On the critical group of the n-cube

Hua Bai
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
Received 1 May 2002; accepted 10 December 2002
Submitted by R. Guralnick

Abstract

Reiner proposed two conjectures about the structure of the critical group of the n-cube Q_{n}. In this paper we confirm them. Furthermore we describe its p-primary structure for all odd primes p. The results are generalized to Cartesian product of complete graphs $K_{n_{1}} \times \cdots \times$ $K_{n_{k}}$ by Jacobson, Niedermaier and Reiner. © 2003 Published by Elsevier Science Inc. Keywords: n-Cube; Critical group; Sandpile group; Laplacian matrix; Smith normal form; Sylow p-group

1. Introduction

The n-cube or hypercube Q_{n} is the simple graph whose vertices are the n-tuples with entries in $\{0,1\}$ and whose edges are the pairs of n-tuples that differs in exactly one position.

Let $G=(V, E)$ be a finite graph without self-loops, but, with multiple edges allowed and let $n=|V|$. The $n \times n$ Laplacian matrix $L(G)$ for this graph G, is defined by

$$
L(G)_{u, v}= \begin{cases}\operatorname{deg}_{G}(u) & \text { if } u=v \\ -m_{u, v} & \text { otherwise }\end{cases}
$$

where $m_{u, v}$ denotes the multiplicity of the edge $\{u, v\}$ in E. The Laplacian matrix of a graph, which dates back to Kirchhoff's matrix-tree theorem, plays an important role in the study of spanning trees, graph spectra, and the graph isomorphism problem, see [2,10,15].

[^0]When G is connected, the kernel of $L(G)$ is spanned by the all-1 vector (1, $1, \ldots, 1)^{\mathrm{t}}$ in \mathbb{R}^{n}, where superscript t denotes the transpose. Considering $L(G)$ as a linear map from \mathbb{Z}^{n} to itself, its cokernel has the form

$$
\mathbb{Z}^{n} / \operatorname{Im} L(G) \cong \mathbb{Z} \oplus K(G)
$$

where $K(G)$ is defined to be the critical group (also called the Picard group [1], Jacobian group [3] or sandpile group [6]). It follows from Kirchhoff's matrix-tree theorem that the order $|K(G)|$ is known to be $\mathscr{K}(G)$, the number of spanning trees in G.

Kirchhoff's Matrix-Tree Theorem (see, e.g. [2, Chapter 6]).
(i)

$$
\mathscr{K}(G)=(-1)^{i+j} \operatorname{det} \overline{L(G)}
$$

here $\overline{L(G)}$ is a reduced Laplacian matrix obtained from $L(G)$ by deleting row i and column j.
(ii) For any graph G with n vertices, index the eigenvalues of the Laplacian $L(G)$ in weakly decreasing order:

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n-1} \geqslant \lambda_{n}=0
$$

then

$$
\mathscr{K}(G)=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

Our main tools will be the use of Smith Normal Form for integer matrices. Given a square integer matrix A, its Smith normal form is the unique equivalent diagonal matrix $S(A)=\operatorname{diag}\left[s_{1}, s_{2}, \ldots, s_{n}\right]$ whose entries s_{i} are nonnegative and s_{i} divides s_{i+1}. The s_{i} are known as the invariant factors of A [16]. Two integral matrices A and B are equivalent (denoted as $A \sim B$) if there exist integer matrices P and Q of determinant ± 1 that satisfy $P A Q=B$.

The structure of the critical group is closely related with the Laplacian matrix: if the Smith normal form of $L(G)$ is $\operatorname{diag}\left[s_{1}, s_{2}, \ldots, s_{n}\right]$, then $K(G)$ is the torsion subgroup of $\mathbb{Z}_{s_{1}} \times \mathbb{Z}_{s_{2}} \times \cdots \times \mathbb{Z}_{s_{n}}$. Here \mathbb{Z}_{n} denote the cyclic group $\mathbb{Z} / n \mathbb{Z}$ for any nonnegative integer n.

There are very few families of graphs for which the critical group structure has been completely determined, such as complete graphs and complete bipartite graphs [13], cycles [14], wheels [4], generic threshold graphs [5], etc.

