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Abstract. These are notes on a preliminary follow-up to a question of Jim Propp,

about cyclic sieving of cyclic codes. We show that two of the Mahonian polynomials

are cyclic sieving polynomials for certain Dual Hamming Codes: Xmaj and X inv for

q = 2, 3 and q = 2, respectively.

1. Introduction

The Cyclic Sieving Phenomenon has been observed in many cases where a cyclic

group acts on a finite set. In particular, it gives a generating function that counts

the number of fixed points of the action. This phenomenon been studied in detail in

[1] and [2].

On May 9, 2017, Jim Propp asked the following question on the ”Dynamic algebraic

combinatorics” list-server:

Has anyone tried applying cyclic sieving to cyclic codes?

In section 2, we describe Jim’s question in detail with necessary preliminaries. Our

main theorem is prove in section 3. We show when the Mahonian polynomials Xmaj

and X inv are cyclic sieving polynomials (CSP’s) for Dual Hamming Codes.

2. Preliminaries

Recall an Fq-linear code C of length n is a subspace of Fnq , and is cyclic if it is

also1 stable under the action of a cyclic group C = {e, c, c2, . . . , cn−1} ∼= Z/nZ whose

generator c cyclically shifts codewords w as follows:

c(w1, w2, . . . , wn) = (w2, w3, . . . , wn, w1).

It is convenient to rephrase this using the Fq-vector space isomorphism

Fnq −→ Fq[x]/(xn − 1)

w = (w1, . . . , wn) 7−→
∑n

i=1wix
i−1.

After identifying a code C ⊂ Fnq with its image under the above isomorphism, the

Fq-linearity of C together with the cyclic condition is equivalent to C forming an ideal

Date: May 18, 2017.
1In principle, one can consider subsets C of Fn

q that are not linear subspaces but stable under

cyclic shifts as cyclic codes, but we will ignore these here.
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within the ring Fq[x]/(xn− 1). Since this is a principal ideal ring, C is always the set

(g(x)) of all multiples of some generating polynomial g(x). This means that

C = {h(x)g(x) ∈ Fq[x]/(xn − 1) : deg(h(x)) < n− deg(g(x))}

and hence one has the relation

k := dimFq C = n− deg(g(x)).

In this setting, the dual code C⊥ inside Fnq is also cyclic, with generating polynomial

g⊥(x) :=
xn − 1

g(x)

sometimes called the parity check polynomial for the primal code C. Thus one has

k := dimFq C = deg(g⊥(x)).

Example 2.1. The cyclic code C having g⊥(x) = 1 +x+x2 + · · ·+xn−1 is called the

parity check code of length n (particularly when q = 2). As a vector space, it is the

space of all vectors in Fnq with coordinate sum 0. Its dual code C⊥ consisting of the

scalar multiples of g⊥(x) = 1 + x+ x2 + · · ·+ xn−1 is the repetition code.

Example 2.2. Recall that a degree k polynomial f(x) in Fq[x] is called primitive if

it is not only irreducible, but also has the property that the image of the variable x

in the finite field Fq[x]/(f(x)) has the maximal possible multiplicative order, namely

n := qk − 1. Equivalently, f(x) is primitive when it is irreducible but divides none of

the polynomials xd − 1 for proper divisors d of n.

A cyclic code C generated by a primitive polynomial g(x) in Fq[x] of degree k is

called a Hamming code of length n = qk − 1 and dimension n − k. Its dual C⊥

generated by g⊥(x) = xn−1
g(x)

is a dual Hamming code of length n and dimension k.

Definition 2.3. Recall that a triple (X,X(t), C) X consisting of a finite set X, a

cyclic group C = {e, c, c2, . . . , cn−1} permuting X, and a polynomial X(t) in Z[t],

is said to exhibit the cyclic sieving phenomenon (or CSP) if for every cd in C, the

number of x in X having cd(x) = x is given by the substitution [X(t)]t=ζd where ζ is

a primitive nth root-of-unity.

Jim noted various CSP triples (X,X(t), C) involving X := C a cyclic code in Fnq ,

with C = Z/nZ acting as above, and X(t) could be either generating function

Xmaj(t) :=
∑
w∈C

tmaj(w), or

X inv(t) :=
∑
w∈C

tinv(w),
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where the inversion number inv(w) and major index maj(w) are defined as follows2:

inv(w) := #{(i, j) : 1 ≤ i < j ≤ n and wi > wj},

maj(w) :=
∑

i:wi>wi+1

i.

