Sandpile Groups of Cubes

B. Anzis \& R. Prasad

August 1, 2016

Overview

- Introduction

Overview

- Introduction
- Definitions

Overview

- Introduction
- Definitions
- Previous Results

Overview

- Introduction
- Definitions
- Previous Results
- Gröbner Basis Calculations

Overview

- Introduction
- Definitions
- Previous Results
- Gröbner Basis Calculations
- A Bound on the Largest Cyclic Factor Size

Overview

- Introduction
- Definitions
- Previous Results
- Gröbner Basis Calculations
- A Bound on the Largest Cyclic Factor Size
- Analogous Bounds on Other Cayley Graphs

Overview

- Introduction
- Definitions
- Previous Results
- Gröbner Basis Calculations
- A Bound on the Largest Cyclic Factor Size
- Analogous Bounds on Other Cayley Graphs
- Higher Critical Groups

Definitions

Definition

The \mathbf{n}-cube is the graph Q_{n} with $V\left(Q_{n}\right)=(\mathbf{Z} / 2 \mathbf{Z})^{n}$ and an edge between two vertices $v_{1}, v_{2} \in V\left(Q_{n}\right)$ if v_{1} and v_{2} differ in precisely one place.

Definitions

Definition

The Laplacian of a graph G, denoted $L(G)$, is the matrix

$$
L(G)_{i, j}= \begin{cases}\operatorname{deg}\left(v_{i}\right) & \text { if } i=j \\ -\#\left\{\text { edges from } v_{i} \text { to } v_{j}\right\} & \text { if } i \neq j\end{cases}
$$

Example

$$
L\left(Q_{1}\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \quad L\left(Q_{2}\right)=\left(\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 2 & 0 & -1 \\
-1 & 0 & 2 & -1 \\
0 & -1 & -1 & 2
\end{array}\right)
$$

A Final Definition

Definition

Let G be a graph. Since $L(G)$ is an integer matrix, we may consider it as a Z-linear map $L(G): \mathbf{Z}^{\# V(G)} \rightarrow \mathbf{Z}^{\# V(G)}$. The torsion part of the cokernel of this map is the critical group (or sandpile group) of G, denoted $K(G)$.

Previous Results I

Theorem [Bai]

For every prime $p>2$,

$$
\operatorname{Syl}_{p}\left(K\left(Q_{n}\right)\right) \cong \operatorname{Syl}_{p}\left(\prod_{k=1}^{n}(\mathbf{Z} / k \mathbf{Z})^{\binom{n}{k}}\right) .
$$

Previous Results I

Theorem [Bai]
For every prime $p>2$,

$$
\operatorname{Syl}_{p}\left(K\left(Q_{n}\right)\right) \cong \operatorname{Syl}_{p}\left(\prod_{k=1}^{n}(\mathbf{Z} / k \mathbf{Z})^{\binom{n}{k}}\right) .
$$

Remark

To understand $K\left(Q_{n}\right)$, it then remains to understand $\operatorname{Syl}_{2}\left(K\left(Q_{n}\right)\right)$.

Previous Results II

Lemma [Benkart, Klivans, Reiner]
For every $u \in(\mathbf{Z} / 2 \mathbf{Z})^{n}$, let $\chi_{u} \in \mathbf{Z}^{2^{n}}$ be the vector with entry in position $v \in(\mathbf{Z} / 2 \mathbf{Z})^{n}$ equal to $(-1)^{u \cdot v}$. Then χ_{u} is an eigenvector of $L\left(Q_{n}\right)$ with eigenvalue $2 \cdot \mathrm{wt}(u)$, where $\mathrm{wt}(u)$ is the number of non-zero entries in u.

Previous Results II

Lemma [Benkart, Klivans, Reiner]
For every $u \in(\mathbf{Z} / 2 \mathbf{Z})^{n}$, let $\chi_{u} \in \mathbf{Z}^{2^{n}}$ be the vector with entry in position $v \in(\mathbf{Z} / 2 \mathbf{Z})^{n}$ equal to $(-1)^{u \cdot v}$. Then χ_{u} is an eigenvector of $L\left(Q_{n}\right)$ with eigenvalue $2 \cdot \mathrm{wt}(u)$, where $\mathrm{wt}(u)$ is the number of non-zero entries in u.

Remark

Thus, we understand $L\left(Q_{n}\right)$ entirely as a map $\mathbf{Q}^{2^{n}} \rightarrow \mathbf{Q}^{2^{n}}$. When considering it as a $\operatorname{map} \mathbf{Z}^{2^{n}} \rightarrow \mathbf{Z}^{2^{n}}$, this leaves us with the task of understanding the \mathbf{Z}-torsion.

