thm 6.1). Let

Γ0
n,k =

{
σ ∈ Sn : σ has no double descents, no initial

descent, no final descent, and des(σ)=k

}
.



CHOW RINGS OF MATROIDS AND ATOMISTIC LATTICES 37

The γ-vector of H
(
A(Mn−1(Fnq )), t

)
=
∑

σ∈Dn
qmaj(σ)−exc(σ)texc(σ) is γ = (γ0

n,k(q)), where

γ0
n,k(q) =

∑
σ∈Γ0

n,k

qinv(σ)

6. Conjectures and future work

6.1. Relationship between order complexes and Chow rings. Let ∆(P ) be the order
complex of a poset P and let h(∆(P ), t) be its h polynomial.

Proposition 6.1. For all n ≥ 1,

h
(
∆(L(Un,n)), t

)
= H

(
A(Un,n), t

)
(See [Pet15] thm 9.1 or https://oeis.org/A008292.) For the corresponding statement

for the uniform matroids Un,r with r < n has small counterexamples, but can be modified
as follows.

Conjecture 6.2. For r < n, we have

h
(
∆(L(Un,r)), t

)
= t2

r∑
i=1

(
n− i− 1

r − i

)
H(A(Un,i), t).

Since it is relatively simple to compute the f -vector of ∆(L(Un,r)), this also gives a formula
for H(A(Un,i+1), t).

Remark 6.3. The shift by t2 is explained by the fact that the poset we are dealing with has a
unique maximum and unique minimum element. For a simplicial complex S, let CS denote
the simplicial complex obtained by taking a cone over S. Now, let P be a finite poset with
unique maximal element> and unique minimal element⊥. Then ∆(P ) = CC∆(P−{>,⊥}),
since every element of P is comparable to both > and ⊥. When we cone a simplicial complex,
we multiply its f -polynomial by t + 1, so its h-polynomial is multiplied by t; here, we cone
twice, so we multiply the h-polynomial by t2.

Remark 6.4. Conjecture 6.2 is equivalent to the equality Fn(t, u) = Hn(t, u + 1) for the
polynomials

Fn(t, u) =
n−2∑
r=0

h(∆(L(Un,r+1 \ {>,⊥})), t)un−2−r

Hn(t, u) =
n−2∑
r=0

H(A(Un,r+1), t)un−2−r

Remark 6.5. Conjecture 6.2 above can be interpreted combinatorially as follows. Let

h(∆(L(Un,r)), t) = h0 + h1t+ · · ·+ hr−1t
r−1.

https://oeis.org/A008292
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Expanding the right hand side and using Corollary 5.6 gives

hk =
r∑

i=k+1

(
n− i− 1

r − i

)
dimZA(Un,i)k

= An,k

[
r∑

i=k+1

(
n− i− 1

r − i

)]
−

n−1∑
j=k+1

[
j∑

i=k+1

(
n− i− 1

r − i

)]
·#{σ ∈ En,n−j | exc(σ) = j − k}

To compute the f vector of ∆(L(Un,r)), we need the following notions from [BGS82].

Definition 6.6. Let P be a graded poset. A Z-valued labeling λ of the covering relations
x ≺ y in P is called an EL-labeling if for every interval [x, y], there is a unique chain
a[x,y] : x = x0 ≺ x1 ≺ · · · ≺ xk = y such that λ(x0 ≺ x1) ≤ · · ·λ(xk−1 ≺ xk) and for every
other chain b : x = y0 ≺ y1 ≺ · · · ≺ yk = y,

λ(b) =
(
λ(y0 ≺ y1), . . . , λ(yk−1 ≺ yk)

)
>L

(
λ(x0 ≺ x1), . . . , λ(xk−1 ≺ xk)

)
λ(a[x,y])

under the lexicographic ordering.

A graded poset P is called EL-shellable is it admits an EL-labeling.

Definition 6.7. Let P be a rank d + 1 EL-shellable bounded ranked poset with EL labeling
λ. For any maximal chain m : ⊥ = x0 ≺ · · · ≺ xd+1 = >, the Descent set of M is the set

D(m) = {i ∈ [d] : λ(xi−1 ≺ xi) > λ(xi ≺ xi+1)} .

Let P be a graded poset of rank d+ 1 with unique minimal and maximal elements ⊥,>.
For S ⊆ [d], set

PS = {x ∈ P : x = ⊥, x = >, or rank(x) ∈ S}
Then, for any such S ⊆ [d], let α(S) be the number of maximal chains in PS and set

β(S) =
∑
T⊆S

(−1)|S−T |α(T )

By inclusion-exclusion, this is equivalent to

α(S) =
∑
T⊆S

β(T )

Theorem 6.8. ([BGS82], thm 2.2) For S ⊆ [d], β(S) equals the number of maximal chains
m in P with D(m) = S.

