Sandpile Groups of Cubes

B. Anzis & R. Prasad

August 1, 2016

Sandpile Groups of Cubes

August 1, 2016 1 / 27

.∃ >

3

Introduction

・ロト ・四ト ・ヨト ・ヨト

- Introduction
 - Definitions

・ロト ・四ト ・ヨト ・ヨト

- Introduction
 - Definitions
 - Previous Results

<ロ> (日) (日) (日) (日) (日)

- Introduction
 - Definitions
 - Previous Results
- Gröbner Basis Calculations

- Introduction
 - Definitions
 - Previous Results
- Gröbner Basis Calculations
- A Bound on the Largest Cyclic Factor Size

3

(日) (同) (三) (三)

- Introduction
 - Definitions
 - Previous Results
- Gröbner Basis Calculations
- A Bound on the Largest Cyclic Factor Size
- Analogous Bounds on Other Cayley Graphs

-

► < ∃ ►</p>

3

- Introduction
 - Definitions
 - Previous Results
- Gröbner Basis Calculations
- A Bound on the Largest Cyclic Factor Size
- Analogous Bounds on Other Cayley Graphs
- Higher Critical Groups

-

- ∢ ∃ ▶

3

Definitions

Definition

The **n-cube** is the graph Q_n with $V(Q_n) = (\mathbb{Z}/2\mathbb{Z})^n$ and an edge between two vertices $v_1, v_2 \in V(Q_n)$ if v_1 and v_2 differ in precisely one place.

(日) (同) (三) (三)

Definitions

Definition

The **Laplacian** of a graph G, denoted L(G), is the matrix

$$L(G)_{i,j} = \begin{cases} \deg(v_i) & \text{if } i = j \\ -\#\{\text{edges from } v_i \text{ to } v_j\} & \text{if } i \neq j \end{cases}$$

Example

$$L(Q_1) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \quad L(Q_2) = \begin{pmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{pmatrix}$$

3

A Final Definition

Definition

Let G be a graph. Since L(G) is an integer matrix, we may consider it as a **Z**-linear map $L(G) : \mathbf{Z}^{\#V(G)} \to \mathbf{Z}^{\#V(G)}$. The torsion part of the cokernel of this map is the **critical group** (or **sandpile group**) of G, denoted K(G).

Previous Results I

Theorem [Bai]

For every prime p > 2,

$$\operatorname{Syl}_{p}(K(Q_{n}))\cong \operatorname{Syl}_{p}\left(\prod_{k=1}^{n} (\mathbf{Z}/k\mathbf{Z})^{\binom{n}{k}}\right).$$

3

(日) (同) (三) (三)

Previous Results I

Theorem [Bai]

For every prime p > 2,

$$\operatorname{Syl}_{p}(K(Q_{n}))\cong \operatorname{Syl}_{p}\left(\prod_{k=1}^{n}\left(\mathbf{Z}/k\mathbf{Z}\right)^{\binom{n}{k}}\right).$$

Remark

To understand $K(Q_n)$, it then remains to understand $Syl_2(K(Q_n))$.

3

(日) (同) (三) (三)

Previous Results II

Lemma [Benkart, Klivans, Reiner]

For every $u \in (\mathbb{Z}/2\mathbb{Z})^n$, let $\chi_u \in \mathbb{Z}^{2^n}$ be the vector with entry in position $v \in (\mathbb{Z}/2\mathbb{Z})^n$ equal to $(-1)^{u \cdot v}$. Then χ_u is an eigenvector of $L(Q_n)$ with eigenvalue $2 \cdot \operatorname{wt}(u)$, where $\operatorname{wt}(u)$ is the number of non-zero entries in u.

Previous Results II

Lemma [Benkart, Klivans, Reiner]

For every $u \in (\mathbb{Z}/2\mathbb{Z})^n$, let $\chi_u \in \mathbb{Z}^{2^n}$ be the vector with entry in position $v \in (\mathbb{Z}/2\mathbb{Z})^n$ equal to $(-1)^{u \cdot v}$. Then χ_u is an eigenvector of $L(Q_n)$ with eigenvalue $2 \cdot \operatorname{wt}(u)$, where $\operatorname{wt}(u)$ is the number of non-zero entries in u.

Remark

Thus, we understand $L(Q_n)$ entirely as a map $\mathbf{Q}^{2^n} \to \mathbf{Q}^{2^n}$. When considering it as a map $\mathbf{Z}^{2^n} \to \mathbf{Z}^{2^n}$, this leaves us with the task of understanding the **Z**-torsion.