Previous Results II

Lemma [Benkart, Klivans, Reiner]
For every $u \in(\mathbf{Z} / 2 \mathbf{Z})^{n}$, let $\chi_{u} \in \mathbf{Z}^{2^{n}}$ be the vector with entry in position $v \in(\mathbf{Z} / 2 \mathbf{Z})^{n}$ equal to $(-1)^{u \cdot v}$. Then χ_{u} is an eigenvector of $L\left(Q_{n}\right)$ with eigenvalue $2 \cdot \mathrm{wt}(u)$, where $\mathrm{wt}(u)$ is the number of non-zero entries in u.

Remark

Thus, we understand $L\left(Q_{n}\right)$ entirely as a map $\mathbf{Q}^{2^{n}} \rightarrow \mathbf{Q}^{2^{n}}$. When considering it as a $\operatorname{map} \mathbf{Z}^{2^{n}} \rightarrow \mathbf{Z}^{2^{n}}$, this leaves us with the task of understanding the \mathbf{Z}-torsion.

Theorem [Benkart, Klivans, Reiner]

There is an isomorphism of Z-modules

$$
\mathbf{Z} \oplus K\left(Q_{n}\right) \cong \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}-1, \ldots, x_{n}^{2}-1, n-\sum x_{i}\right) .
$$

Gröbner Basis Background

Definition

Let $R=T\left[x_{1}, \ldots, x_{n}\right]$, where T is a commutative Noetherian ring. A monomial order on R is a total order $<$ on the set of monomials $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ of R. From now on, we implicitly assume a monomial order $<$ on R.

Gröbner Basis Background

Definition

Let $R=T\left[x_{1}, \ldots, x_{n}\right]$, where T is a commutative Noetherian ring. A monomial order on R is a total order $<$ on the set of monomials $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ of R. From now on, we implicitly assume a monomial order $<$ on R.

Notation
Let $I \subseteq[n]$. We write $x_{I}:=\prod_{i \in I} x_{i}$.

Gröbner Basis Background

Definition

Let $R=T\left[x_{1}, \ldots, x_{n}\right]$, where T is a commutative Noetherian ring. A monomial order on R is a total order $<$ on the set of monomials $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ of R. From now on, we implicitly assume a monomial order $<$ on R.

Notation

Let $I \subseteq[n]$. We write $x_{I}:=\prod_{i \in I} x_{i}$.

Definition

Let $f \in R$. Then the leading term of f, denoted $\ell \mathrm{t}(f)$, is the term of f greatest with respect to $<$.

Gröbner Basis Background

Definition

Let $I \triangleleft R$ be an ideal. Then the leading term ideal of I is

$$
\operatorname{LT}(I)=(\{\ell t(f) \mid f \in I\}) .
$$

Gröbner Basis Background

Definition

Let $I \triangleleft R$ be an ideal. Then the leading term ideal of I is

$$
\operatorname{LT}(I)=(\{\ell \mathrm{t}(f) \mid f \in I\}) .
$$

Definition

Let $I \triangleleft R$ an ideal. A Gröbner basis of I is a generating set $S=\left\{g_{1}, \ldots, g_{k}\right\}$ of I satisfying either of the following two properties:

- For every $f \in I$, we can write $\ell t(f)=c_{1} \ell t\left(g_{1}\right)+\cdots+c_{k} \ell t\left(g_{k}\right)$ for some $c_{i} \in R$.
- $L T(I)=\left(\ell t\left(g_{1}\right), \ldots, \ell t\left(g_{k}\right)\right)$.

Gröbner Basis Background

Definition

Let $I \triangleleft R$ be an ideal. Then the leading term ideal of I is

$$
\operatorname{LT}(I)=(\{\ell \mathrm{t}(f) \mid f \in I\}) .
$$

Definition

Let $I \triangleleft R$ an ideal. A Gröbner basis of I is a generating set $S=\left\{g_{1}, \ldots, g_{k}\right\}$ of I satisfying either of the following two properties:

- For every $f \in I$, we can write $\ell t(f)=c_{1} \ell t\left(g_{1}\right)+\cdots+c_{k} \ell t\left(g_{k}\right)$ for some $c_{i} \in R$.
- $L T(I)=\left(\ell t\left(g_{1}\right), \ldots, \ell t\left(g_{k}\right)\right)$.

