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We discuss the problem of counting vertices in Gelfand–Zetlin
polytopes. Namely, we deduce a partial differential equation with
constant coefficients on the exponential generating function for
these numbers. For some particular classes of Gelfand–Zetlin poly-
topes, the number of vertices can be given by explicit formulas.
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1. Introduction and statement of results

Gelfand–Zetlin polytopes play an important role in representation theory [2,7,8], symplectic ge-
ometry [1] and in algebraic geometry [3–5]. Let λ1 � · · · � λs be a non-decreasing finite sequence
of integers, i.e. an integer partition. The corresponding Gelfand–Zetlin polytope is a convex polytope

in R
s(s−1)

2 defined by an explicit set of linear inequalities depending on λi . It will be convenient to

label the coordinates ui, j in R
s(s−1)

2 by pairs of integers (i, j), where i runs from 1 to s − 1, and
j runs from 1 to s − i. The inequalities defining the Gelfand–Zetlin polytope can be visualized by the
following triangular table:

λ1 λ2 λ3 . . . λs

u1,1 u1,2 . . . u1,s−1
u2,1 . . . u2,s−2

. . . . . .

us−2,1 us−2,2
us−1,1

(GZ)
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where every triple of numbers a, b, c that appear in the table as vertices of the triangle

a b
c

are subject to the inequalities a � c � b.
Gelfand–Zetlin polytopes parameterize irreducible finite-dimensional representations of GLn(C).

Namely, if Vλ is the simple GLn(C)-module of highest weight λ, then there is a Gelfand–Zetlin ba-
sis in Vλ , whose elements are labeled by integer points in GZ(λ). In particular, the number of integer
points in GZ(λ) is equal to the dimension of Vλ .

In this paper, we discuss generating functions for the number of vertices in Gelfand–Zetlin poly-
topes. We will use the multiplicative notation for partitions, e.g. 1i1 2i2 3i3 will denote the partition
consisting of i1 copies of 1, i2 copies of 2, and i3 copies of 3. Given a partition p, we write GZ(p)

for the corresponding Gelfand–Zetlin polytope, and V (p) for the number of vertices in GZ(p). Thus
GZ(1222) denotes the Gelfand–Zetlin polytope, for which s = 4, λ1 = λ2 = 1, and λ3 = λ4 = 2. Note
that the partition 122032 is the same as 1232. In particular, the polytope GZ(122032) coincides with
GZ(1232) and is combinatorially equivalent to GZ(1222).

Fix a positive integer k, and consider all partitions of the form 1i1 · · ·kik , where a priori some of
the powers i j may be zero. We let Ek denote the exponential generating function for the numbers
V (1i1 · · ·kik ), i.e. the formal power series

Ek(z1, . . . , zk) =
∑

i1,...,ik�0

V
(
1i1 · · ·kik

) zi1
1

i1! · · · zik
k

ik! .

Our first result is a partial differential equation on the function Ek:

Theorem 1.1. The formal power series Ek satisfies the following partial differential equation with constant
coefficients:(

∂k

∂z1 · · · ∂zk
−

(
∂

∂z1
+ ∂

∂z2

)
· · ·

(
∂

∂zk−1
+ ∂

∂zk

))
Ek = 0.

E.g. we have

E1(z1) = ez1 , E2(z1, z2) = ez1+z2 I0(2
√

z1z2 ),

where I0 is the modified Bessel function of the first kind with parameter 0. This function can be
defined e.g. by its power expansion

I0(t) =
∞∑

n=0

tn

n!2 .

It is also useful to consider ordinary generating functions for the numbers V (1i1 · · ·kik ):

Gk(y1, . . . , yk) =
∑

i1,...,ik�0

V
(
1i1 · · ·kik

)
yi1

1 · · · yik
k .

We will also deduce equations on Gk . These will be difference equations rather than differential equa-
tions. For any power series f in the variables y1, . . . , yk , define the action of the divided difference
operator �i on f as

�i( f ) = f − f |yi=0

yi
.

Theorem 1.2. The ordinary generating function Gk satisfies the following equation(
�1 · · ·�k − (�1 + �2) · · · (�k−1 + �k)

)
Gk = 0.
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It is known that the ordinary generating functions Gk can be obtained from exponential gener-
ating functions Ek by the Laplace transform. Thus Theorem 1.2 can in principle be deduced from
Theorem 1.1 and the properties of the Laplace transform. However, we will give a direct proof.