Reiner [17] proposed two conjectures on the structure of the critical group of n-cube $K\left(Q_{n}\right)$. His first conjecture is the following theorem, which we prove in Section 2.

Theorem 1.1. The critical group of Q_{n} has exactly $2^{n-1}-1$ invariant factors, for $n \geqslant 1$.

We show the structure of the Sylow p-group of the critical group of the n-cube when p is an odd prime.

Theorem 1.2. For any odd prime number p, the Sylow p-group of the critical group of the n-cube $\operatorname{Syl}_{p} K\left(Q_{n}\right)$ has the following expression:

$$
\operatorname{Syl}_{p} K\left(Q_{n}\right) \cong \operatorname{Syl}_{p}\left(\prod_{k=1}^{n} \mathbb{Z}_{k}^{\binom{n}{k}}\right) .
$$

Recently Jacobson, Niedermaier and Reiner generalize this result to the Cartesian product of complete graphs $K_{n_{1}} \times \cdots \times K_{n_{k}}$.

Jacobson-Niedermaier-Reiner Theorem [12, Theorem 2]. For every prime p that divides none of n_{1}, \ldots, n_{k}, the Sylow p-subgroup (or p-primary component) of the critical group $K\left(K_{n_{1}} \times \cdots \times K_{n_{k}}\right)$ has the following description:

$$
\operatorname{Syl}_{p} K\left(K_{n_{1}} \times \cdots \times K_{n_{k}}\right) \cong \bigoplus_{\emptyset \neq S \subseteq[k]} \operatorname{Syl}_{p}\left(\mathbb{Z}_{N_{S}}\right) \Pi_{i \in S}\left(n_{i}-1\right)
$$

where $N_{S}:=\sum_{i \in S} n_{i}$.
One knows from simple eigenvalue calculations (see [12, Section 2]) that

$$
\mathscr{K}\left(K_{n_{1}} \times \cdots \times K_{n_{k}}\right)=\frac{1}{\prod_{i=1}^{k} n_{i}} \prod_{\emptyset \neq S \subseteq[k]} N_{S}^{\prod_{i \in S}^{\left(n_{i}-1\right)}} .
$$

Note that this general result on p-primary structures (for p that divides none of n_{1}, \ldots, n_{k}) is as simple as one could hope.

Our next result is related to the 2-primary structure of $K\left(Q_{n}\right)$.
Let a_{n} denotes the number of occurrences of \mathbb{Z}_{2} in the elementary divisor form of the critical group of the n-cube $K\left(Q_{n}\right)$. Reiner's second conjecture is confirmed in Section 4.

Theorem 1.3. The generating function of a_{n} is

$$
\sum_{n=0}^{\infty} a_{n+3} x^{n}=\frac{1}{(1-2 x)\left(1-2 x^{2}\right)}
$$

This leads to a simple expression for $a_{n}\left(a_{0}=a_{1}=0\right)$:

$$
a_{n}=2^{n-2}-2^{\lfloor(n-2) / 2\rfloor} \quad \text { when } n \geqslant 2 .
$$

For the background of the elementary divisor form of a finitely generated abelian group (see [8, p. 163]).

The full structure of the Sylow-2 subgroup of the critical group of the n-cube is still unknown.

2. Some lemmas and the proof of Theorem 1.1

Let $L_{n}=L\left(Q_{n}\right)$. Clearly $L_{0}=0$ and since $Q_{n}=Q_{n-1} \times Q_{1}$ for $n \geqslant 1$, one can order the vertices of Q_{n} such that

$$
L_{n}=\left(\begin{array}{cc}
L_{n-1}+1 & -1 \\
-1 & L_{n-1}+1
\end{array}\right)
$$

The size of L_{n} is 2^{n}, which is the number of vertices of Q_{n}.
Throughout this paper let $L_{n, k}:=L_{n}+2 k, n$ and k be nonnegative integers, where $2 k$ denotes the scalar matrix $2 k I$ with I an identity matrix of same size as L_{n}. In general, if A is a matrix and c a constant, $A+c$ denotes $A+c I$. If A and B are two square matrices, we also make following convention:

$$
A \oplus B:=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) \quad \text { and } \quad A^{\oplus k}:=\overbrace{A \oplus A \oplus \cdots \oplus A}^{k \text { times }} .
$$

Let $M_{n}(R)$ denote the set of $n \times n$ matrices with entries in the ring R. If the size of the matrices does not matter or is clear, sometimes we simply write $M_{n}(R)$ as $M(R)$.