Theorem

When T is a PID, every ideal $I \triangleleft R$ has a Gröbner basis.

Relevance to Our Situation

Theorem

Let $I \triangleleft R$ be an ideal. Then, as T-modules,

$$
R / I \cong R / \mathrm{LT}(I)
$$

Relevance to Our Situation

Theorem

Let $I \triangleleft R$ be an ideal. Then, as T-modules,

$$
R / I \cong R / \operatorname{LT}(I)
$$

Remark

By the isomorphism mentioned previously, to understand $K\left(Q_{n}\right)$ it suffices to understand a Gröbner basis for the ideal

$$
I_{n}:=\left(x_{1}^{2}-1, \ldots, x_{n}^{2}-1, n-\sum x_{i}\right)
$$

in $\mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$.

Relevance to Our Situation

Theorem

Let $I \triangleleft R$ be an ideal. Then, as T-modules,

$$
R / I \cong R / \operatorname{LT}(I)
$$

Remark

By the isomorphism mentioned previously, to understand $K\left(Q_{n}\right)$ it suffices to understand a Gröbner basis for the ideal

$$
I_{n}:=\left(x_{1}^{2}-1, \ldots, x_{n}^{2}-1, n-\sum x_{i}\right)
$$

in $\mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$. However, the Gröbner basis is very complicated.

Relevance to Our Situation

Lemma

Let J_{n} denote the ideal $\left(x_{1}^{2}-1, \ldots, x_{n}^{2}-1, n-\sum x_{i}\right)$ in $\mathbf{Z} / 2^{i} \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$. Then the factors of $\mathbf{Z} / 2 \mathbf{Z}, \ldots, \mathbf{Z} / 2^{i-1} \mathbf{Z}$ in $\mathbf{Z}\left[x_{1}, \ldots, x_{n}\right] / I_{n}$ and $\mathbf{Z} / 2^{i} \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right] / J_{n}$ are the same.

Relevance to Our Situation

Lemma

Let J_{n} denote the ideal $\left(x_{1}^{2}-1, \ldots, x_{n}^{2}-1, n-\sum x_{i}\right)$ in $\mathbf{Z} / 2^{i} \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$. Then the factors of $\mathbf{Z} / 2 \mathbf{Z}, \ldots, \mathbf{Z} / 2^{i-1} \mathbf{Z}$ in $\mathbf{Z}\left[x_{1}, \ldots, x_{n}\right] / I_{n}$ and $\mathbf{Z} / 2^{i} \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right] / J_{n}$ are the same.

Goal

Understand a Gröbner basis of J_{n} for $i=2$, and thus understand the number of $\mathbf{Z} / 2 \mathbf{Z}$-factors in $\mathrm{Syl}_{2} K\left(Q_{n}\right)$.

The Case $i=2$

Conjecture

For every odd integer m, let

$$
W_{m}=\left\{\left(2+\epsilon_{2}, 4+\epsilon_{4}, \ldots, m-3+\epsilon_{m-3}, m-1, m\right) \mid \epsilon_{i} \in\{0,1\}\right\}
$$

The Case $i=2$

Conjecture

For every odd integer m, let

$$
W_{m}=\left\{\left(2+\epsilon_{2}, 4+\epsilon_{4}, \ldots, m-3+\epsilon_{m-3}, m-1, m\right) \mid \epsilon_{i} \in\{0,1\}\right\}
$$

Then

$$
L T\left(J_{n}\right)=\left(x_{1}\right)+\left(x_{2}^{2}, \ldots, x_{n}^{2}\right)+\sum_{\substack{m \leq n \\ m \text { odd }}} \sum_{l \in W_{m}}\left(2 x_{l}\right) .
$$

An Observation

Observation

The highest cyclic factor has size equal to the highest additive order of an element in

$$
K\left(Q_{n}\right) \cong \mathbf{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left(x_{1}^{2}-1, \ldots, x_{n}^{2}-1, n-x_{1}-x_{2}-\ldots-x_{n}\right)
$$

An Observation

Observation

The highest cyclic factor has size equal to the highest additive order of an element in

$$
K\left(Q_{n}\right) \cong \mathbf{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left(x_{1}^{2}-1, \ldots, x_{n}^{2}-1, n-x_{1}-x_{2}-\ldots-x_{n}\right)
$$

Lemma

The elements $x_{i}-1$ have highest additive order in $K\left(Q_{n}\right)$ for all $i \in\{1, \ldots, n\}$.