In our case, L(Un,r) is EL-shellable with shelling given by letting λ(S ≺ S ∪ {x}) = x
for rank(S) < r and λ(S < >) = min {x ∈ [d] : x 6∈ S}. Let des(S) denote the number of
maximal chains m with D(m) = S. Since L(Un,r) is EL-shellable, the f vector of its order
complex can be reduced to counting maximal chains:

des(S) =


r−1∑
k=1

#
{
m ⊆ L(Ur−1,r−1) : m is maximal

des(m)=S−{r},mr−1=k

}[( n

r − 1

)
−
(

n

r − k − 1

)]
if r ∈ S

r−1∑
k=1

#
{
m ⊆ L(Ur−1,r−1) : m is maximal

des(m)=S,mr−1=k

}( n

r − k − 1

)
if r 6∈ S
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Therefore,

fi =
∑
S⊆[d]
#S=i

α(S) =
∑
S⊆[d]
#S=i

∑
T⊆S

β(S)

=
∑

#S=i
r∈S

∑
r∈T⊆S

r−1∑
k=1

(
n

r − 1

)
#
{
m ⊆ L(Ur−1,r−1) : m is maximal

des(m)=T−{r},mr−1=k

}

+
∑

#S=i
r 6∈S

∑
T⊆S

r−1∑
k=1

(
n

r − k − 1

)
#
{
m ⊆ L(Ur−1,r−1) : m is maximal

des(m)=T,mr−1=k

}

=
i∑

j=0

(
r − j − 1

i− j

) r−1∑
k=1

(
n

r − k − 1

)
# {σ ∈ Sr−1 : exc(σ) = j, σ(r − 1) = k}

+

(
n

r − 1

) i−1∑
j=0

(
r − j − 1

i− j − 1

)
Ar−1,j

This gives a combinatorial formula equivalent to the stated conjecture, and suggests a pos-
sible avenue for verification.

6.2. Other posets. One can define Chow rings entirely in terms of atomic lattices, so it is
natural to ask whether the Chow rings of atomic lattices not arising from matroids might
have nice structure. We offer some suggestions on atomic lattices to consider.

Face lattices of polytopes: Experimentally, all of the Hilbert series of face lattices
of polytopes have been symmetric. The experiments have included cubes, cyclic
polytopes, cross polytopes, and some flow polytopes. Note that while some of the
application of results from [AHK15] apply to face lattices of pure simplicial com-
plexes adjoined with a top element, these do not necessarily apply to face lattices of
polytopes.

Convex closure: Given a set of points X ⊆ Rn, one can define a lattice whose ele-
ments are C ∩X where C ⊆ Rn is convex, and the subsets are ordered by inclusion.
Experimentally, all Hilbert series of these lattices have been symmetric.

Operations on matroids and lattices: One could consider how the Chow rings and
corresponding Hilbert series of products of lattices, star products of ranked lattices,
and direct sums of matroids can be expressed in terms of the Hilbert series of the
smaller Chow rings. We have already considered the case of products to some extent,
but further work should be done.

Appendix A. Poincaré duality for ranked atomistic lattices

Here, we provide some details to support the assertions made in Section 3. We provide
minimal discussion, only including places where proofs or statements must be modified from
the original ones presented in Adiprisito, Huh, and Katz’s work. To compare these to the
originals, see Section 6 of [AHK15].
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Lemma A.1. For a nice lattice L with Z ∈ L and α an atom of L,

rank(Z ∧ α) ≤ rank(L) + 1.

Proof. Suppose for some element Z ∈ L and atom α ∈ L, rank(Z ∧α) > rank(L) + 1. Then,

d(Z,Z ∧ α) = 1 while rank(Z ∧ α)− rank(Z) > 1,

contradicting the assumption that L is nice. �

Lemma A.2. Suppose that F ∈ L has r = rank(F ), and say I ⊆ F has clL(I) = F . Then,
there exists J ⊆ I such that clL(J) = F and J ∈ I(L), i.e. #J = r.

Proof. Since clL(I) = F , we can write F =
∧N
i=1 αi for I = {α1, . . . , αn}. Then, by Lemma

A.1, taking joins with an atom αi either increases the rank by one or leads to equality. Hence,
for every n, we can remove αi if rank(

∧n−1
i=1 αi) = rank(

∧n
i=1 αi). Doing so must leave exactly

r distinct indices ij such that F =
∧r
j=1 αij . Setting J = {αi1 , . . . , αir} gives the desired

set. �

Let L be a finite, ranked, atomistic lattice with E the set of L’s atoms. Consider the rings
A(L,P) for P an order filter in L as in Section 3. Observe that when P = ∅, the relations
in J4 imply xi = xj for i, j ∈ E. Hence A(M,∅) = Z[x]/(xr+1). Also observe that, when
P = P(L) = L−{⊥,>}, the relations in J3 together with the observation that {i} ∈ I(L)
imply xi = 0 ∈ A(M,P(M)) for all i. Hence, A(L,P(M)) = A(L).