Lemma 2.1

$$
\frac{1}{m!} \prod_{i=0}^{m-1} L_{n, k+i} \in M(\mathbb{Z})
$$

for any $m \in \mathbb{N}$. In particular, $L_{n}\left(L_{n}+2\right) \in M(2 \mathbb{Z})$.
Proof. Let

$$
T_{n}:=\left(\begin{array}{cc}
I_{2^{n-1}} & -I_{2^{n-1}} \\
-I_{2^{n-1}} & I_{2^{n-1}}
\end{array}\right), \quad \tilde{L}_{n-1, k}:=L_{n-1, k} \oplus L_{n-1, k}
$$

Then $\tilde{L}_{n-1, k}$ commutes with T_{n}, and $\left(\frac{1}{2} T_{n}\right)^{2}=\frac{1}{2} T_{n}$. Hence

$$
\begin{aligned}
\left(\frac{1}{2} L_{n, k}\right)^{j} & =\left(\frac{1}{2}\left(\tilde{L}_{n-1, k}+T_{n}\right)\right)^{j} \\
& =\left(\frac{1}{2} \tilde{L}_{n-1, k}\right)^{j}+\frac{1}{2} T_{n} \sum_{l=0}^{j-1}\binom{j}{l}\left(\frac{1}{2} \tilde{L}_{n-1, k}\right)^{l} \\
& =\left(\frac{1}{2} \tilde{L}_{n-1, k}\right)^{j}+\frac{1}{2} T_{n}\left(\left(1+\frac{1}{2} \tilde{L}_{n-1, k}\right)^{j}-\left(\frac{1}{2} \tilde{L}_{n-1, k}\right)^{j}\right)
\end{aligned}
$$

Note that

$$
\prod_{i=0}^{m-1}(x+i)=\sum_{j=1}^{m} c(m, j) x^{j}
$$

where $c(m, j)$ is the signless Stirling number of the first kind,

$$
\begin{aligned}
\prod_{i=0}^{m-1} L_{n, k+i} & =\sum_{j=1}^{m} 2^{m} c(m, j)\left(\frac{1}{2} L_{n, k}\right)^{j} \\
& =\prod_{i=0}^{m-1} \tilde{L}_{n-1, k+i}+\frac{1}{2} T_{n}\left(\prod_{i=0}^{m-1}\left(\tilde{L}_{n-1, k+i}+2\right)-\prod_{i=0}^{m-1} \tilde{L}_{n-1, k+i}\right) \\
& =\prod_{i=0}^{m-1} \tilde{L}_{n-1, k+i}+m T_{n} \prod_{i=1}^{m-1} \tilde{L}_{n-1, k+i}
\end{aligned}
$$

Now by induction on $n+m$ (the lemma is trivial when $n=0$ since $L_{0}=0$),

$$
\frac{1}{m!} \prod_{i=0}^{m-1} \tilde{L}_{n-1, k+i}
$$

is in $M(\mathbb{Z})$, and so is

$$
\frac{1}{m!}\left(m T_{n} \prod_{i=1}^{m-1} \tilde{L}_{n-1, k+i}\right)=T_{n}\left(\frac{1}{(m-1)!} \prod_{i=0}^{(m-1)-1} \tilde{L}_{n-1,(k+1)+i}\right)
$$

So the lemma is true for all n, m.