An Observation

Proof Outline

- Show a polynomial has a multiple in I_{n} only if it has the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{I \subseteq[n]} c_{l}\left(x_{l}-1\right)
$$

An Observation

Proof Outline

- Show a polynomial has a multiple in I_{n} only if it has the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{I \subseteq[n]} c_{l}\left(x_{l}-1\right)
$$

- Show $x_{I}-1$ has a multiple in I_{n} for every $I \subseteq[n]$.

An Observation

Proof Outline

- Show a polynomial has a multiple in I_{n} only if it has the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{I \subseteq[n]} c_{l}\left(x_{l}-1\right)
$$

- Show $x_{I}-1$ has a multiple in I_{n} for every $I \subseteq[n]$.
- Show $\operatorname{ord}\left(x_{i}-1\right) \geq \operatorname{ord}\left(x_{I}-1\right)$ for any $I \subseteq[n]$.

The Order of $x_{1}-1$

We switch back to $\mathbf{Q}^{2^{n}}$:

$$
x_{1}-1 \sim\left(\begin{array}{c}
-1 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The Order of $x_{1}-1$

We want to find the smallest C such that $\exists \mathbf{v} \in \mathbf{Z}^{2^{n}}$ satisfying

$$
L\left(Q_{n}\right) \cdot \mathbf{v}=\left(\begin{array}{c}
-C \\
C \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The Order of $x_{1}-1$

We want to find the smallest C such that $\exists \mathbf{v} \in \mathbf{Z}^{2^{n}}$ satisfying

$$
L\left(Q_{n}\right) \cdot \mathbf{v}=\left(\begin{array}{c}
-C \\
C \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Idea: Work in the χ_{u}-basis!

The Order of $x_{1}-1$

Both terms are nice:

$$
L\left(Q_{n}\right) \sim\left(\begin{array}{cccccc}
0 & \cdots & \cdots & \cdots & \cdots & 0 \\
\vdots & 2 & & & & \vdots \\
\vdots & & 2 & & & \vdots \\
\vdots & & & 4 & & \vdots \\
\vdots & & & & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & 2 n
\end{array}\right) \quad\left(\begin{array}{c}
-1 \\
1 \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right) \sim\left(\begin{array}{c}
0 \\
\frac{1}{2^{n-1}} \\
0 \\
\frac{1}{2^{n-1}} \\
\vdots \\
\frac{1}{2^{n-1}}
\end{array}\right)
$$

The Order of $x_{1}-1$

We now have the χ_{u}-coordinates of \mathbf{v} :

$$
\mathbf{v} \sim\left(\begin{array}{llllll}
0 & \frac{1}{2^{n}} & 0 & \frac{1}{2^{n+1}} & \ldots & \frac{1}{n 2^{n}}
\end{array}\right)^{T}
$$

The Order of $x_{1}-1$

We now have the χ_{u}-coordinates of \mathbf{v} :

$$
\mathbf{v} \sim\left(\begin{array}{llllll}
0 & \frac{1}{2^{n}} & 0 & \frac{1}{2^{n+1}} & \ldots & \frac{1}{n 2^{n}}
\end{array}\right)^{T}
$$

Theorem

The order of $x_{1}-1$ is $\leq 2^{n} \cdot \operatorname{LCM}(1,2, \ldots, n)$

The Order of $x_{1}-1$

We now have the χ_{u}-coordinates of \mathbf{v} :

$$
\mathbf{v} \sim\left(\begin{array}{llllll}
0 & \frac{1}{2^{n}} & 0 & \frac{1}{2^{n+1}} & \ldots & \frac{1}{n 2^{n}}
\end{array}\right)^{T}
$$

Theorem

The order of $x_{1}-1$ is $\leq 2^{n} \cdot \operatorname{LCM}(1,2, \ldots, n)$

Corollary

The size of the largest cyclic factor in $\operatorname{Syl}_{2}\left(K\left(Q_{n}\right)\right)$ is $\leq 2^{n+\log _{2} n}$

Other Cayley Graphs

Goal
 Generalize the technique used for the cube graph to other Cayley graphs.

Other Cayley Graphs

Goal

Generalize the technique used for the cube graph to other Cayley graphs.

Key Theorem [Benkart, Klivans, Reiner]
Let G be the n-th power of a directed cycle of size k. Then

$$
K(G) \cong \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{k}-1, \ldots, x_{n}^{k}-1, n-\sum x_{i}\right) .
$$

Other Cayley Graphs

Goal

Generalize the technique used for the cube graph to other Cayley graphs.

