Factorizations of k-Nonnegative Matrices

Neeraja Kulkarni, Joe Suk, Ewin Tang
JMM 2018

Background

Introduction

Definition

An matrix is totally nonnegative (TNN) if all of its minors are nonnegative.

Introduction

Definition

An matrix is totally nonnegative (TNN) if all of its minors are nonnegative.

- This property appears in stochastic processes, planar networks, Pólya frequency sequences, etc.

Introduction

Definition

An matrix is totally nonnegative (TNN) if all of its minors are nonnegative.

- This property appears in stochastic processes, planar networks, Pólya frequency sequences, etc.
- The space of invertible totally nonnegative matrices form a semigroup

Introduction

Definition

An matrix is totally nonnegative (TNN) if all of its minors are nonnegative.

- This property appears in stochastic processes, planar networks, Pólya frequency sequences, etc.
- The space of invertible totally nonnegative matrices form a semigroup
- Fomin \& Zelevinsky nicely characterize and parametrize the semigroup via factorization-based cells

Loewner-Whitney Theorem

The subsemigroup of invertible TNN upper unitriangular matrices has generating set $\left\{e_{i}(a) \mid i \in[n-1], a>0\right\}$ (a is the parameter):

$$
e_{i}(a)=\left[\begin{array}{llllll}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & a & & \\
& & & 1 & & \\
& & & & \ddots & \\
& & & & & 1
\end{array}\right]
$$

Relations

$$
\begin{aligned}
e_{i}(a) e_{i}(b) & =e_{i}(\alpha) \\
e_{i}(a) e_{i+1}(b) e_{i}(c) & =e_{i+1}(\alpha) e_{i}(\beta) e_{i+1}(\gamma) \\
e_{i}(a) e_{j}(b) & =e_{j}(\alpha) e_{i}(\beta) \quad|i-j|>1
\end{aligned}
$$

The conversion expression for all parameters is subtraction-free, and for the latter two, bijective.

Defining Factorizations

Define the free word monoid $\mathcal{A}=\left\langle e_{i} \mid i \in[n-1]\right\rangle$ and define an equivalence relation generated by

$$
\begin{aligned}
e_{i} e_{i} & =e_{i} \\
e_{i} e_{i+1} e_{i} & =e_{i+1} e_{i} e_{i+1} \\
e_{i} e_{j} & =e_{j} e_{i} \quad|i-j|>1
\end{aligned}
$$

Defining Factorizations

Define the free word monoid $\mathcal{A}=\left\langle e_{i} \mid i \in[n-1]\right\rangle$ and define an equivalence relation generated by

$$
\begin{aligned}
e_{i} e_{i} & =e_{i} \\
e_{i} e_{i+1} e_{i} & =e_{i+1} e_{i} e_{i+1} \\
e_{i} e_{j} & =e_{j} e_{i} \quad|i-j|>1
\end{aligned}
$$

Define a length function $\ell: \mathcal{A} \rightarrow \mathbb{N}$ to be the number of letters in a word.

Defining Factorizations

Define the free word monoid $\mathcal{A}=\left\langle e_{i} \mid i \in[n-1]\right\rangle$ and define an equivalence relation generated by

$$
\begin{aligned}
e_{i} e_{i} & =e_{i} \\
e_{i} e_{i+1} e_{i} & =e_{i+1} e_{i} e_{i+1} \\
e_{i} e_{j} & =e_{j} e_{i} \quad|i-j|>1
\end{aligned}
$$

Define a length function $\ell: \mathcal{A} \rightarrow \mathbb{N}$ to be the number of letters in a word. Define the parameter map for a word $w \in \mathcal{A}$ by
$x_{w}: \mathbb{R}_{>0}^{\ell(w)} \rightarrow G L_{n}(\mathbb{R}) \quad x_{w}\left(a_{1}, \ldots, a_{\ell(w)}\right)=w_{1}\left(a_{1}\right) \cdots w_{\ell(w)}\left(a_{\ell(w)}\right)$
Thus, the image of the parameter map is the set of matrices with w as a factorization.

Forming Cells

Call a word reduced if it has minimal length among its equivalence class.

Forming Cells

Call a word reduced if it has minimal length among its equivalence class. For $u, w \in \mathcal{A}$,

$$
\begin{aligned}
& u \equiv w \Longleftrightarrow \operatorname{Im}\left(x_{u}\right)=\operatorname{Im}\left(x_{w}\right) \\
& u \not \equiv w \Longleftrightarrow \operatorname{Im}\left(x_{u}\right) \cap \operatorname{Im}\left(x_{w}\right)=\emptyset
\end{aligned}
$$

Let $U(w):=\operatorname{Im}\left(x_{w}\right)$ (called Bruhat cells). The set of $U(w)$ for distinct, reduced w partition the semigroup.