Lemma 2.2

$$
L_{n+1, k} \sim I_{2^{n}} \oplus L_{n, k} L_{n, k+1}
$$

Consequently, we have a group isomorphism

$$
\mathbb{Z}^{2^{n+1}} / \operatorname{Im} L_{n+1, k} \cong \mathbb{Z}^{2^{n}} / \operatorname{Im} L_{n, k} L_{n, k+1}
$$

Proof

$$
\begin{aligned}
L_{n+1, k} & =\left(\begin{array}{cc}
1+L_{n, k} & -1 \\
-1 & 1+L_{n, k}
\end{array}\right) \\
& \sim\left(\begin{array}{cc}
0 & -1 \\
L_{n, k}\left(L_{n, k}+2\right) & 1+L_{n, k}
\end{array}\right) \\
& \sim\left(\begin{array}{cc}
1 & 0 \\
0 & L_{n, k} L_{n, k+1}
\end{array}\right) .
\end{aligned}
$$

Corollary 2.3. The Smith normal form of L_{n} has exactly 2^{n-1} occurrences of 1, for all $n \geqslant 1$.

Proof. Let $k=0$ and replace n by $n-1$ in the above lemma. Note that there is no occurrence of 1 in the Smith normal form of $L_{n-1}\left(L_{n-1}+2\right)$, which is in $M_{2^{n-1}}(2 \mathbb{Z})$. Hence it concludes.

This statement is equivalent to (cf. Fiol [9]) the following theorem, which is Reiner's first conjecture on the number of invariant factors of $K\left(Q_{n}\right)$:

Theorem 1.1. The critical group of Q_{n} has exactly $2^{n-1}-1$ invariant factors.

3. The Sylow p-group of $K\left(Q_{n}\right)$ for $p \neq 2$

In this section we will determine the structure of the Sylow p-group of the critical group $K\left(Q_{n}\right)$ for all odd primes p.

If A is an $n \times n$ integer matrix, let $K(A)$ be the torsion subgroup of the finitely generated abelian group $\mathbb{Z}^{n} / \operatorname{Im} A$. If G is an abelian group, let $\operatorname{Syl}_{p} G$ denote the Sylow p-group of G.

Proposition 3.1

$$
\operatorname{Syl}_{p} K\left(L_{n+1, k}\right) \cong \operatorname{Syl}_{p} K\left(L_{n, k}\right) \times \operatorname{Syl}_{p} K\left(L_{n, k+1}\right)
$$

Proof. We have two group homomorphisms ψ and ϕ :

$$
\begin{aligned}
& K\left(L_{n, k} L_{n, k+1}\right) \stackrel{\psi}{\stackrel{\psi}{\rightleftharpoons}} K\left(L_{n, k}\right) \times K\left(L_{n, k+1}\right) ; \\
& \psi\left(w+\operatorname{Im} L_{n, k} L_{n, k+1}\right):=\left(w+\operatorname{Im} L_{n, k}, w+\operatorname{Im} L_{n, k+1}\right) \\
& \phi\left(u+\operatorname{Im} L_{n, k}, v+\operatorname{Im} L_{n, k+1}\right):=L_{n, k+1} u-L_{n, k} v+\operatorname{Im} L_{n, k} L_{n, k+1} .
\end{aligned}
$$

Let $\left.2\right|_{G}$ denote the 'multiplication by 2 ' homomorphism of G for any abelian group G. It is straightforward to check that

$$
\psi \circ \phi=2 \|_{K\left(L_{n, k}\right) \times K\left(L_{n, k+1}\right)} \quad \text { and } \quad \phi \circ \psi=\left.2\right|_{K\left(L_{n, k} L_{n, k+1}\right)} .
$$

Now consider the restriction of ϕ and ψ to Sylow p-subgroups for p an odd prime. Because $\left.2\right|_{G}$ is an isomorphism for any finite abelian p-group G, both ψ and ϕ must be isomorphisms, so

$$
\operatorname{Syl}_{p} K\left(L_{n+1, k}\right) \cong \operatorname{Syl}_{p} K\left(L_{n, k}\right) \times \operatorname{Syl}_{p} K\left(L_{n, k+1}\right)
$$

Theorem 1.2. For any odd prime number p, the Sylow p-group of the critical group of the n-cube $\operatorname{Syl}_{p} K\left(Q_{n}\right)$ has the following expression:

$$
\operatorname{Syl}_{p} K\left(Q_{n}\right) \cong \operatorname{Syl}_{p}\left(\prod_{k=1}^{n} \mathbb{Z}_{k}^{\binom{n}{k}}\right)
$$