Key Theorem [Benkart, Klivans, Reiner]
Let G be the n-th power of a directed cycle of size k. Then

$$
K(G) \cong \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{k}-1, \ldots, x_{n}^{k}-1, n-\sum x_{i}\right)
$$

Lemma [Benkart, Klivans, Reiner]
For every $u \in(\mathbf{Z} / k \mathbf{Z})^{n}$, let $\chi_{u} \in \mathbf{Z}^{k^{n}}$ be the vector with entry in position $v \in(\mathbf{Z} / k \mathbf{Z})^{n}$ equal to $\zeta_{k}^{u \cdot v}$. Then χ_{u} is an eigenvector of $L(G)$ with eigenvalue $k \cdot w t(u)$, where $w t(u)$ is the number of non-zero entries in u.

Generalize $x_{1}-1$

Lemma

As before, $x_{i}-1$ has maximal order in $K(G)$ for all $i \in\{1, \ldots, n\}$.

Generalize $x_{1}-1$

Lemma
As before, $x_{i}-1$ has maximal order in $K(G)$ for all $i \in\{1, \ldots, n\}$.

Remark

However, $x_{i}-1$ does not have a nice form in the χ_{u}-basis. So we must find another high-order term with a nice form. One such element is $(k-1)-x_{i}-x_{i}^{2}-\cdots-x_{i}^{k-1}$.

Generalize $x_{1}-1$

Lemma

As before, $x_{i}-1$ has maximal order in $K(G)$ for all $i \in\{1, \ldots, n\}$.

Remark

However, $x_{i}-1$ does not have a nice form in the χ_{u}-basis. So we must find another high-order term with a nice form. One such element is $(k-1)-x_{i}-x_{i}^{2}-\cdots-x_{i}^{k-1}$.

Lemma
$k \cdot \operatorname{ord}\left((k-1)-x_{i}-x_{i}^{2}-\cdots-x_{i}^{k-1}\right)=\operatorname{ord}\left(x_{i}-1\right)$.

Form in χ_{u}-basis

The form for $(k-1)-x_{i}-x_{i}^{2}-\cdots-x_{i}^{k-1}$ in the χ_{u}-basis is as follows:

$$
\left(\begin{array}{c}
k-1 \\
-1 \\
-1 \\
\vdots \\
-1 \\
0 \\
\vdots \\
0
\end{array}\right) \sim\left(\begin{array}{c}
0 \\
\frac{1}{k^{n}} \\
\vdots \\
\frac{1}{k^{n}} \\
0 \\
\frac{1}{k^{n}} \\
\vdots \\
\frac{1}{k^{n}} \\
\vdots
\end{array}\right)
$$

Bounds for $k=3,4$

Theorem ($k=3$)
Let $k=3$. Then the size of the largest cyclic factor of $\mathrm{Syl}_{3}(K(G))$ is $\leq 3^{n+1+\left\lfloor\log _{3}(n)\right\rfloor}$.

Theorem ($k=4$)
Let $k=4$. Then the size of the largest cyclic factor of $\mathrm{Syl}_{2}(K(G))$ is $\leq 4^{n+1+\left\lfloor\log _{4}(n)\right\rfloor}$.

A Different Viewpoint

Set $C_{1}(G), C_{0}(G)$ to be formal groups of \mathbf{Z}-linear combinations of the edges and vertices of G respectively.

A Different Viewpoint

Set $C_{1}(G), C_{0}(G)$ to be formal groups of \mathbf{Z}-linear combinations of the edges and vertices of G respectively.
There is a chain complex

$$
0 \rightarrow C_{1}(G) \xrightarrow{E} C_{0}(G) \xrightarrow{\epsilon} \mathbf{Z} \rightarrow 0
$$

where E is the incidence matrix of G and $\epsilon\left(\sum n_{i} v_{i}\right)=\sum n_{i}$ is the augmentation map.

A Different Viewpoint

Set $C_{1}(G), C_{0}(G)$ to be formal groups of Z-linear combinations of the edges and vertices of G respectively.
There is a chain complex

$$
0 \rightarrow C_{1}(G) \xrightarrow{E} C_{0}(G) \xrightarrow{\epsilon} \mathbf{Z} \rightarrow 0
$$

where E is the incidence matrix of G and $\epsilon\left(\sum n_{i} v_{i}\right)=\sum n_{i}$ is the augmentation map.