Here are the codes mentioned by Jim as having such CSP’s:

• All repetition codes C (trivially).

• All full codes C = Fnq (see Theorem 2.4 below).

• All parity check codes (see Theorem 2.4 below).

• All cyclic codes over F2 of length 7 (empirically, seeking an explanation).

The CSP for full and parity check codes turn out to be special cases of a general CSP

for words, following from a result in [2], as pointed out in [1, Prop. 17]:

Theorem 2.4. Let C be a collection of words of length n in a linearly ordered alpha-

bet, stable under the symmetric group Sn acting on the n positions.

Then (X,X(t), C) exhibits the CSP, where X = C, with X(t) the inv or maj gener-

ating function for C, and C the Z/nZ-action obtained by restriction from Sn.

Note C = Fnq and parity check codes C = {w ∈ Fnq :
∑n

i=1wi = 0} are Sn-stable.

Jim Propp found that there was not always such a CSP, but wondered whether

there are interesting examples, and suggested that perhaps the Hamming and dual

Hamming codes might be good candidates.

3. Dual Hamming codes

Hamming codes do not always have the CSP, but conjecturally their duals do.

Before stating a more precise conjecture, we first analyze for a cyclic code C the

conditions under which C = Z/nZ acts freely on C \ {0}, and when this action is

simply transitive.

Proposition 3.1. Let C ⊂ Fnq be a cyclic code with parity check polynomial g⊥(x).

Then the Z/nZ-action on C \ {0} is free if and only if

gcd(g⊥(x), xd − 1) = 1

for all proper divisors d of n.

Proof. First note that when a codeword w in C is fixed by some element cd 6= e in

C, without loss of generality, d is a proper divisor of n. Note that this says the

polynomial h(x)g(x) representing w in Fq[x]/(xn − 1) has the property that

xdh(x)g(x) = h(x)g(x) mod xn − 1

2Note that these definitions require a choice of a linear order on the alphabet Fq, and it is not

clear whether this choice should make a difference in the CSP.
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or equivalently (xd − 1)h(x)g(x) is divisible by xn − 1 in Fq[x]. Canceling factors of

g(x), this is equivalent to saying (xd− 1)h(x) is divisible by g⊥(x) in Fq[x]. However,

as discussed earlier, h(x) can be chosen with degree strictly less than k = dimC =

deg(g⊥(x)), so the existence of such a nonzero h(x) would be equivalent to g(x)

sharing a common factor with xd − 1. �

Proposition 3.2. Let C ⊂ Fnq be a cyclic code of dimension k with parity check

polynomial g⊥(x).

Then the Z/nZ-action on C \ {0} is simply transitive (that is, free and transitive)

if and only if C is dual Hamming, that is, if and only if n = qk − 1 and g⊥(x) is a

primitive polynomial in Fq[x].

Proof. Since k = dimFq C = g⊥(x), the cardinality # (C \ {0}) = qk − 1. Thus

Proposition 3.1 implies C \ {0} has free and transitive Z/nZ-action if and only if

n(= #Z/nZ) = qk − 1 and gcd(g⊥(x), xd − 1) = 1 for all proper divisors d of qk − 1.

Now g⊥(x) divides into xq
k−1−1, so it must factor as g⊥(x) =

∏
i fi(x), where fi(x)

are among the irreducible factors of xq
k−1 − 1. By definition of primitivity, the only

such irreducible factors fi(x) which do not appear in any xd−1 for a proper divisor d

of qk − 1 are the primitive irreducible factors of degree k. But since deg(g⊥(x)) = k,

this forces g⊥(x) = f1(x) for one such primitive factor. �

Proposition 3.2 simplifies the analysis of a CSP for dual Hamming codes. When

using the major index generating function Xmaj(t), it turns out to hinge upon the

behavior of the cyclic descent statistic

cdes(w) := #{i ∈ {1, 2, . . . , n} : wi > wi+1, where wn+1 := w1},

applied to the word w0 corresponding to its generator polynomial g(x).