Proof. Let us compute the Sylow p-group of $K\left(Q_{n}\right)$ recursively:

$$
\operatorname{Syl}_{p} K\left(Q_{n}\right) \cong \operatorname{Syl}_{p} K\left(L_{n-1,0}\right) \times \operatorname{Syl}_{p} K\left(L_{n-1,1}\right)
$$

$$
\begin{aligned}
& \cong \operatorname{Syl}_{p} K\left(L_{n-2,0}\right) \times\left(\operatorname{Syl}_{p} K\left(L_{n-2,1}\right)\right)^{2} \times \operatorname{Syl}_{p} K\left(L_{n-2,2}\right) \\
& \cong \cdots \\
& \cong \prod_{k=0}^{j}\left(\operatorname{Syl}_{p} K\left(L_{n-j, k}\right)\right)^{\binom{j}{k}} \\
& \cong \prod_{k=0}^{n}\left(\operatorname{Syl}_{p} K\left(L_{0, k}\right)\right)^{\binom{n}{k}} \quad(\text { let } j=n)
\end{aligned}
$$

In the final step, $\operatorname{Syl}_{p} K\left(L_{0, k}\right)$ by definition is $\operatorname{Syl}_{p}\left(\mathbb{Z}^{2^{0}} / \operatorname{Im}\left(L_{0}+2 k\right)\right)$, which is just $\operatorname{Syl}_{p} \mathbb{Z}_{2 k}$, thus we obtain

$$
\operatorname{Syl}_{p} K\left(Q_{n}\right) \cong \operatorname{Syl}_{p}\left(\prod_{k=1}^{n} \mathbb{Z}_{k}^{\binom{n}{k}}\right) .
$$

4. Proof of Theorem 1.3

In this section we get a partial decomposition of $\operatorname{Syl}_{2} K\left(Q_{n}\right)$, which leads to the proof of Reiner's second conjecture on the occurrences of \mathbb{Z}_{2} in $\operatorname{Syl}_{2} K\left(Q_{n}\right)$.

Lemma 4.1. If m is an even positive integer, then

$$
\prod_{i=0}^{m-1} L_{n+2, k+i} \sim\left(\prod_{i=1}^{m} L_{n, k+i}\right)^{\oplus 2} \oplus \prod_{i=2}^{m-1} \tilde{L}_{n, k+i}\left(\begin{array}{cc}
L_{n, k} L_{n, k+1} & m \\
0 & L_{n, k+m} L_{n, k+m+1}
\end{array}\right)
$$

in $M_{2^{n+2}}\left(\mathbb{Z}_{2^{N}}\right)$, where N is any positive integer.
Proof. Recall that by Lemma 2.1 we have:

$$
\begin{aligned}
\prod_{i=0}^{m-1} L_{n, k+i} & =\prod_{i=0}^{m-1} \tilde{L}_{n-1, k+i}+m T_{n} \prod_{i=1}^{m-1} \tilde{L}_{n-1, k+i} \\
& =\prod_{i=1}^{m-1} \tilde{L}_{n-1, k+i}\left(\begin{array}{cc}
L_{n-1, k}+m & -m \\
-m & L_{n-1, k}+m
\end{array}\right)
\end{aligned}
$$

We will try to do some elementary row and column operations [11] to get desired decomposition of the Smith normal form. These operations consist of: adding an integer multiple of one row (or column) to another; negating a row (or column); interchanging two rows (or columns). Here we will use the theory of the Smith normal form for matrices with entries in a principal idea domain (cf. [7]), in this case it is $\mathbb{Z}_{2^{N}}$.

