REU PROBLEM: NONCROSSING TREE PARTITIONS AND SHARD INTERSECTION ORDERS

ALEXANDER GARVER

Contents

1

 $\frac{1}{2}$

2

1	T 11.
1.	Lattices
÷.	1000000

2. Shellability

3. Noncrossing Tree Partitions

4. Shard Intersection Order of Biclosed Sets

A set partition $\mathbf{B} = (B_1, \ldots, B_r)$ of $[n] := \{1, \ldots, n\}$ is a family of subsets $B_i \in [n]$ where $B_i \cap B_j = \emptyset$ and $\bigcup_{i=1}^r B_i = [n]$. A partition \mathbf{B} is **noncrossing** if no two of its **blocks** have $i, k \in B_s, j, \ell \in B_t$ s.t. $i < j < k < \ell$. Let NC(n) denote the set of noncrossing partitions of n.

It is a classical result that $\#NC(n) = C_n := \frac{1}{n+1} \binom{2n}{n}$. The number C_n is known as the *n*th **Catalan number**.

1. LATTICES

A poset (or partially ordered set) is set P and a relation \leq called a partial order that satisfies

- $x \leq x$,
- if $x \leq y$ and $y \leq x$, then x = y, and
- if $x \leq y$ and $y \leq z$, then $x \leq z$

for any $x, y, z \in P$. We will write P instead of (P, \leq) , unless it is not clear which partial order on P is being used. A subset C of P is called a **chain** if any two elements of C are comparable (under the partial order on P). The chain C is **maximal** if it is not contained in any larger chain of P.

A lattice L is a poset where any $x, y \in L$ have a join and a meet. A join (resp. meet) of x and y, denoted $x \lor y \in L$ (resp. $x \land y$), must satisfy the following

• $x, y \leq x \lor y$ (resp. $x \land y \leq x, y$) and

• if $z \in L$ where $x \leq z$ and $y \leq z$ (resp. $z \leq x$ and $z \leq y$), then $x \lor y \leq z$ (resp. $z \leq x \land y$).

We will only consider finite lattices and posets. All finite lattices have a unique maximal (resp. minimal) element, denoted $\hat{1}$ (resp $\hat{0}$). Ask students why.

2. Shellability

Assume that P is finite poset, that all maximal chains of P are of the same length r, and that $\hat{0}, \hat{1} \in P$ (P is a finite **graded** poset). Let $\operatorname{Cov}(P) := \{(x, y) \in P^2 : x \to y \text{ in } P\}$ be the set of **covering relations** of P. A map $\lambda : \operatorname{Cov}(P) \to Q$ where (Q, \leq_Q) is some poset is called a(n) (edge) labeling. A maximal chain $C = c_1 < \cdots < c_{r+1}$ of P is **increasing** if $\lambda(c_1, c_2) \leq_Q \cdots \leq_Q \lambda(c_r, c_{r+1})$. Given two maximal chains $C = c_1 < \cdots < c_{r+1}$ and $C' = c'_1 < \cdots < c'_{r+1}$ in P, we say C is **lexicographically smaller** that C' if $(\lambda(c_1, c_2), \ldots, \lambda(c_r, c_{r+1}))$ lexicographically precedes $(\lambda(c'_1, c'_2), \ldots, \lambda(c'_r, c'_{r+1}))$.

Definition 2.1. A labeling $\lambda : \operatorname{Cov}(P) \to Q$ is an **EL-labeling** (or edge lexicographical labeling) of P if for every interval $[x, y] := \{z \in P : x \leq z \leq y\}$ of P,

- i) there is a unique increasing maximal chain C in [x, y], and
- ii) C is lexicographically smaller than any other maximal chain C' in [x, y].

If P admits an EL-labeling, it is said to be **EL-shellable**.