Proposition 3.3. Let C ⊂ Fnq be a k-dimensional dual Hamming code, so that one

has n = qk − 1, with generator g(x), and w0 in Fnq its corresponding word. Then

(X,Xmaj(t), C) from before exhibits the CSP if and only gcd(cdes(w0), n) = 1.

Proof. Since the CSP involves evaluating X(t) with t being various nth roots-of-unity,

one only cares about X(t) mod tn − 1. Also, note that cyclically shifting w to c(w)

has a predictable effect on maj, namely

maj(c(w)) =

{
maj(w) + cdes(w) if wn ≤ w1,

maj(w) + cdes(w) + n if wn > w1,
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and hence, in all cases, one has maj(c(w)) ≡ maj(w) + cdes(w) mod n. Hence, as

C \ {0} is the free C-orbit of w0, using ≡ for equivalence modulo tn − 1, one has

Xmaj(t) = tmaj(0) +
∑

w∈C\{0}

tmaj(w)

≡ 1 +
n−1∑
i=0

tmaj(w0)+icdes(w0)

= 1 + tmaj(w0)

n−1∑
i=0

(tcdes(w0))i.

This gives a CSP if and only if Xmaj(ζ) = 1 for all nth roots-of-unity ζ 6= 1. The

above expression for Xmaj(t) mod tn − 1 shows that this will occur if and only if all

such ζ have ζcdes(w0) 6= 1, that is, if and only if gcd(cdes(w0), n) = 1. �

We come now to one of our main theorems.

Theorem 3.4. Let g⊥(x) be a primitive irreducible polynomial of degree k in Fq[x],

and let w0 be the word in Fnq corresponding to g(x) = xn−1
g⊥(x)

, where n := qk − 1.

(a) The value cdes(w0) depends only on k and q, not on the choice of g⊥(x). In

fact, this value is

cdes(w0) =
q − 1

2
· qk−1

(b) The triple (X,Xmaj(t), C) always gives a CSP for dual Hamming codes X = C

when q = p = 2, 3, but not always for primes or prime powers q > 3.

(c) Furthermore, for q = p = 2, 3, an irreducible f(x) in Fp[x] of degree k is

primitive if and only if the word w0 corresponding to xp
k−1−1
f(x)

has cdes(w0) =
p−1
2
· pk−1.

Before we prove the above theorem, we prove the following well known necessary

and sufficient condition for primitive polynomials. Let f(x) = xk + ck−1x
k−1 + ...+ c0

be an irreducible polynomial in Fq[x]. Its associated Linear Feedback Shift Register

(LFSR) is a linear map T from (Fq)k → (Fq)k that takes the vector (x0, x1, ...xk−1) 7→
(x1, ...xk−1, xk) where xk = −

∑k−1
i=0 cixi.

Lemma 3.5. f(x) is primitive ⇐⇒ LFSR has multiplicative order qk − 1.

Proof. The matrix for the transformation T is M =

 0 1 0 . . . 0
0 0 1 . . . 0

... ...

... ...
0 . . . . . 1
−c0 −c1 . . . . −ck−1

.

It is easy to see by induction on the degree of f(x) that the characteristic polynomial

is (−1)kf(λ). This is irreducible, hence the minimal polynomial is f(T ). We know

f(x)
∣∣∣xqk−1 − 1, hence T q

k−1 − I = 0. Since f(x) is primitive, there is no smaller d
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such that T d = I, hence T has order qk − 1. The above statements are reversible

giving us the converse.

�

Corollary 3.6. Let x ∈ (Fq)k \ {0}, then the set {x, Tx...T n−2x} = (Fq)k \ {0},
where T is the LFSR associated to any primitive polynomial.

Proof. Assume the contrary, that {x, Tx...T n−2x} is some proper subset of (Fq)k\{0},
so that T dx = x for some d < n−1. This would mean that T has an eigenvalue that is

a dth root of unity. However, all eigenvalues of T are roots of the primitive polynomial

which have order pk − 1 which is larger than d giving rise to a contradiction. �

Now we can prove the main theorem.

Proof. (of Theorem 3.4)

(a) Let g⊥(x) = c0 + c1x+ ...+ ck−1x
k−1 +xk. Let xn−1

g⊥(x)
= an−1x

n−1 + ...+a1x+a0,

where ai ∈ Fq = {b0, b1, ..bq−1}. Here, we implicitly assign some linear order on Fq
and label the elements such that bi < bi+1. If g⊥(x) is primitive, then we want the

number of cyclic ascents in the sequence ρ = (an−1, .., a1, a0) to equal (q−1)
2
qk−1. (We

are looking for cyclic ascents instead of cyclic descents because this word is the reverse

of the word that gives the cyclic code.)