Forming Cells

Call a word reduced if it has minimal length among its equivalence class. For $u, w \in \mathcal{A}$,

$$
\begin{aligned}
& u \equiv w \Longleftrightarrow \operatorname{Im}\left(x_{u}\right)=\operatorname{Im}\left(x_{w}\right) \\
& u \not \equiv w \Longleftrightarrow \operatorname{Im}\left(x_{u}\right) \cap \operatorname{Im}\left(x_{w}\right)=\emptyset
\end{aligned}
$$

Let $U(w):=\operatorname{Im}\left(x_{w}\right)$ (called Bruhat cells). The set of $U(w)$ for distinct, reduced w partition the semigroup.

By noticing the identification $e_{i} \mapsto(i, i+1) \in S_{n}$ which generate S_{n} as a Coxeter group, we see:

- the cells are naturally indexed by elements in S_{n}
- the cells form a CW-complex
- the corresponding closure poset is isomorphic to the Bruhat poset on S_{n}

k-Nonnegativity

Definition

A matrix M is k-nonnegative ($k N N$) if all minors of order k or less are nonnegative.

k-Nonnegativity

Definition

A matrix M is k-nonnegative ($k N N$) if all minors of order k or less are nonnegative.

- This notion has garnered interest from other scholars, and is a natural generalization to consider

k-Nonnegativity

Definition

A matrix M is k-nonnegative ($k N N$) if all minors of order k or less are nonnegative.

- This notion has garnered interest from other scholars, and is a natural generalization to consider
- Invertible k-nonnegative matrices form a semigroup

k-Nonnegativity

Definition

A matrix M is k-nonnegative ($k N N$) if all minors of order k or less are nonnegative.

- This notion has garnered interest from other scholars, and is a natural generalization to consider
- Invertible k-nonnegative matrices form a semigroup
- Our new work attempts to generalize TNN results to the $k N N$ case

k-Nonnegativity

Definition

A matrix M is k-nonnegative ($k N N$) if all minors of order k or less are nonnegative.

- This notion has garnered interest from other scholars, and is a natural generalization to consider
- Invertible k-nonnegative matrices form a semigroup
- Our new work attempts to generalize TNN results to the $k N N$ case
- We succeed in two cases: $(n-1) \mathrm{NN}$ matrices, and $(n-2) \mathrm{NN}$ unitriangular matrices

Results

Generators

Theorem

The semigroup of $(n-2) N N$ upper unitriangular matrices is generated by the e_{i} 's and the T-generators.

The T-generators have the following form.

$$
\begin{gathered}
T(\vec{a}, \vec{b})=\left[\begin{array}{ccccc}
1 & a_{1} & a_{1} b_{1} & & \\
& 1 & a_{2}+b_{1} & a_{2} b_{2} & \\
& & 1 & \ddots & \ddots \\
& & \ddots & a_{n-3}+b_{n-4} & a_{n-3} b_{n-3} \\
& & & & 1
\end{array}\right) \\
\\
\\
\\
\\
\end{gathered}
$$

Relations

Adding T leads to additional relations. The following is a complete list (indices are $\bmod n-1$):

- $e_{i}(x) T(\vec{a}, \vec{b})=T(\vec{A}, \vec{B}) e_{i+2}\left(x^{\prime}\right)$
- $e_{n-1} e_{n-2} T=$

$$
e_{n-2} e_{n-1} T \sqcup e_{n-2} \cdots e_{1} e_{n-1} \cdots e_{2} \sqcup e_{n-2} \cdots e_{1} e_{n-1} \cdots e_{1}
$$

These relations are bijective and subtraction-free as desired.

Relations

Adding T leads to additional relations. The following is a complete list (indices are $\bmod n-1$):

- $e_{i}(x) T(\vec{a}, \vec{b})=T(\vec{A}, \vec{B}) e_{i+2}\left(x^{\prime}\right)$
- $e_{n-1} e_{n-2} T=$

$$
e_{n-2} e_{n-1} T \sqcup e_{n-2} \cdots e_{1} e_{n-1} \cdots e_{2} \sqcup e_{n-2} \cdots e_{1} e_{n-1} \cdots e_{1}
$$

These relations are bijective and subtraction-free as desired.
We can extend the parameter map x_{w} and thus $U(w)$ to add T.

Reduced Words

Consider the alphabet $\mathcal{B}=\left\langle e_{1}, e_{2}, \ldots, e_{n-1}, T\right\rangle$ modulo all relations.

Theorem

Let $w_{0,[n-2]}=(n-2, n-3, \ldots, 1, n-1, n)$ in one-line notation. Then all words with at most one T are equal to one of the following distinct reduced words:

$$
\begin{cases}v \lambda & v \leq w_{0,[n-2]}, \\ & \lambda \in\left\{T, e_{n-1} T, e_{n-2} T, e_{n-2} e_{n-1} T\right\} \\ w & w \in S_{n}\end{cases}
$$

Cell Topology

Theorem (Disjointness)

For reduced words v and w, if $v \neq w$ then $U(v) \cap U(w)=\emptyset$.