Proposition A.3 (compare with [AHK15], prop. 6.2). If I ⊆ E and F ∈P, then
(1) If I has cardinality at least the rank of F , then(∏

i∈I

xi

)
xF = 0 ∈ A(L,P)

(2) If I has cardinality at least r + 1, then∏
i∈I

xi = 0 ∈ A(L,P)

Proof. Same as in [AHK15] except for the base case of induction. Namely, in the case
rank(I) = rank(F ), we can assume (by relations in J2) that I ⊆ F . In this case, lemma
A.2 implies the existence of a subset J of I of cardinality and rank exactly rank(F ), i.e.
clL(J) = F and J ∈ I(L). Hence, both products are zero in the base case. �

Proposition A.4 (compare with [AHK15], prop. 6.6). The pullback homomorphism

ΦZ : A(L,P−)→ A(L,P+)

taking xF 7→ xF and

xi 7→

{
xi + xF if i ∈ Z
xi if i 6∈ Z

is well-defined.
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Proof. It suffices to show that for φZ : SE∪P− → SE∪P+ the corresponding map of polynomial
rings, we have φZ(J3) ⊆ J2 + J3.

If I ∈ I(L) has clL(I) ∈P− ∪ {E}, then

φZ

(∏
i∈I

xi

)
=
∏
i∈I\Z

xi
∏
i∈I∩Z

(xi + xZ)

Then, in the polynomial ring SE∪P+ , we have
∏

i∈I xi ∈ J3. Moreover, because Z is minimal,
I \ Z 6= ∅ so

(∏
i∈I\Z xi

)
xZ ∈ J2. The rest of the proof is identical to [AHK15], prop.

6.6. �

Adiprisito, Huh, and Katz go on to prove a string of lemmas, each holding verbatim with
references to M replaced by a nice atomistic lattice L, and references to bases of M replaced
by maximal sets (under inclusion) in I(L). These lemmas are used to prove first that ΦZ is
an isomorphism in rank 1 and Φq

Z⊕
⊕rank(Z)−1

p=1 Φp,q
Z is a surjective group homomorphism (see

Propositions 3.3 and 3.4 for definitions of these maps). Finally, an inductive proof is given
of the main theorems, stated here in Section 3, Theorems 3.5 and 3.6. As these latter steps
and their proofs for matroids do not make reference to the relations in J3, they go through
unchanged for more the more general class of finite nice atomistic lattices.

Acknowledgments

This research was carried out as part of the 2017 summer REU program at the School of
Mathematics, University of Minnesota, Twin Cities, and was supported by NSF RTG grant
DMS-1148634 and by NSF grant DMS-1351590. The authors would like to thank Victor
Reiner, Pavlo Pylyavskyy, and Benjamin Strasser for their mentorship and support.

References

[AHK15] K. Adiprasito, J. Huh, and E. Katz. “Hodge Theory for Combinatorial Geome-
tries”. In: ArXiv e-prints (Nov. 2015). arXiv: 1511.02888 [math.CO].

[Ath16] Christos A Athanasiadis. “A survey of subdivisions and local h-vectors”. In: The
Mathematical Legacy of Richard P. Stanley (2016), pp. 39–52.

[Bak17] M. Baker. “Hodge theory in combinatorics”. In: ArXiv e-prints (May 2017).
arXiv: 1705.07960 [math.CO].

[BGS82] Anders Björner, Adriano M Garsia, and Richard P Stanley. “An introduction to
Cohen-Macaulay partially ordered sets”. In:Ordered sets. Springer, 1982, pp. 583–
615.

[CD95] Ruth Charney and Michael Davis. “The Euler characteristic of a nonpositively
curved, piecewise Euclidean manifold”. In: Pacific Journal of Mathematics 171.1
(1995), pp. 117–137.

[DE10] E. Deutsch and S. Elizalde. “The largest and the smallest fixed points of permu-
tations”. In: European Journal of Combinatorics 31 (July 2010), pp. 1404–1409.
doi: https://doi.org/10.1016/j.ejc.2009.12.002. eprint: math/09042792.