For k = 1, 2 and 3, the generating functions Gk can be computed explicitly. It is easy to see that

G1(y1) = 1

1 − y1
, G2(y1, y2) = 1

1 − y1 − y2
.

We will prove the following theorem:

Theorem 1.3. The function G3(x, y, z) is equal to

2xz − y(1 − x − z) − y
√

1 − 2(x + z) + (x − z)2

2(1 − x − z)((x + y)(y + z) − y)
.

The numbers Vk,�,m = V (1k2�3m) can be alternatively expressed as coefficients of certain polyno-
mials:

Theorem 1.4. The number Vk,�,m for k > 0, � > 0, m > 0 is equal to the coefficient of xk zm in the polynomial

1 − xz

1 + xz

(
(1 + x)k+�+m(1 + z)k+�+m − (x + z)k+�+m)

.

Set s = k+�+m. Note that, since the term (x+ z)s is homogeneous of degree s, the number Vk,�,m ,
where k, �,m > 0, is also equal to the coefficient with xk zm in the power series

(1 − xz)(1 + x)s(1 + z)s

1 + xz
.

This implies the following explicit formula for the numbers Vk,�,m (k, �,m > 0):

Vk,�,m =
(

s

k

)(
s

m

)
+ 2

k∑
i=1

(−1)i
(

s

k − i

)(
s

m − i

)
.

Note that the sum
∑k

i=1(−1)i
( s

k−i

)( s
m−i

)
can be expressed as the value of the generalized hypergeo-

metric function 3 F2, namely, it is equal to
( s

k−1

)( s
m−1

)
3 F2(1,1 − k,1 − m;2 + � + m,2 + k + �;−1).

Remark. The authors of paper [6] also consider vertices of Gelfand–Zetlin polytopes. However,
Gelfand–Zetlin polytopes are understood in [6] in a different sense than in this paper and in other
papers we cite. Namely, the authors impose additional restrictions on coordinates ui, j : the sum of
coordinates in every row of table (GZ) should be equal to a given integer. The integer points in this
smaller polytope parameterize vectors with a given weight in the Gelfand–Zetlin basis of Vλ . The
main result of [6] is an explicit parameterization of vertices. The corresponding result in our setting
is obvious. Thus there is no immediate connection between the methods and results from [6] and
from this paper. On the other hand, there may be a possibility of combining both approaches in the
setting of [6].

2. Recurrence relations

Let R be the polynomial ring in countably many variables x1, x2, x3, . . . . Define a linear operator
A : R → R by its action on monomials: every monomial m is mapped to

A(m) =
(

k−1∏
j=1

(xi j + xi j+1)

)(
k∏

j=1

x−1
i j

)
m,
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where i1 < · · · < ik are the indices of all variables xi j that have positive exponents in m. Thus we have
by definition:

A(1) = 1, A(x1) = 1, A(x1x2) = x1 + x2, A(x1x2x3) = (x1 + x2)(x2 + x3).

The operator A thus defined reduces the degrees of all nonconstant polynomials. Therefore, for any
polynomial P , there exists a positive integer N such that AN(P ) is a constant, which is independent
of the choice of N provided that N is sufficiently large. We let A∞(P ) denote this constant.

Proposition 2.1. We have

V
(
1i1 · · ·kik

) = A∞(
xi1

1 · · · xik
k

)
.

Proof. Some of the exponents i j may be zero. The corresponding terms can be eliminated from both
the left-hand side and the right-hand side. We can then shift the remaining indices to reduce the
statement to its original form but with all exponents strictly positive. For example, the statement
V (122032) = A∞(x2

1x0
2x2

3) reduces to the statement V (1232) = A∞(x2
1x2

3) and then to the statement
V (1222) = A∞(x2

1x2
2). Thus we may assume that all the exponents i j are strictly positive.

We will argue by induction on the degree i1 + · · · + ik , equivalently, on the dimension of the
Gelfand–Zetlin polytope GZ(1i1 · · ·kik ). Let π be the linear projection of GZ(1i1 · · ·kik ) to the cube C
given in coordinates (u1, . . . , uk−1) by the inequalities

1 � u1 � 2 � u2 � · · · � k − 1 � uk−1 � k. (C)

Namely, we set u1 = u1,i1 , u2 = u1,i1+i2 , . . . , uk−1 = u1,i1+···+ik−1 . Observe that all vertices of GZ(p)

project to vertices of the cube C . Thus it suffices to describe the fibers of the projection π over the
vertices of the cube C .

