ON VIRTUALLY COHEN-MACAULAY SIMPLICIAL COMPLEXES

Nathan Kenshur, Feiyang Lin*, Sean McNally, Zixuan Xu*, Teresa Yu

Introduction

Virtual resolutions of graded modules in the sense of [1] generalize free resolutions. The combinatorial properties of Cohen-Macaulay simplicial complexes, which are complexes whose Stanley-Reisner ideal have short free resolutions, are well-understood. **Virtually Cohen-Macaulay** (VCM) complexes are defined by virtual resolutions and therefore generalize Cohen-Macaulay complexes. In this project, we tried to understand the combinatorial properties of VCM simplicial complexes, with the following results:

- Balanced complexes are VCM;
- If the Stanley-Reisner ring of a complex is VCM by the Intersection Method, then the complex is CM up to irrelevant faces;
- VCM simplicial complexes are pure up to irrelevant facets;
- VCM simplicial complexes are not necessarily gallery-connected up to irrelevant facets.

Definitions

An abstract simplicial complex Δ on vertex set X is a collection of subsets of X such that $A \in \Delta$ whenever $A \subseteq B \in \Delta$.

Fig. 1: $X = \{a, b, c, d, e, f\}, \Delta = 2^{\{a, b, d, e\}} \cup 2^{\{b, c, e, f\}}, \text{ Facets: } \{a, b, d, e\}, \{b, c, e, f\}, I_{\Delta} = \langle c, f \rangle \cap \langle a, d \rangle$

Given a simplicial complex Δ on X, the **Stanley-Reisner ideal** of Δ is the following ideal in $\mathbb{k}[X]$:

$$I_{\Delta} = \bigcap_{A \in \Delta} (x_i : x_i \notin A) = (m_A : A \notin \Delta), m_A = \prod_{x_i \in A} x_i$$

We use the following notation:

- $\bullet \mathbb{P}^{\vec{n}} = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r} \text{ where } \vec{n} = (n_1, \dots, n_r).$
- $S := \mathbb{k}[x_{i,j} : 1 \le i \le r, 0 \le j \le n_i]$ is the Cox ring of $\mathbb{P}^{\vec{n}}$.
- $B := \bigcap_{i=1}^r \langle x_{i,0}, x_{i,1}, \dots, x_{i,n_i} \rangle$ is the **irrelevant ideal** of S. Note that $V(B) = \emptyset$.
- $X_{\vec{n}} = \bigcup_{i=1}^r \{x_{i,j} : 0 \le j \le n_i\}$ is the vertex set for simplicial complexes in $\mathbb{P}^{\vec{n}}$.
- The **Stanley-Reisner ring** of Δ is the quotient ring $\mathbb{k}[\Delta] := S/I_{\Delta}$.
- Given a vertex $x_{i,j} \in X_{\vec{n}}$, we say that i is the **component** of $x_{i,j}$.

A complex of free S-modules,

$$\mathcal{F}_{\bullet}: 0 \leftarrow F_0 \stackrel{\phi_1}{\leftarrow} F_1 \stackrel{\phi_2}{\leftarrow} \cdots \stackrel{\phi_n}{\leftarrow} F_n,$$

is a **virtual resolution of** S/I if

1. rad ann $H_i\mathcal{F}_{\bullet} \supseteq B$ for all i > 0;

2. ann $H_0\mathcal{F}_{\bullet}: B^{\infty} = I: B^{\infty}$.

A simplicial complex Δ on $X_{\vec{n}}$ is **virtually Cohen-Macaulay** if there exists a virtual resolution of $\mathbb{k}[\Delta]$ of length codim I_{Δ} .

Virtual Equivalence

Lemma 1. For two ideals $I, J \subset S$ with V(I) = V(J), any virtual resolution r of S/J is a virtual resolution of S/I.

A face F of a simplicial complex Δ is relevant if it contains at least one vertex from every component; otherwise it is **irrelevant**. Since $I_{\Delta} = \bigcap_{A \in \Delta} (x_i : x_i \notin A)$, adding a face F to Δ is equivalent to intersecting I_{Δ} with the ideal $I = (x : x \notin F)$. Therefore, $V(I) = \emptyset$ if and only if F is irrelevant. If F is irrelevant, we say that $\Delta \cup \{F\}$ and $\Delta \setminus \{F\}$ (where $F \in \Delta$) are elementarily virtually equivalent to Δ . Two complexes Δ and Δ' are **virtually equivalent** if they are related by a sequence of elementary virtual equivalences.

Lemma 2. Let the complexes Δ, Δ' be virtually equivalent. Then Δ is VCM iff Δ' is VCM. In particular, if Δ' is CM, then Δ is VCM.

Fig. 2: Δ in $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$

Fig. 3: $\Delta' = \Delta \cup \{\text{Irrelevant Facets}\}\$

Balanced Complexes are VCM

Let Δ be a pure simplicial complex in $\mathbb{P}^{\vec{n}}$. We say that a facet $F \in \Delta$ is **balanced** if it contains exactly one vertex of every component and a simplicial complex is **balanced** if all of its facets are balanced. The main result of this project is the following theorem.

Theorem 1. If Δ is a balanced complex in the product projective space $\mathbb{P}^{\vec{n}}$, then Δ is virtually Cohen-Macaulay.