$$
\prod_{i=0}^{m-1} L_{n+2, k+i} \sim \prod_{i=1}^{m-1} \tilde{L}_{n+1, k+i}\left(\begin{array}{cc}
L_{n+1, k} & -m \\
0 & L_{n+1, k+m}
\end{array}\right)=\left(\begin{array}{cc}
\Gamma_{11} & \Gamma_{12} \\
0 & \Gamma_{22}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \Gamma_{11}=\prod_{i=1}^{m-1} \tilde{L}_{n, k+i}\left(\begin{array}{cc}
L_{n, k}+m & -m \\
-m & L_{n, k}+m
\end{array}\right) \\
& \Gamma_{12}=-m \prod_{i=2}^{m-1} \tilde{L}_{n, k+i}\left(\begin{array}{cc}
L_{n, k+1}+(m-1) & -(m-1) \\
-(m-1) & L_{n, k+1}+(m-1)
\end{array}\right) \\
& \Gamma_{22}=\prod_{i=2}^{m} \tilde{L}_{n, k+i}\left(\begin{array}{cc}
L_{n, k+1}+m & -m \\
-m & L_{n, k+1}+m
\end{array}\right) .
\end{aligned}
$$

By the same sort of operations, it is easy to see that

$$
\left(\begin{array}{cc}
\Gamma_{11} & \Gamma_{12} \\
0 & \Gamma_{22}
\end{array}\right) \sim\left(\prod_{i=2}^{m-1} L_{n, k+i}\right)^{\oplus 4} \Lambda
$$

where

$$
\Lambda=\left(\begin{array}{cccc}
L_{n, k} L_{n, k+1} & -m L_{n, k+1} & -m L_{n, k+1} & m(m-1) \\
0 & L_{n, k+1} L_{n, k+m} & 0 & -m L_{n, k+m} \\
0 & 0 & L_{n, k+1} L_{n, k+m} & -m L_{n, k+m} \\
0 & 0 & 0 & L_{n, k+m} L_{n, k+m+1}
\end{array}\right)
$$

Since m is even as assumption, there exists an integer r such that $(m-1) r \equiv$ $1\left(\bmod 2^{N}\right)$. Similarly, there exists an integer s making $(1-2 m r) s \equiv 1\left(\bmod 2^{N}\right)$, or, equivalently, $1+2 m r s \equiv s\left(\bmod 2^{N}\right)$. Let P, Q be block matrices in $S L_{2^{n+2}}\left(\mathbb{Z}_{2^{N}}\right)$ as

$$
\begin{aligned}
& P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
r s L_{n, k+m} & 1+r s m & r s m & 0 \\
2 r^{2} s L_{n, k+m} & r s & r s & 0 \\
0 & -L_{n, k+m+1} & -L_{n, k+m+1} & (1-2 m r)(m-1)
\end{array}\right), \\
& Q=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-r s L_{n, k} & 1 & 0 & 0 \\
-r s L_{n, k} & -1 & m-1 & 0 \\
-2 r^{2} s L_{n, k} L_{n, k+1} & 0 & L_{n, k+1} & r
\end{array}\right) .
\end{aligned}
$$

Then we can check that in $M\left(\mathbb{Z}_{2^{N}}\right)$

$$
P \Lambda Q=\left(\begin{array}{cccc}
L_{n, k} L_{n, k+1} & 0 & 0 & m \\
0 & L_{n, k+1} L_{n, k+m} & 0 & 0 \\
0 & 0 & L_{n, k+1} L_{n, k+m} & 0 \\
0 & 0 & 0 & L_{n, k+m} L_{n, k+m+1}
\end{array}\right)
$$

Thinking of the "coefficient" $\left(\prod_{i=2}^{m-1} L_{n, k+i}\right)^{\oplus 4}$, we get the desired decomposition of the Smith normal form in the lemma.

In the special case that $m=2$, we already know that $\frac{1}{2} L_{n, k} L_{n, k+1}$ is still an integer matrix, so we may continue elementary row/column operations:

$$
\begin{aligned}
& \left(\begin{array}{cc}
L_{n, k} L_{n, k+1} & 2 \\
0 & L_{n, k+2} L_{n, k+3}
\end{array}\right) \\
& \sim\left(\begin{array}{cc}
& 0 \\
-\frac{1}{2} L_{n, k} L_{n, k+1} L_{n, k+2} L_{n, k+3} & L_{n, k+2} L_{n, k+3}
\end{array}\right) \\
& \quad \sim 2 I_{2^{n}} \oplus \frac{1}{2} \prod_{i=0}^{3} L_{n, k+i} .
\end{aligned}
$$