It will be convenient to label the vertices of the cube C by the monomials in the expansion of
the polynomial A(x1 · · · xk). Namely, to fix a vertex of C , one needs to specify, for every j between 1
and k − 1, which of the two inequalities j � u j or u j � j + 1 turns to an equality. Similarly, to fix a
monomial in the polynomial A(x1 · · · xk), one needs to specify, for every j between 1 and k − 1, which
term is taken from the factor (x j + x j+1), the term x j or the term x j+1. This description makes the
correspondence clear.

Let v be the vertex of the cube C corresponding to a monomial xα1
1 · · · xαk

k . It is not hard to see
that the polytope π−1(v) is combinatorially equivalent to

GZ
(
1i1−1+α1 · · ·kik−1+αk

)
.

Define the coefficients cα1···αk so that

A(x1 · · · xk) =
∑

α1,...,αk

cα1···αk xα1
1 · · · xαk

k .

Then we have

V
(
1i1 · · ·kik

) =
∑

α1,...,αk

cα1···αk V
(
1i1−1+α1 · · ·kik−1+αk

)
.

Since for any k-tuple of indices α1, . . . ,αk , for which the corresponding coefficient cα1,...,αk is nonzero,
the Gelfand–Zetlin polytope GZ(1i1−1+α1 · · ·kik−1+αk ) has smaller dimension than GZ(1i1 · · ·kik ), we
can assume by induction that

V
(
1i1−1+α1 · · ·kik−1+αk

) = A∞(
xi1−1+α1

1 · · · xik−1+αk
k

)
.

Hence we have

V
(
1i1 · · ·kik

) =
∑

α1,...,αk

cα1···αk A∞(
xi1−1+α1

1 · · · xik−1+αk
k

) = A∞(
A
(
xi1

1 · · · xik
k

))
.

The desired statement follows. �
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3. Equations on generating functions Ek and Gk

In this section, we deduce equations on the generating functions Ek and Gk . In particular, we prove
Theorems 1.1 and 1.2.

For a multi-index α = (α1, . . . ,αk), we let zα denote the monomial zα1
1 · · · zαk

k , and α! denote the
product α1! · · ·αk!. The partial derivation with respect to z� will be written as ∂� . The power ∂α will
mean ∂

α1
1 · · · ∂αk

k . We will write I� for the operator of integration with respect to the variable z� . This
operator acts on the power series

∑∞
n=0 anzn

� , where an are power series in the other variables, as
follows:

I�

( ∞∑
n=0

anzn
�

)
=

∞∑
n=0

an
zn+1
�

n + 1
.

We will use the expansion

(x1 + x2) · · · (xk−1 + xk) =
∑
α

cαxα,

in which the coefficients cα can be computed explicitly. Let E∗
k be the sum of all terms in Ek divisible

by z1 · · · zk . Then we have (i, j, α being multi-indices of dimension k)

E∗
k =

∑
i>0

A∞(
xi) zi

i! =
∑
i>0

∑
α

cα A∞(
xi−1+α

) zi

i!

=
∑
α

cα∂α I1 · · · Ik

∑
i>0

A∞(
xi−1+α

) zi−1+α

(i − 1 + α)! =
∑
α

cα∂α I1 · · · Ik

∑
j�α

A∞(
x j) z j

j! .

Apply the differential operator ∂1 · · ·∂k to both sides of this equation. Note that ∂1 · · ·∂k(E∗
k ) =

∂1 · · · ∂k(Ek). Thus we have

∂1 · · · ∂k(Ek) =
∑
α

cα∂α
∑
j�α

A∞(
x j) z j

j! .

Observe also that, since α � 0 whenever cα �= 0, we have

∂α
∑
j�α

A∞(
x j) z j

j! = ∂α Ek.

This implies Theorem 1.1.

Example (k = 1 and k = 2). In the case k = 1, we have E1 = ez1 . Consider now the case k = 2. Set
E = E2, x = z1 and y = z2. By Theorem 1.1, the function E satisfies the following partial differential
equation:

Exy = Ex + E y .

This equation can be simplified by setting E = ex+yu. Then the function u satisfies the equation

uxy = u

and the boundary value conditions u(x,0) = u(0, y) = 1. We can now look for solutions u that have
the form v(xy), where v is some smooth function. This function must satisfy the initial condition
v(0) = 1 and the ordinary differential equation

tv ′′(t) + v ′(t) − v(t) = 0.

