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A set partition B “ pB1, . . . , Brq of rns :“ t1, . . . , nu is a family of subsets Bi P rns where Bi XBj “ H and
Yr

i“1Bi “ rns. A partition B is noncrossing if no two of its blocks have i, k P Bs, j, ` P Bt s.t. i ă j ă k ă `.
Let NCpnq denote the set of noncrossing partitions of n.

It is a classical result that #NCpnq “ Cn :“ 1
n`1

`

2n
n

˘

. The number Cn is known as the nth Catalan number.

1. Lattices

A poset (or partially ordered set) is set P and a relation ď called a partial order that satisfies

‚ x ď x,
‚ if x ď y and y ď x, then x “ y, and
‚ if x ď y and y ď z, then x ď z

for any x, y, z P P. We will write P instead of pP,ďq, unless it is not clear which partial order on P is being used.
A subset C of P is called a chain if any two elements of C are comparable (under the partial order on P ).

The chain C is maximal if it is not contained in any larger chain of P .
A lattice L is a poset where any x, y P L have a join and a meet. A join (resp. meet) of x and y, denoted

x_ y P L (resp. x^ y), must satisfy the following

‚ x, y ď x_ y (resp. x^ y ď x, y) and
‚ if z P L where x ď z and y ď z (resp. z ď x and z ď y), then x_ y ď z (resp. z ď x^ y).

We will only consider finite lattices and posets. All finite lattices have a unique maximal (resp. minimal)

element, denoted p1 (resp p0). Ask students why.

2. Shellability

Assume that P is finite poset, that all maximal chains of P are of the same length r, and that p0,p1 P P
(P is a finite graded poset). Let CovpP q :“ tpx, yq P P 2 : x Ñ y in P u be the set of covering relations
of P . A map λ : CovpP q Ñ Q where pQ,ďQq is some poset is called a(n) (edge) labeling. A maximal
chain C “ c1 ă ¨ ¨ ¨ ă cr`1 of P is increasing if λpc1, c2q ďQ ¨ ¨ ¨ ďQ λpcr, cr`1q. Given two maximal chains
C “ c1 ă ¨ ¨ ¨ ă cr`1 and C 1 “ c11 ă ¨ ¨ ¨ ă c1r`1 in P , we say C is lexicographically smaller that C 1 if
pλpc1, c2q, . . . , λpcr, cr`1qq lexicographically precedes pλpc11, c

1
2q, . . . , λpc

1
r, c

1
r`1qq.

Definition 2.1. A labeling λ : CovpP q Ñ Q is an EL-labeling (or edge lexicographical labeling) of P if for
every interval rx, ys :“ tz P P : x ď z ď yu of P ,

i) there is a unique increasing maximal chain C in rx, ys, and
ii) C is lexicographically smaller than any other maximal chain C 1 in rx, ys.

If P admits an EL-labeling, it is said to be EL-shellable.

Theorem 2.2 (Björner). Let pB,B1q P CovpNCpnqq and let Bi, Bj P B be the blocks that are merged to produce
B1. Then the labeling λ : CovpNCpnqq Ñ rns defined by λpB,B1q :“ maxtminBi,minBju is an EL-labeling. Thus
the lattice NCpnq is EL-shellable.
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3. Noncrossing Tree Partitions

Let T be a tree embedded in the disk D2 in such a way that a vertex of T lies on the boundary of D2 if and
only if that vertex is a leaf of T . The tree T has boundary vertices and interior vertices.

The tree T has an important set of subgraphs, which we will call segments. A segment s “ pv0, . . . , vtq “
rv0, vts with t ě 1 is a sequence of interior vertices of T that turn sharply at vi for each 1 ď i ď t ´ 1. A vertex
of T is not a segment. Let SegpT q denote the set of segments of T .

A red admissible curve γ : r0, 1s Ñ D2 for a segment s “ rv0, vts is a simple curve where

‚ its endpoints are v0 and vt,
‚ γ may only intersect edges of T of the form pvi´1, viq where i P rts, and
‚ γ must leave its endpoints “to the right.”

Two segments are noncrossing if they admit red admissible curves that do not intersect.
A noncrossing tree partition B “ pB1, . . . , Bkq is a set partition of the interior vertices of T where

‚ there is a (unique) set of segments SegrpBiq Ă SegpT q connecting the vertices in Bi and any two segments
in SegrpBiq may agree only at their endpoints and

‚ any segments s1 P SegrpBiq and s2 P SegrpBjq are noncrossing.

Theorem 3.1 (G.–McConville). The set NCPpT q :“ tnoncrossing tree partitions of T u partially ordered by
refinement (i.e. if B “ pB1, . . . , Bkq ď B1 “ pB11, . . . , B

1
`q, then each block Bi is contained in some B1j) is a

lattice.

