
Factorizations of k-Nonnegative Matrices

Neeraja Kulkarni, Joe Suk, Ewin Tang

JMM 2018

1



Background



Introduction

Definition

An matrix is totally nonnegative (TNN) if all of its minors are

nonnegative.

• This property appears in stochastic processes, planar

networks, Pólya frequency sequences, etc.

• The space of invertible totally nonnegative matrices form a

semigroup

• Fomin & Zelevinsky nicely characterize and parametrize the

semigroup via factorization-based cells
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Loewner-Whitney Theorem

The subsemigroup of invertible TNN upper unitriangular matrices

has generating set {ei (a) | i ∈ [n − 1], a > 0} (a is the parameter):

ei (a) =



1
. . .

1 a

1
. . .

1
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Relations

ei (a)ei (b) = ei (α)

ei (a)ei+1(b)ei (c) = ei+1(α)ei (β)ei+1(γ)

ei (a)ej(b) = ej(α)ei (β) |i − j | > 1

The conversion expression for all parameters is subtraction-free,

and for the latter two, bijective.
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Defining Factorizations

Define the free word monoid A = 〈ei | i ∈ [n − 1]〉 and define an

equivalence relation generated by

eiei = ei

eiei+1ei = ei+1eiei+1

eiej = ejei |i − j | > 1

Define a length function ` : A → N to be the number of letters in

a word. Define the parameter map for a word w ∈ A by

xw : R`(w)
>0 → GLn(R) xw (a1, . . . , a`(w)) = w1(a1) · · ·w`(w)(a`(w))

Thus, the image of the parameter map is the set of matrices with

w as a factorization.
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Forming Cells

Call a word reduced if it has minimal length among its equivalence

class.

For u,w ∈ A,

u ≡ w ⇐⇒ Im(xu) = Im(xw )

u 6≡ w ⇐⇒ Im(xu) ∩ Im(xw ) = ∅

Let U(w) := Im(xw ) (called Bruhat cells). The set of U(w) for

distinct, reduced w partition the semigroup.

By noticing the identification ei 7→ (i , i + 1) ∈ Sn which generate

Sn as a Coxeter group, we see:

• the cells are naturally indexed by elements in Sn

• the cells form a CW-complex

• the corresponding closure poset is isomorphic to the Bruhat

poset on Sn
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k-Nonnegativity

Definition

A matrix M is k-nonnegative (kNN) if all minors of order k or

less are nonnegative.

• This notion has garnered interest from other scholars, and is a

natural generalization to consider

• Invertible k-nonnegative matrices form a semigroup

• Our new work attempts to generalize TNN results to the kNN

case

• We succeed in two cases: (n− 1)NN matrices, and (n− 2)NN

unitriangular matrices
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Results



Generators

Theorem

The semigroup of (n − 2)NN upper unitriangular matrices is

generated by the ei ’s and the T -generators.

The T -generators have the following form.

T (~a, ~b) =


1 a1 a1b1

1 a2+b1 a2b2

1
. . .

. . .
. . . an−3+bn−4 an−3bn−3

1 bn−3 bn−2Y
1 bn−2X

1


Y = b1 · · · bn−3 X =

∣∣T[2,n−3],[3,n−2]
∣∣
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Relations

Adding T leads to additional relations. The following is a complete

list (indices are mod n − 1):

• ei (x)T (~a, ~b) = T (~A, ~B)ei+2(x ′)

• en−1en−2T =

en−2en−1T t en−2 · · · e1en−1 · · · e2 t en−2 · · · e1en−1 · · · e1

These relations are bijective and subtraction-free as desired.

We can extend the parameter map xw and thus U(w) to add T .
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Reduced Words

Consider the alphabet B = 〈e1, e2, . . . , en−1,T 〉 modulo all

relations.

Theorem

Let w0,[n−2] = (n − 2, n − 3, . . . , 1, n − 1, n) in one-line notation.

Then all words with at most one T are equal to one of the

following distinct reduced words:
vλ v ≤ w0,[n−2],

λ ∈ {T , en−1T , en−2T , en−2en−1T}

w w ∈ Sn
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Cell Topology

Theorem (Disjointness)

For reduced words v and w , if v 6= w then U(v) ∩ U(w) = ∅.

Theorem (Homeomorphic to Open Balls)

U(w) is homeomorphic to R`(w).

Theorem (Well-behaved Closure Order)

The closure of a cell U(w) is the disjoint union of all cells in the

interval between ∅ and U(w) subject to the subword order on B.

Corollary (CW-complex)

The set of U(w) form a CW-complex, with closure relations

described above.
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Subword Order

We can still describe the cell closure poset with a subword order.

To do this, we extend the Bruhat order on Sn by defining the

subwords of T .

• m < λ ∈ {T , en−1T , en−2T , en−2en−1T} precisely when

m ≤ α = en−2 · · · e1en−1 · · · e1 and satisfies the following:

• m(1) 6= n; if λ has no en−1, then m(2) 6= n is relaxed; if λ has

no en−2, then m(1) 6= n − 1.

This description still defines a valid subword order.
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Cell Topology (cont.)

Theorem

The poset on {U(w)} given by the subword order on reduced

words is graded.

What other properties does the closure poset attain? More

knowledge would lead to understanding the shape of the space.

We know that the space is not a sphere, since the poset is not

Eulerian.
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General TNN Matrices

General TNN matrices are generated by ei (a)’s, ei (a)T ’s, and

diagonal matrices. They are parametrized via double Bruhat cells.

The poset of closure relations between double Bruhat cells is

isomorphic to Bruhat order on the Coxeter group Sn × Sn.
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Generators of (n − 1)-Nonnegative n × n Matrices

Theorem

The semigroup of (n − 1)-nonnegative matrices is generated by

the ei ’s, e
T
i ’s, diagonal matrices, and the K -generators.

The K -generators have the following form.

K(~a, ~b) =



a1 a1b1

1 a2 + b1 a2b2

1
. . .

. . .

. . . an−2 + bn−3 an−2bn−2

1 bn−2 bn−1Y

1 bn−1X


Y = b1 · · · bn−2

X =
∣∣K[2,n−2],[2,n−2]

∣∣ = n−2∑
k=1

(
k∏

`=2

b`−1

n−2∏
`=k+1

a`

)
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Cells of (n − 1)-Nonnegative Matrices

• K behaves well with other generators, giving similar relations

as before

• A similar reduced word scheme can be made using the

alphabet

S = {1, . . . , n − 1, 1©, . . . , n©, 1, . . . , n − 1,K}

• This gives cells homeomorphic to open balls which partition

the space and whose closure relations are equivalent to taking

subwords

• The space does not form a CW-complex, since it consists of

two connected components: matrices with positive

determinant and matrices with negative determinant
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