It is known that the only analytic solution of this initial value problem is I0(2
√

t ), where I0 is the
modified Bessel function of the first kind. Thus I0(2

√
xy ) is a partial solution of the boundary value
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problem uxy = u, u(x,0) = u(0, y) = 1. The solution of this boundary value problem is unique (note
that the boundary values are defined on characteristic curves!). Therefore, we must conclude that
E(x, y) = ex+y I0(2

√
xy ).

The proof of Theorem 1.2 is very similar to the proof of Theorem 1.1. Let G∗
k be the sum of all

terms in Gk that are divisible by y1 · · · yk , i.e.

G∗
k =

∑
i>0

V
(
1i1 · · ·kik

)
yi .

Then, similarly to a formula obtained for E∗
k , we have

G∗
k =

∑
α

cα y1−α1
1 · · · y1−αk

k

∑
j�α

A∞(
x j)y j .

Applying the operator �1 · · ·�k to both sides of this equation, we obtain Theorem 1.2. Similarly to
the proof of Theorem 1.1, we need to use that

�1 · · ·�k
(
G∗

k

) = �1 · · ·�k(Gk)

and that

�
α1
1 · · ·�αk

k (Gk) = y−α1
1 · · · y−αk

k

∑
j�α

A∞(
x j)y j.

We will now discuss several examples.

Example (k = 1 and k = 2). For k = 1, we have the following equation: �1G1 = G1, i.e. G1(y1) −
G1(0) = y1G1(y1). Knowing that G1(0) = 1, this gives

G1(y1) = 1 + y1 + y2
1 + · · · = 1

1 − y1
.

Suppose that k = 2. Set G = G2, x = y1, y = y2. The function G satisfies the following equation

�x�y G = �xG + �y G.

Note that G(x,0) = G1(x) and G(0, y) = G1(y). Therefore, the right-hand side can be rewritten as

G − 1
1−y

x
+ G − 1

1−x

y
.

The left-hand side is

�x

(
G − 1

1−x

y

)
= 1

x

(
G − 1

1−x

y
−

1
1−y − 1

y

)
.

Solving the linear equation on G thus obtained, we conclude that

G = 1

1 − x − y
.

Example (k = 3). We set G = G3, x = y1, y = y2 and z = y3. The function G satisfies the following
equation: �x�y�zG = (�x + �y)(�y + �z)G . This equation can be rewritten as follows:

�2
y G = G(1 − x − y − z) − 1

xyz
.

Suppose that G = G(x,0, z) + A(x, z)y + O (y2). Then we have

y2�2
y G = G − G(x,0, z) − A(x, z)y = G − 1 − A(x, z)y.
1 − x − z
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Substituting this into the equation, we can solve the equation for G in terms of A:

G = −xz + y(1 − x − z)(1 − A(x, z)xz)

(1 − x − z)(y − (x + y)(y + z))
.

Since the power series 1 − x − z is invertible, it follows that G has the form

a + by

y − (x + y)(y + z)
,

where a and b are some power series in x and z. Let λ and μ be the two solutions of the equation
y = (x + y)(y + z), namely,

λ,μ = 1 − x − z ± √
1 − 2(x + z) + (x − z)2

2
.

The signs are chosen so that, at the point x = z = 0, we have λ = 1 and μ = 0. Then

1

y − (x + y)(y + z)
= c

y − λ
+ d

y − μ
,

where c and d are some power series in x and z. Note that, since (y − λ)−1 makes sense as a power
series, c(a + by)/(y − λ) can be represented as a power series in x, y and z. Thus the function d(a +
by)/(y −μ) must also be representable as a power series in x, y and z. However, this is only possible
if the numerator is a multiple of the denominator, i.e. (a + by) = e(y − μ), where the coefficient e
is a power series of x and z. It follows that G is equal to e(y − λ)−1. The coefficient e can be found
from the condition G(x,0, z) = 1

1−x−z :

G = 1

1 − x − z

λ

λ − y

= 2xz − y(1 − x − z) − y
√

1 − 2(x + z) + (x − z)2

2(1 − x − z)((x + y)(y + z) − y)
.

4. Proof of Theorem 1.4

In this section, we will prove Theorem 1.4, which expresses the numbers Vk,�,m as coefficients of
certain polynomials. The numbers Vk,�,m satisfy the following recurrence relation:

Vk,�,m = Vk−1,�,m + Vk,�−1,m + Vk,�,m−1 + Vk−1,�+1,m−1

provided that k, �, m > 0, and the following initial conditions:

V 0,�,m = V�,m, Vk,0,m = Vk,m, Vk,�,0 = Vk,�.