Lemma
$L(G)=E E^{T}$ and $K(G)=\operatorname{ker}(\epsilon) / \operatorname{lm}(L(G))=\operatorname{ker}(\epsilon) / \operatorname{Im}\left(E E^{\top}\right)$

Extension to Cell Complexes

Fix a cell complex X. There is a cellular chain complex

$$
\ldots \rightarrow C_{i}(X) \xrightarrow{\partial_{i}} C_{i-1}(X) \rightarrow \ldots \rightarrow C_{1}(X) \xrightarrow{\partial_{1}} C_{0}(X) \xrightarrow{\epsilon} \mathbf{Z} \rightarrow 0
$$

Extension to Cell Complexes

Fix a cell complex X. There is a cellular chain complex

$$
\ldots \rightarrow C_{i}(X) \xrightarrow{\partial_{i}} C_{i-1}(X) \rightarrow \ldots \rightarrow C_{1}(X) \xrightarrow{\partial_{1}} C_{0}(X) \xrightarrow{\epsilon} \mathbf{Z} \rightarrow 0
$$

Definition

The i-th critical group of X is $K_{i}(X)=\operatorname{ker}\left(\partial_{i}\right) / \operatorname{Im}\left(\partial_{i+1} \partial_{i+1}^{T}\right)$

Extension to Cell Complexes

Fix a cell complex X. There is a cellular chain complex

$$
\ldots \rightarrow C_{i}(X) \xrightarrow{\partial_{i}} C_{i-1}(X) \rightarrow \ldots \rightarrow C_{1}(X) \xrightarrow{\partial_{1}} C_{0}(X) \xrightarrow{\epsilon} \mathbf{Z} \rightarrow 0
$$

Definition

The i-th critical group of X is $K_{i}(X)=\operatorname{ker}\left(\partial_{i}\right) / \operatorname{Im}\left(\partial_{i+1} \partial_{i+1}^{T}\right)$
Related to cellular spannng trees, higher-dimensional dynamical systems on X.

Initial Results

We have an extension of Bai's Theorem:

Theorem

For any prime $p>2$,

$$
\operatorname{Syl}_{p}\left(K_{i}\left(Q_{n}\right)\right) \simeq \operatorname{Syl}_{p}\left(\bigoplus_{j=i+1}^{n}(\mathbf{Z} / j \mathbf{Z})^{\binom{n}{j}\binom{(-1}{i}}\right)
$$

Initial Results

We have an extension of Bai's Theorem:

Theorem

For any prime $p>2$,

$$
\operatorname{SyI}_{p}\left(K_{i}\left(Q_{n}\right)\right) \simeq \operatorname{Syl}_{p}\left(\bigoplus_{j=i+1}^{n}(\mathbf{Z} / j \mathbf{Z})^{\binom{n}{j}\binom{j-1}{i}}\right)
$$

Proof Outline

Initial Results

We have an extension of Bai's Theorem:

Theorem

For any prime $p>2$,

$$
\operatorname{SyI}_{p}\left(K_{i}\left(Q_{n}\right)\right) \simeq \operatorname{SyI}_{p}\left(\bigoplus_{j=i+1}^{n}(\mathbf{Z} / j \mathbf{Z})^{\left.\binom{n}{j}\left(\begin{array}{l}
\binom{j-1}{i}
\end{array}\right), ~\right)}\right.
$$

Proof Outline

- Can show $\partial_{i+1} \partial_{i+1}^{T}+\partial_{i}^{T} \partial_{i}=L\left(Q_{n-i}\right)^{\oplus\binom{n}{i}}$.
- $\partial_{i+1} \partial_{i+1}^{T}$ and $\partial_{i}^{T} \partial_{i}$ are diagonalizable and commute, so they have the same eigenvectors.

Further Directions

Further Directions

- A lower bound on the top cyclic factor: Examine minors of $L\left(Q_{n}\right)$?
- Top cyclic factor bounds on $K_{s_{1}} \times K_{s_{2}} \times \ldots \times K_{s_{n}}$.
- Extend the top cyclic factor bound to higher critical groups.

Acknowledgments

Acknowledgments

We would like to acknowledge support from NSF RTG grant DMS-1148634 as well as the UMN Twin Cities 2016 Math REU. Special thanks to Vic Reiner for his mentorship and advice, as well as to Will Grodzicki for helpful comments.

Acknowledgments

Acknowledgments
We would like to acknowledge support from NSF RTG grant DMS-1148634 as well as the UMN Twin Cities 2016 Math REU. Special thanks to Vic Reiner for his mentorship and advice, as well as to Will Grodzicki for helpful comments.

Questions?