The proof uses the fact that the Stanley-Reisner ring of a pure shellable simplicial complex is Cohen-Macaulay. In particular, we show that:

- The irrelevant complex with only one balanced facet is shellable, where the *irrelevant* $complex \ \Delta_{irr}(\vec{n})$ supported on $X_{\vec{n}}$ is an (r-1)-dimensional complex defined by: for $\dim \sigma = r 1$,
 - $\sigma \in \Delta_{irr}(\vec{n}) \Leftrightarrow$ there is only one pair of vertices $\{v, w\} \subset \sigma$ of the same component;
- Any other balanced facet has all its ridges contained in $\Delta_{irr}(\vec{n})$, so we can add any remaining balanced facets and get a shelling order of $\Delta_{irr}(\vec{n}) \cup \Delta$;
- So Δ is virtually equivalent to a shellable complex.

Constructing the Shelling

Let $\Delta_{\neg k} = \{ \sigma \in \Delta_{irr}(\vec{n}) \mid x_{i,j} \in \sigma \Rightarrow i \neq k \}$. We illustrate the shelling with $\vec{n} = (3, 2, 2, 2)$. For convenience, we use **abcd efg hij klm** in place of the $x_{i,j}$ notation (for instance **e** represents $x_{2,0}$).

General Shelling

- First add the lexicographically first balanced facet.
- Then add the facets of $\Delta_{\neg r}, \ldots, \Delta_{\neg 1}$, in descending order, where for each k, add the facets of $\Delta_{\neg k}$ as follows:
- -We can write every facet $F \in \Delta_{\neg k}$ as $F = \text{Facet}(p_F, \vec{v_F})$, where p_F is its defining vertex pair and $\vec{v_F} \in \mathbb{Z}_{\geq 0}^{r-2}$ specifying the lexicographic order of the rest of its vertices.
- -Then given $F = \text{Facet}(p_F, \vec{v_F})$ and $G = \text{Facet}(p_G, \vec{v_G})$, F < G iff $\vec{v_F} < \vec{v_G}$ or $\vec{v_F} = \vec{v_G}$ and $p_F < p_G$.
- -Add the facets of $\Delta_{\neg k}$ is ascending order.

Example

- The lexicographically first balanced facet is aehk.
- Add the facets of $\Delta_{\neg 4}, \ldots, \Delta_{\neg 1}$, in descending order:
- -E.g., in $\Delta_{\neg 4}$, Facet(ab, (2,3)) = abfj.
- -E.g., fgah < efci, because
- fgah = Facet(fg, (1, 1)), efci = Facet(ef, (3, 2)).
- The first facets of $\Delta_{\neg 4}$ in ascending order is:
- abeh < aceh < adeh < bceh < bdeh < cdeh
 < efah < egah < fgah < hiae < hjae < ijae</pre>
- < abei < acei < adei < bcei < bdei < cdei
- < efai < egai < fgai < hiaf < hjaf < ijaf

Other Results

A simplicial complex is *pure* if all of its facets have the same dimension. A pure simplicial complex is *gallery-connected* if for any two facets $F, F' \in \Delta$, there exists a path of facets $F = F_1, \ldots, F_{n-1}, F_n = F'$ such that for all $1 \le i \le n-1$, the intersection $F_i \cap F_{i+1}$ has codimension 1 in Δ . It is well-known that CM complexes are pure and gallery-connected. Naturally, we ask if the same is true for VCM complexes up to irrelevant faces.

Result I: VCM complexes are pure up to irrelevant facets.

Method of Proof: [1] provides a bound for the codimension of an associated prime of I_{Δ} , which is sharp for all virtually Cohen-Macaulay Δ . The codimension of an associated prime is linearly related to the dimension of the corresponding facet. **Result II:** VCM complexes are not necessarily gallery-connected up to irrelevant

facets. Consider the following counterexample:

Fig. 4: VCM but not gallery-connected complex

One way to obtain virtual resolutions is using the **Intersection Method** as follows: If there exists J such that $V(J) = \emptyset$ and $I' = I \cap J$ is Cohen-Macaulay, then I is virtually Cohen-Macaulay. We showed that the Intersection Method for squarefree monomial ideals reduces to modifying the corresponding complex with irrelevant faces:

Result III: Let Δ be a simplicial complex on the product projective space $\mathbb{P}^{\vec{n}}$. If there exists J a monomial ideal with $V(J) = \emptyset$ such that $I_{\Delta} \cap J$ is Cohen-Macaulay, then there exists Δ' containing only irrelevant facets such that $\operatorname{rad}(J) = I_{\Delta'}$ and $I_{\Delta} \cap I_{\Delta'}$ is Cohen-Macaulay. In particular, this implies $\Delta \cup \Delta'$ is Cohen-Macaulay and Δ is virtually Cohen-Macaulay.

Method of proof: it is well-known (for example in [2]) that for a monomial ideal I, if I is Cohen-Macaulay, then rad(I) is also Cohen-Macaulay.

Conclusions and Future Work

- There are various different methods to obtain short virtual resolutions of corresponding Stanley-Reisner rings of simplicial complexes and we have no characterization of which method works best on which kind of simplicial complexes.
- We hope to work out a homological criterion for when complexes are VCM (analogous to Reisner's criterion).

Acknowledgements

This research was conducted at the 2019 University of Minnesota—Twin Cities REU, supported by NSF RTG grant DMS-1148634. We would like to thank Professor Christine Berkesch, Greg Michel, Professor Vic Reiner, and Jorin Schug for their patient guidance and inspiring ideas throughout this project.

References

[1] Christine Berkesch, Daniel Erman, and Gregory G. Smith. "Virtual Resolutions for a Product of Projective Spaces". In: To appear in Alg. Geom. (2019). arXiv: 1703.07631 [math.AC].
[2] Jürgen Herzog, Yukihide Takayama, and Naoki Terai. "On the radical of a monomial ideal". In: Archiv der Mathematik 85 (Nov. 2005), pp. 397–408. DOI: 10.1007/s00013-005-1385-z.