Set V s
k,m = Vk,s−k−m,m . Then we can write the following recurrence relations on the numbers V s

k,m:

V s
k,m = V s−1

k−1,m + V s−1
k,m−1 + V s−1

k−1,m−1 + V s−1
k,m

provided that k � 1, m � 1, k + m � s − 1, and

V s
k,m = V s−1

k−1,m + V s−1
k,m−1

provided that k + m = s.
For a fixed s, we can arrange the numbers V s

k,m into a triangular table T s of size s as shown in
Fig. 1. Namely, the number V s

k,m is placed into the cell, whose southwest (lower left) corner is at

position (k,m). The next table T s+1 can be obtained from the table T s as follows. First, we add to
every element of T s its south, west and southwest neighbors. Next, we add a line of cells, whose
positions (k,m) satisfy the equality k + m = s. In every cell of this line, we put the sum of the south
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Fig. 1. Triangular tables T s containing the numbers V s
k,m . Southwest corners of these tables are located at (0,0).

Fig. 2. The skew-symmetric tables T̃ s .

and west neighbors. Note that, by construction, the boundary of every table T s consists of binomial
coefficients.

Consider the generating function G = G3 for the numbers Vk,�,m . The splitting of G into homo-
geneous components can be obtained by expanding the function G(xy, y, zy) into powers of y. We
set

G(xy, y, zy) =
∞∑

s=0

gs(x, z)ys.

Then we have

gs(x, z) =
s∑

k=0

s−k∑
m=0

V s
k,mxkzm.

Thus the coefficients of the polynomial gs are precisely elements of the table T s . The recurrence
relations on the numbers V s

k,m displayed above imply the following property of the generating func-
tions gs:

Proposition 4.1. The polynomials gs satisfy the following recurrence relations:

gs+1 = (1 + x + z)gs + τ�s(xzgs),

where the truncation operator τ�s acts on a polynomial by removing all terms, whose degrees exceed s.

Consider the polynomials

hs(x, z) = gs(x, z) − (xz)s gs
(
z−1, x−1).

Geometrically, these polynomials can be described as follows. Let T̃ s denote the table, into which we
put all coefficients of the polynomial hs , see Fig. 2. The lower left triangle of size s − 1 is the same in
the tables T s and T̃ s . The table T̃ s is skew-symmetric with respect to the main diagonal. These two
properties give a unique characterization of the tables T̃ s .
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Fig. 3. The rules of generating the tables T̃ s .

The rules, by which the tables T̃ s are formed, are the following (see Fig. 3). The first table T̃ 1 is
by definition the left-most table shown in Fig. 2. The next table T̃ s+1 is obtained inductively from
the preceding table T̃ s in two steps. In the first step, we add to every element of T̃ s its immediate
west, south and southwest neighbors. In the second step, we modify elements in two diagonals of
the table, namely, the elements, whose positions (measured by southwest corners) (k,m) satisfy the
equality k+m = s or k+m = s+2. To the cell at position (k,m), where k+m = s, we add the binomial
coefficient

(k+m
m

)
. From the cell at position (k + 1,m + 1), we subtract this binomial coefficient.

We have the following recurrence relation on the polynomials hs:

hs+1 = hs(1 + x)(1 + z) + (1 − xz)(x + z)s,

which does not contain truncation operators. Therefore, the generating function H = ∑∞
s=0 hs ys satis-

fies the following linear equation:

H = y
(
(1 + x)(1 + z)H + (1 − xz)

(
1 − y(x + z)

)−1)
.

Solving this equation, we find that

H = y(1 − xz)

(1 − y(x + z))(1 − y(1 + x)(1 + z))
.

Knowing the generating function H , we can now obtain an explicit formula for the polynomials hs ,
namely,

hs(x, z) = 1 − xz

1 + xz

(
(1 + x)s(1 + z)s − (x + z)s).

Theorem 1.4 is thus proved.

Open problems.

(1) Prove or disprove: the generating function G4 is algebraic. Note that G1 and G2 are rational, and
G3 is algebraic.

(2) Deduce differential or difference equations on the generating functions for the f -vectors and for
the modified h-vectors of Gelfand–Zetlin polytopes.
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