So we have (only in $M\left(\mathbb{Z}_{2^{N}}\right)$):

$$
L_{n+2, k} L_{n+2, k+1} \sim 2 I_{2^{n}} \oplus\left(L_{n, k+1} L_{n, k+2}\right)^{\oplus 2} \oplus \frac{1}{2} \prod_{i=0}^{3} L_{n, k+i}
$$

Knowing that $K\left(L_{n+1, k}\right) \cong K\left(L_{n, k} L_{n, k+1}\right)$ (Lemma 2.2), we can rewrite this as

Corollary 4.2

$$
\operatorname{Syl}_{2} K\left(L_{n, k}\right) \cong \mathbb{Z}_{2}^{2^{n-3}} \times\left(\operatorname{Syl}_{2} K\left(L_{n-2, k+1}\right)\right)^{2} \times \operatorname{Syl}_{2} K\left(\frac{1}{2} \prod_{i=0}^{3} L_{n-3, k+i}\right)
$$

for any $n \geqslant 3$.
Let $a(n, k)$ be the number of the occurrences of \mathbb{Z}_{2} in $\operatorname{Syl}_{2} K\left(L_{n, k}\right)$. In particular Reiner's second conjecture concerns of $a_{n}:=a(n, 0)$ for $\operatorname{Syl}_{2} K\left(Q_{n}\right)$. Note that \mathbb{Z}_{2} does not show up in $\operatorname{Syl}_{2} K\left(\frac{1}{2} \prod_{i=0}^{3} L_{n, k+i}\right)$ for any n and k, since the matrix $\prod_{i=0}^{3} L_{n, k+i}$ is in $M(24 \mathbb{Z})$ by Lemma 2.1.

Now we can confirm Reiner's second conjecture:
Theorem 1.3. The generating function of a_{n} is

$$
\sum_{n=0}^{\infty} a_{n+3} x^{n}=\frac{1}{(1-2 x)\left(1-2 x^{2}\right)}
$$

Proof. By Corollary 4.2, $a(n, k)$ has recurrence

$$
a(n, k)=2^{n-3}+2 a(n-2, k+1), \quad \forall n \geqslant 3 .
$$

We evaluate directly the initial conditions:

$$
a(0, k)=a(1, k)=a(2, k)=0, \quad \forall k \geqslant 0 .
$$

These initial conditions imply that $a(n, k)=a_{n}$.

Let $f(x)=\sum_{n=0}^{\infty} a_{n+3} x^{n}$, then

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} 2^{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n+1} x^{n} \\
& =\sum_{n=0}^{\infty}(2 x)^{n}+2 \sum_{n=2}^{\infty} a_{n+1} x^{n} \\
& =\sum_{n=0}^{\infty}(2 x)^{n}+2 x^{2} \sum_{n=0}^{\infty} a_{n+3} x^{n} \\
& =\frac{1}{1-2 x}+2 x^{2} f(x) .
\end{aligned}
$$

Hence we conclude that $f(x)=1 /\left[(1-2 x)\left(1-2 x^{2}\right)\right]$.
Reiner shares with the author the data computed by the Smith normal form program at web site http://linbox.pc.cis.udel.edu:8080/gap/SmithForm.html