Cell Topology

Theorem (Disjointness)

For reduced words v and w, if $v \neq w$ then $U(v) \cap U(w)=\emptyset$.
Theorem (Homeomorphic to Open Balls)
$U(w)$ is homeomorphic to $\mathbb{R}^{\ell(w)}$.

Cell Topology

Theorem (Disjointness)

For reduced words v and w, if $v \neq w$ then $U(v) \cap U(w)=\emptyset$.
Theorem (Homeomorphic to Open Balls)
$U(w)$ is homeomorphic to $\mathbb{R}^{\ell(w)}$.

Theorem (Well-behaved Closure Order)

The closure of a cell $\overline{U(w)}$ is the disjoint union of all cells in the interval between \emptyset and $U(w)$ subject to the subword order on \mathcal{B}.

Cell Topology

Theorem (Disjointness)

For reduced words v and w, if $v \neq w$ then $U(v) \cap U(w)=\emptyset$.

Theorem (Homeomorphic to Open Balls)

$U(w)$ is homeomorphic to $\mathbb{R}^{\ell(w)}$.

Theorem (Well-behaved Closure Order)

The closure of a cell $\overline{U(w)}$ is the disjoint union of all cells in the interval between \emptyset and $U(w)$ subject to the subword order on \mathcal{B}.

Corollary (CW-complex)
The set of $U(w)$ form a CW-complex, with closure relations described above.

Subword Order

We can still describe the cell closure poset with a subword order. To do this, we extend the Bruhat order on S_{n} by defining the subwords of T.

- $m<\lambda \in\left\{T, e_{n-1} T, e_{n-2} T, e_{n-2} e_{n-1} T\right\}$ precisely when $m \leq \alpha=e_{n-2} \cdots e_{1} e_{n-1} \cdots e_{1}$ and satisfies the following:
- $m(1) \neq n$; if λ has no e_{n-1}, then $m(2) \neq n$ is relaxed; if λ has no e_{n-2}, then $m(1) \neq n-1$.

This description still defines a valid subword order.

Acknowledgements

Thanks to:

- The School of Mathematics at UMN, Twin Cities
- NSF RTG grant DMS-1148634
- NSF grant DMS-1351590
- Sunita Chepuri, Pavlo Pylyavskyy, Victor Reiner, Elizabeth Kelley, Anna Brosowsky, Alex Mason

See our preprint at arXiv:1710.10867 for more information.

Cell Topology (cont.)

Theorem

The poset on $\{U(w)\}$ given by the subword order on reduced words is graded.

What other properties does the closure poset attain? More knowledge would lead to understanding the shape of the space.

We know that the space is not a sphere, since the poset is not Eulerian.

General TNN Matrices

General TNN matrices are generated by $e_{i}(a)^{\prime} s, e_{i}(a)^{T}$'s, and diagonal matrices. They are parametrized via double Bruhat cells.

The poset of closure relations between double Bruhat cells is isomorphic to Bruhat order on the Coxeter group $S_{n} \times S_{n}$.

Generators of $(n-1)$-Nonnegative $n \times n$ Matrices

Theorem

The semigroup of $(n-1)$-nonnegative matrices is generated by the e_{i} 's, e_{i}^{T} 's, diagonal matrices, and the K-generators.

The K-generators have the following form.

$$
\begin{aligned}
& K(\vec{a}, \vec{b})= {\left[\begin{array}{ccccc}
a_{1} & a_{1} b_{1} & & & \\
1 & a_{2}+b_{1} & a_{2} b_{2} & & \\
& 1 & \ddots & \ddots & \\
& & \ddots & a_{n-2}+b_{n-3} & a_{n-2} b_{n-2} \\
& & & 1 & b_{n-2} \\
& & & b_{n-1} Y \\
& & & b_{n-1} X
\end{array}\right] } \\
& X=b_{1} \cdots b_{n-2} \\
& \\
& \\
& \\
& {[2, n-2],[2, n-2] \mid=\sum_{k=1}^{n-2}\left(\prod_{\ell=2}^{k} b_{\ell-1} \prod_{\ell=k+1}^{n-2} a_{\ell}\right) }
\end{aligned}
$$

Cells of $(n-1)$-Nonnegative Matrices

- K behaves well with other generators, giving similar relations as before
- A similar reduced word scheme can be made using the alphabet

$$
\mathcal{S}=\{1, \ldots, n-1,(1), \ldots,(n), \overline{1}, \ldots, \overline{n-1}, K\}
$$

- This gives cells homeomorphic to open balls which partition the space and whose closure relations are equivalent to taking subwords
- The space does not form a CW-complex, since it consists of two connected components: matrices with positive determinant and matrices with negative determinant