Theorem 2.2 (Björner). Let $(\mathbf{B}, \mathbf{B}') \in \text{Cov}(\text{NC}(n))$ and let $B_i, B_j \in \mathbf{B}$ be the blocks that are merged to produce \mathbf{B}' . Then the labeling $\lambda : \text{Cov}(\text{NC}(n)) \rightarrow [n]$ defined by $\lambda(\mathbf{B}, \mathbf{B}') := \max\{\min B_i, \min B_j\}$ is an EL-labeling. Thus the lattice NC(n) is EL-shellable.

3. Noncrossing Tree Partitions

Let T be a tree embedded in the disk D^2 in such a way that a vertex of T lies on the boundary of D^2 if and only if that vertex is a leaf of T. The tree T has **boundary vertices** and **interior vertices**.

The tree T has an important set of subgraphs, which we will call segments. A segment $s = (v_0, \ldots, v_t) = [v_0, v_t]$ with $t \ge 1$ is a sequence of interior vertices of T that turn sharply at v_i for each $1 \le i \le t - 1$. A vertex of T is not a segment. Let Seg(T) denote the set of segments of T.

A red admissible curve $\gamma: [0,1] \to D^2$ for a segment $s = [v_0, v_t]$ is a simple curve where

- its endpoints are v_0 and v_t ,
- γ may only intersect edges of T of the form (v_{i-1}, v_i) where $i \in [t]$, and
- γ must leave its endpoints "to the right."

Two segments are **noncrossing** if they admit red admissible curves that do not intersect.

A noncrossing tree partition $\mathbf{B} = (B_1, \ldots, B_k)$ is a set partition of the interior vertices of T where

- there is a (unique) set of segments $\operatorname{Seg}_r(B_i) \subset \operatorname{Seg}(T)$ connecting the vertices in B_i and any two segments in $\operatorname{Seg}_r(B_i)$ may agree only at their endpoints and
- any segments $s_1 \in \text{Seg}_r(B_i)$ and $s_2 \in \text{Seg}_r(B_j)$ are noncrossing.

Theorem 3.1 (G.-McConville). The set NCP(T) := {noncrossing tree partitions of T} partially ordered by **refinement** (i.e. if $\mathbf{B} = (B_1, \ldots, B_k) \leq \mathbf{B}' = (B'_1, \ldots, B'_\ell)$, then each **block** B_i is contained in some B'_j) is a lattice.

Exercise 3.2. Find a tree T where

- a) #NCP(T) is not equal to any Catalan number
- b) #NCP(T) is equal to a Catalan number, but NCP $(T) \ncong$ NC(n) for any n.

Problem 3.3. Let T be a tree embedded in a disk with n interior vertices so that the rank of NCP(T) is n-1.

- a) Show that NCP(T) is EL-shellable.
- b) Find a formula for the number of maximal chains of NCP(T).

Remark 3.4. By Problem 3.3, the simplicial complex $\Delta\left(\overline{\text{NCP}(T)}\right)$ will be homotopy-equivalent to a wedge of (n-3)-dimensional spheres. The number of such spheres will be $\#\{\text{maximal chains of NCP}(T)\} - 1$.

4. Shard Intersection Order of Biclosed Sets

A tree T defines another lattice whose combinatorics we want to further understand.

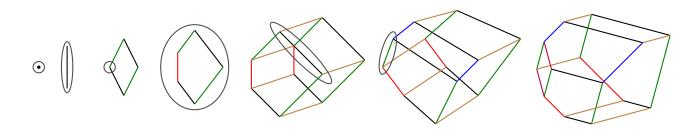
Two segments s_1 and s_2 are **composable** if $s_1 \circ s_2 \in \text{Seg}(T)$. A set $B \subset \text{Seg}(T)$ is **closed** if for any composable segments $s_1, s_2 \in B$, one has that $s_1 \circ s_2 \in B$. We say B is **biclosed** if B and $\text{Seg}(T) \setminus B$ are closed. Let Bic(T) denote the set of biclosed sets of T partially ordered by inclusion.

We introduced the lattice of noncrossing tree partitions NCP(T) in order to describe the **shard intersection** order of $\overrightarrow{FG}(T)$. Now we want to understand the shard intersection order of Bic(T).