n	$\operatorname{Syl}_{2} K\left(Q_{n}\right)$
2	\mathbb{Z}_{4}
3	$\mathbb{Z}_{2} \mathbb{Z}_{8}^{2}$
4	$\mathbb{Z}_{2}^{2} \mathbb{Z}_{8}^{4} \mathbb{Z}_{32}$
5	$\mathbb{Z}_{2}^{6} \mathbb{Z}_{8}^{4} \mathbb{Z}_{16} \mathbb{Z}_{64}^{4}$
6	$\mathbb{Z}_{2}^{12} \mathbb{Z}_{4}^{4} \mathbb{Z}_{8} \mathbb{Z}_{32}^{4} \mathbb{Z}_{64}^{10}$
7	$\mathbb{Z}_{2}^{28} \mathbb{Z}_{4} \mathbb{Z}_{16}^{8} \mathbb{Z}_{32}^{6} \mathbb{Z}_{64}^{14} \mathbb{Z}_{128}^{6}$
8	$\mathbb{Z}_{2}^{56} \mathbb{Z}_{4}^{2} \mathbb{Z}_{16}^{16} \mathbb{Z}_{32}^{12} \mathbb{Z}_{64}^{28} \mathbb{Z}_{128}^{12} \mathbb{Z}_{1024}$
9	$\mathbb{Z}_{2}^{120} \mathbb{Z}_{4}^{10} \mathbb{Z}_{16}^{16} \mathbb{Z}_{32}^{26} \mathbb{Z}_{64}^{48} \mathbb{Z}_{128}^{26} \mathbb{Z}_{512} \mathbb{Z}_{2048}^{8}$
10	$\mathbb{Z}_{2}^{200} \mathbb{Z}_{4}^{36} \mathbb{Z}_{8}^{26} \mathbb{Z}_{32}^{16} \mathbb{Z}_{64}^{148} \mathbb{Z}_{256} \mathbb{Z}_{1024}^{26} \mathbb{Z}_{2048}^{18}$
11	$\mathbb{Z}_{2}^{496} \mathbb{Z}_{4}^{66} \mathbb{Z}_{8}^{32} \mathbb{Z}_{16}^{100} \mathbb{Z}_{64}^{164} \mathbb{Z}_{128} \mathbb{Z}_{512}^{10} \mathbb{Z}_{2048}^{64}$

Acknowledgments

The author is indebted to Victor Reiner for drawing my attention to the structure of the critical group of the n-cube. His suggestions and discussions also greatly helped in improving the final version of this paper. The author also thanks the referee for valuable comments.

References

[1] R. Bacher, P. de la Harpe, T. Nagnibeda, The lattice of integral flows and the lattice of integral cuts on a finite graph, Bull. Soc. Math. France 125 (1997) 167-198.
[2] N.L. Biggs, Algebraic Graph Theory, second ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993.
[3] N.L. Biggs, Algebraic potential theory on graphs, Bull. London Math. Soc. 29 (1997) 641-682.
[4] N.L. Biggs, Chip-firing and the critical group of a graph, J. Algebraic Combin. 9 (1999) 25-45.
[5] H. Christianson, V. Reiner, The critical group of a threshold graph, Linear Algebra Appl. 349 (2002) 233-244.
[6] R. Cori, D. Rossin, On the sandpile group of dual graphs, Europ. J. Combin. 21 (2000) 447-459.
[7] D. Dhar, P. Ruelle, S. Sen, D.-N. Verma, Algebraic aspects of abelian sandpile models, J. Phys. A 28 (1995) 805-831.
[8] D.S. Dummit, R.M. Foote, Abstract Algebra, second ed., John Wiley \& Sons, Inc., 1999.
[9] M.A. Fiol, On congruence in \mathbb{Z}^{n} and the dimension of a multidimensional circulant, Discrete Math. 141 (1995) 123-134.
[10] C. Godsil, G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 2001.
[11] G. Havas, B. Majewski, Integer matrix diagonalization, computational algebra and number theory (London, 1993), J. Symbolic Comput. 24 (3-4) (1997) 399-408.
[12] B. Jacobson, A. Neidermaier, V. Reiner, Critical groups for complete multipartite graphs and Cartesian products of complete graphs, preprint (2002). Available from: <http://www.math.umn. edu/~reiner/Papers/papers.html>.
[13] D.J. Lorenzini, A finite group attached to the Laplacian of a graph, Discrete Math. 91 (1991) 277282.
[14] R. Merris, Unimodular equivalence of graphs, Linear Algebra Appl. 173 (1992) 181-189.
[15] R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl. 278 (1998) 221-236.
[16] M. Newman, The Smith normal form, in: Proceedings of the Fifth Conference of the International Linear Algebra Society, Atlanta, GA, 1995, Linear Algebra Appl. 254 (1997) 367-381.
[17] V. Reiner, University of Minnesota Combinatorial Problem Session, 2001.

[^0]: E-mail address: huabai@usc.edu (H. Bai).
 0024-3795/03/\$ - see front matter © 2003 Published by Elsevier Science Inc.
 doi:10.1016/S0024-3795(02)00727-9