Let (x0, x1, ...xk−1) = (0, 0, ..., 1). We have T (x) = (x1, ...xk−1, xk). Using this pro-

cess, we obtain a sequence of length n: (x0, x1, ....xn−1). When considered cyclically,

every sequence of length k occurs as a subsequence by Corollary 3.6. We calculate the

number of cyclic ascents in such a sequence by checking how many non-zero sequences

of length end in an ascent. There are qk−2 ways to fill the first k− 2 spots. Then the

number of ascending pairs is q(q−1)
2

, giving us a total of (q−1)
2
qk−1 sequences that end

with an ascent.

Now we will show that this sequence (x0, x1, ....xn−1) is the same as ρ = (an−1, .., a1, a0).

We need to check that (x0t
n−1+ ...+xn−2t+xn−1)(g

⊥(t)) = tn−1. When (qk−1−1) >

m > k the coefficient of tm is xn−m−1c0 + xn−mc1 + ... + xn−m+k−2ck−1 + xn−m+k−1.

This is zero because xn−m+k−1 = −(xn−m−1c0 + xn−mc1 + ... + xn−m+k−2ck−1). For

k ≥ m > 0, the coefficient is xn−m−1c0 + xn−mc1 + ...+ xn−m+k−2cm−1 + xn−1cm. This

is also 0, inductively, since it is equal to −xn+k−m−1 = −xk−m−1 = 0, since the LFSR

sequence repeats with period n. This also gives us that the constant coefficient is -1.

(b) In the case that p = 2, 3, cdes(w0) = (p−1)
2
pk−1 is a power of p, and thus

relatively prime to n = pk − 1. By Proposition 3.3, Xmaj is a CSP for the Dual

Hamming Code.

(c) Suppose f⊥(x) has (p−1)
2
pk−1 descents and is not primitive, then, f(x)

∣∣∣xd − 1

for some proper divisor d of pk − 1. This results in, T d = I making the sequence

obtained from the LFSR repeat with a repeating part of length d. Thus the number
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of descents is a multiple of n = pk−1
d

. This would mean n divides both pk − 1 and
(p−1)

2
pk−1 which is not possible for p = 2, 3. �

Remark 3.7. The assertion of Conjecture 3.4(c) fails for q = 5 at k = 3, and fails for

q = 7 at k = 2.

However, the following holds for dual Hamming codes over F2.

Proposition 3.8. For q = 2, the triple (X,X inv(t), C) also always gives a CSP for

dual Hamming codes X = C.

Proof. Let the dual Hamming code be generated by g(x) = xp
k−1−1
g⊥(x)

and g⊥(x), a

primitive polynomial of degree k over Fp. Then, by theorem () the sequence of

coefficients of g(x) have every possible non zero sequence of length k as a subsequence.

This means there are pk−1− 1 zeros and pk−1 ones. Let w be any non zero code in C.

We look at the number of inversions of c(w) for p = 2. We get:

inv(c(w)) =

{
inv(w) + 2k−1 − 1 if w ends with 1

inv(w)− 2k−1 if w ends with 0

However, 2k−1− 1 and −2k−1 are equal mod n = 2k − 1 and are coprime to n. Hence

the set { inv(ci(w))
∣∣∣ i = 0, ...n− 1} is all of {0, 1, ...n− 1} making X inv(t) = 1 which

thus has CSP. �

Remark 3.9. The assertion of Conjecture 3.8 fails for q = 3.

Remark 3.10. One might optimistically hope that any binary word w0 in Fn2 has∑
cyclic shifts w of w0

tmaj(w) ≡
∑

cyclic shifts w of w0

tinv(w) mod tn − 1.

Sadly, this is not always true. It even fails for some words with no cyclic symmetry.

Of course, Conjecture 3.4(a,b) together with Conjecture 3.8 would show that it is

true whenever w0 corresponds to x2
k−1−1
f(x)

with f(x) primitive of degree k.

Question 3.11. What about other famous cyclic codes, such as Reed-Solomon, BCH,

Golay?
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