[FH10] Dominique Foata and Guo-Niu Han. “The q-tangent and q-secant numbers via
basic Eulerian polynomials”. In: Proceedings of the American Mathematical So-
ciety 138.2 (2010), pp. 385–393.

http://arxiv.org/abs/1511.02888
http://arxiv.org/abs/1705.07960
https://doi.org/https://doi.org/10.1016/j.ejc.2009.12.002
math/09042792


42 REFERENCES

[FY04] E. M. Feichtner and S. Yuzvinsky. “Chow rings of toric varieties defined by
atomic lattices”. In: Inventiones Mathematicae 155 (Mar. 2004), pp. 515–536.
doi: 10.1007/s00222-003-0327-2. eprint: math/0305142.

[McM93] Peter McMullen. “On simple polytopes”. In: Inventiones mathematicae 113.1
(Dec. 1993), pp. 419–444. issn: 1432-1297. doi: 10.1007/BF01244313. url:
https://doi.org/10.1007/BF01244313.

[Pet15] T Kyle Petersen. Eulerian numbers. Birkhäuser, 2015.
[PRW06] Alexander Postnikov, Victor Reiner, and Lauren Williams. “Faces of generalized

permutohedra”. In: Doc. Math 13.207-273 (Sept. 2006), p. 51. doi: https://
doi.org/10.1016/j.ejc.2009.12.002. eprint: math/0609184.

[RW05] Victor Reiner and Volkmar Welker. “On the Charney–Davis and Neggers–Stanley
Conjectures”. In: Journal of Combinatorial Theory, Series A 109.2 (2005), pp. 247–
280.

[Sta+04] Richard P Stanley et al. “An introduction to hyperplane arrangements”. In: Geo-
metric combinatorics 13 (2004), pp. 389–496.

[Sta12] Richard P. Stanley. Enumerative combinatorics. Volume 1. Second. Vol. 49. Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2012, pp. xiv+626. isbn: 978-1-107-60262-5.

[Sta96] Richard P. Stanley. Combinatorics and commutative algebra. Second. Vol. 41.
Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1996, pp. x+164.
isbn: 0-8176-3836-9.

[Sta97] Richard P Stanley. Enumerative Combinatorics. Vol. 1, vol. 49 of Cambridge
Studies in Advanced Mathematics. 1997.

[Sun05] Zhi-Wei Sun. “On Euler numbers modulo powers of two”. In: Journal of Number
Theory 115.2 (2005), pp. 371–380.

[SW07] John Shareshian and Michelle Wachs. “q-Eulerian polynomials: excedance num-
ber and major index”. In: Electronic Research Announcements of the American
Mathematical Society 13.4 (2007), pp. 33–45.

[SW10] John Shareshian and Michelle L Wachs. “Eulerian quasisymmetric functions”. In:
Advances in Mathematics 225.6 (2010), pp. 2921–2966.

[SW17] John Shareshian and Michelle LWachs. “Gamma-positivity of variations of Euler-
ian polynomials”. In: arXiv preprint arXiv:1702.06666 (2017).

[Wac89] Michelle L Wachs. “On q-derangement numbers”. In: Proceedings of the American
Mathematical Society 106.1 (1989), pp. 273–278.

[WWZ17] J. D. Wiltshire-Gordon, A. Woo, and M. Zajaczkowska. “Specht Polytopes and
Specht Matroids”. In: ArXiv e-prints (Jan. 2017). arXiv: 1701.05277 [math.CO].

https://doi.org/10.1007/s00222-003-0327-2
math/0305142
https://doi.org/10.1007/BF01244313
https://doi.org/10.1007/BF01244313
https://doi.org/https://doi.org/10.1016/j.ejc.2009.12.002
https://doi.org/https://doi.org/10.1016/j.ejc.2009.12.002
math/0609184
http://arxiv.org/abs/1701.05277

	1. Introduction
	1.1. Organization
	1.2. Summary of main results

	2. Definitions and Background
	2.1. Posets
	2.2. Matroids
	2.3. q-analogs
	2.4. Simplicial Complexes
	2.5. Graded Rings and Modules
	2.6. Chow Rings
	2.7. Eulerian Polynomials, Tangent/Secant Numbers and Statistics on Sn

	3. Generalizations of Poincaré Duality to nice Atomic Lattices
	4. Methods for calculating Hilbert series of Chow rings
	4.1. Incidence algebra
	4.2. Applications of results of Adiprasito-Huh-Katz to lattices
	4.3. Computing Hilbert series of A(L x B1) using differential operators

	5. Explicit determination of Hilbert series and Charney-Davis quantities
	5.1. The Uniform Matroid
	5.2. Matroid of subspaces of vector spaces over finite fields

	6. Conjectures and future work
	6.1. Relationship between order complexes and Chow rings
	6.2. Other posets

	Appendix A. Poincaré duality for ranked atomistic lattices
	Acknowledgments
	References