Exercise 3.2. Find a tree T where

a) #NCPpT q is not equal to any Catalan number
b) #NCPpT q is equal to a Catalan number, but NCPpT q fl NCpnq for any n.

Problem 3.3. Let T be a tree embedded in a disk with n interior vertices so that the rank of NCPpT q is n´ 1.

a) Show that NCPpT q is EL-shellable.
b) Find a formula for the number of maximal chains of NCPpT q.

Remark 3.4. By Problem 3.3, the simplicial complex ∆
´

NCPpT q
¯

will be homotopy-equivalent to a wedge of

pn´ 3q-dimensional spheres. The number of such spheres will be #tmaximal chains of NCPpT qu ´ 1.

4. Shard Intersection Order of Biclosed Sets

A tree T defines another lattice whose combinatorics we want to further understand.
Two segments s1 and s2 are composable if s1˝s2 P SegpT q. A set B Ă SegpT q is closed if for any composable

segments s1, s2 P B, one has that s1 ˝ s2 P B. We say B is biclosed if B and SegpT qzB are closed. Let BicpT q
denote the set of biclosed sets of T partially ordered by inclusion.

We introduced the lattice of noncrossing tree partitions NCPpT q in order to describe the shard intersection

order of
ÝÝÑ
FGpT q. Now we want to understand the shard intersection order of BicpT q.

Exercise 4.1. Let B1, B2 P BicpT q.

a) Describe B1 _B2.
b) Use a) to show that BicpT q is a lattice.

Theorem 4.2 (G.–McConville). The lattice BicpT q is a congruence-uniform lattice (i.e. it can be constructed
from the one element lattice by a finite sequence of interval doublings (this definition is a result of Day)). Also,
it is graded by cardinality of biclosed sets.
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Proposition 4.3 (essentially Reading). A lattice is congruence-uniform if and only if it admits a CU-labeling.

Definition 4.4. A labeling λ : CovpLq Ñ Q is a CN-labeling if L and its dual L˚ satisfy the following: For
elements x, y, z P L with pz, xq, pz, yq P CovpLq and maximal chains C1 and C2 in rz, x _ ys with x P C1 and
y P C2,

(CN1) the elements x1 P C1, y
1 P C2 such that px1, x_ yq, py1, x_ yq P CovpLq satisfy

λpx1, x_ yq “ λpz, yq, λpy1, x_ yq “ λpz, xq;

(CN2) if pu, vq P CovpC1q with z ă u, v ă x_ y, then λpz, xq, λpz, yq ăQ λpu, vq;
(CN3) the labels on CovpC1q are pairwise distinct.

We say that λ is a CU-labeling if, in addition, it satisfies

(CU1) for any elements j, j1 P L that cover unique elements j˚, j
1
˚ P L, respectively, one has that λpj˚, jq ‰

λpj1˚, j
1q;

(CU2) for any elements m,m1 P L that are covered by unique elements m˚,m˚1 P L, respectively, one has that
λpm,m˚q ‰ λpm1,m˚1q.

Theorem 4.5 (G.–McConville). The labeling λ : CovpBicpT qq Ñ SegpT q defined by λpB,B \ tsuq “ s is a
CN-labeling (here SegpT q has the partial order s1 ďSegpT q s2 if s1 is a subsequence of s2).

Remark 4.6. Someone should present the part of Oriented Flip Graphs & Noncrossing Tree Partitions about
the shard intersection order of

ÝÝÑ
FGpT q. They should explain the CU-labeling of

ÝÝÑ
FGpT q that we construct and

how it is intrinsic to
ÝÝÑ
FGpT q.

Remark 4.7. Someone should present Petersen’s On the shard intersection order of a Coxeter group paper (using
some basic definitions from Reading’s Noncrossing partitions the shard intersection order).

Definition 4.8 (Reading). Let L be a congruence-uniform lattice with CU-labeling λ : CovpLq Ñ P. Let x P L
and let y1, . . . , yk be the elements of L satisfying pyi, xq P CovpLq. Define the shard intersection order of L
ΨpLq to be the collection of sets of the form

ψpxq :“ tlabels appearing between
Źk

i“1 yi and xu

“ tλpw, zq :
Źk

i“1 yi ď w ă z ď x, pw, zq P CovpLqu

partially ordered by inclusion.

Problem 4.9. Describe the shard intersection order of BicpT q.

a) Construct a CU-labeling λ : CovpBicpT qq Ñ S where S is variation of the poset SegpT q.
a) Is ΨpBicpT qq a lattice?
b) Is it EL-shellable?
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