Exercise 4.1. Let $B_1, B_2 \in \operatorname{Bic}(T)$.

- a) Describe $B_1 \vee B_2$.
- b) Use a) to show that Bic(T) is a lattice.

Theorem 4.2 (G.–McConville). The lattice Bic(T) is a **congruence-uniform** lattice (i.e. it can be constructed from the one element lattice by a finite sequence of interval doublings (this definition is a result of Day)). Also, it is graded by cardinality of biclosed sets.



Proposition 4.3 (essentially Reading). A lattice is congruence-uniform if and only if it admits a CU-labeling.

Definition 4.4. A labeling $\lambda : \operatorname{Cov}(L) \to Q$ is a **CN-labeling** if L and its dual L^* satisfy the following: For elements $x, y, z \in L$ with $(z, x), (z, y) \in \operatorname{Cov}(L)$ and maximal chains C_1 and C_2 in $[z, x \lor y]$ with $x \in C_1$ and $y \in C_2$,

(CN1) the elements $x' \in C_1, y' \in C_2$ such that $(x', x \lor y), (y', x \lor y) \in Cov(L)$ satisfy

$$\lambda(x', x \lor y) = \lambda(z, y), \ \lambda(y', x \lor y) = \lambda(z, x);$$

(CN2) if $(u, v) \in \text{Cov}(C_1)$ with $z < u, v < x \lor y$, then $\lambda(z, x), \lambda(z, y) <_Q \lambda(u, v)$;

(CN3) the labels on $Cov(C_1)$ are pairwise distinct.

We say that λ is a **CU-labeling** if, in addition, it satisfies

- (CU1) for any elements $j, j' \in L$ that cover unique elements $j_*, j'_* \in L$, respectively, one has that $\lambda(j_*, j) \neq \lambda(j'_*, j')$;
- (CU2) for any elements $m, m' \in L$ that are covered by unique elements $m^*, m^{*'} \in L$, respectively, one has that $\lambda(m, m^*) \neq \lambda(m', m^{*'})$.

Theorem 4.5 (G.-McConville). The labeling $\lambda : \text{Cov}(\text{Bic}(T)) \to \text{Seg}(T)$ defined by $\lambda(B, B \sqcup \{s\}) = s$ is a CN-labeling (here Seg(T) has the partial order $s_1 \leq_{\text{Seg}(T)} s_2$ if s_1 is a subsequence of s_2).

Remark 4.6. Someone should present the part of Oriented Flip Graphs & Noncrossing Tree Partitions about the shard intersection order of $\overrightarrow{FG}(T)$. They should explain the CU-labeling of $\overrightarrow{FG}(T)$ that we construct and how it is intrinsic to $\overrightarrow{FG}(T)$.

Remark 4.7. Someone should present Petersen's On the shard intersection order of a Coxeter group paper (using some basic definitions from Reading's Noncrossing partitions the shard intersection order).

Definition 4.8 (Reading). Let L be a congruence-uniform lattice with CU-labeling $\lambda : \text{Cov}(L) \to P$. Let $x \in L$ and let y_1, \ldots, y_k be the elements of L satisfying $(y_i, x) \in \text{Cov}(L)$. Define the shard intersection order of L $\Psi(L)$ to be the collection of sets of the form

$$\psi(x) := \{ \text{labels appearing between } \bigwedge_{i=1}^{k} y_i \text{ and } x \} \\ = \{ \lambda(w, z) : \bigwedge_{i=1}^{k} y_i \leq w < z \leq x, \ (w, z) \in \text{Cov}(L) \}$$

partially ordered by inclusion.

Problem 4.9. Describe the shard intersection order of Bic(T).

- a) Construct a CU-labeling $\lambda : \text{Cov}(\text{Bic}(T)) \to S$ where S is variation of the poset Seg(T).
- a) Is $\Psi(\operatorname{Bic}(T))$ a lattice?
- b) Is it EL-shellable?