Previous Results II

Lemma [Benkart, Klivans, Reiner]

For every $u \in (\mathbb{Z}/2\mathbb{Z})^n$, let $\chi_u \in \mathbb{Z}^{2^n}$ be the vector with entry in position $v \in (\mathbb{Z}/2\mathbb{Z})^n$ equal to $(-1)^{u \cdot v}$. Then χ_u is an eigenvector of $L(Q_n)$ with eigenvalue $2 \cdot \operatorname{wt}(u)$, where $\operatorname{wt}(u)$ is the number of non-zero entries in u.

Remark

Thus, we understand $L(Q_n)$ entirely as a map $\mathbf{Q}^{2^n} \to \mathbf{Q}^{2^n}$. When considering it as a map $\mathbf{Z}^{2^n} \to \mathbf{Z}^{2^n}$, this leaves us with the task of understanding the **Z**-torsion.

Theorem [Benkart, Klivans, Reiner]

There is an isomorphism of Z-modules

$$\mathbf{Z} \oplus \mathcal{K}(Q_n) \cong \mathbf{Z}[x_1,\ldots,x_n]/(x_1^2-1,\ldots,x_n^2-1,n-\sum x_i).$$

Definition

Let $R = T[x_1, ..., x_n]$, where T is a commutative Noetherian ring. A **monomial order** on R is a total order < on the set of monomials $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ of R. From now on, we implicitly assume a monomial order < on R.

Definition

Let $R = T[x_1, ..., x_n]$, where T is a commutative Noetherian ring. A **monomial order** on R is a total order < on the set of monomials $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ of R. From now on, we implicitly assume a monomial order < on R.

Notation

Let $I \subseteq [n]$. We write $x_I := \prod_{i \in I} x_i$.

Definition

Let $R = T[x_1, ..., x_n]$, where T is a commutative Noetherian ring. A **monomial order** on R is a total order < on the set of monomials $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ of R. From now on, we implicitly assume a monomial order < on R.

Notation

Let
$$I \subseteq [n]$$
. We write $x_I := \prod_{i \in I} x_i$.

Definition

Let $f \in R$. Then the **leading term** of f, denoted $\ell t(f)$, is the term of f greatest with respect to <.

(日) (同) (日) (日) (日)

Definition

Let $I \triangleleft R$ be an ideal. Then the **leading term ideal** of I is

 $\mathsf{LT}(I) = (\{\ell \mathsf{t}(f) \mid f \in I\}).$

3

(日) (同) (三) (三)

Definition

Let $I \triangleleft R$ be an ideal. Then the **leading term ideal** of I is

 $\mathsf{LT}(I) = (\{\ell \mathsf{t}(f) \mid f \in I\}).$

Definition

Let $I \triangleleft R$ an ideal. A **Gröbner basis** of I is a generating set

- $S = \{g_1, \dots, g_k\}$ of I satisfying either of the following two properties:
 - For every f ∈ I, we can write ℓt(f) = c₁ ℓt(g₁) + · · · + c_k ℓt(g_k) for some c_i ∈ R.

•
$$LT(I) = (\ell t(g_1), ..., \ell t(g_k)).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let $I \triangleleft R$ be an ideal. Then the **leading term ideal** of I is

 $\mathsf{LT}(I) = (\{\ell \mathsf{t}(f) \mid f \in I\}).$

Definition

Let $I \triangleleft R$ an ideal. A Gröbner basis of I is a generating set

- $S = \{g_1, \dots, g_k\}$ of I satisfying either of the following two properties:
 - For every f ∈ I, we can write lt(f) = c₁ lt(g₁) + · · · + c_k lt(g_k) for some c_i ∈ R.
 - $LT(I) = (\ell t(g_1), ..., \ell t(g_k)).$

Theorem

When T is a PID, every ideal $I \triangleleft R$ has a Gröbner basis.

Theorem

Let $I \triangleleft R$ be an ideal. Then, as *T*-modules,

 $R/I \cong R/LT(I).$

< ロ > < 同 > < 三 > < 三

Theorem

Let $I \triangleleft R$ be an ideal. Then, as *T*-modules,

 $R/I \cong R/LT(I).$

Remark

By the isomorphism mentioned previously, to understand $K(Q_n)$ it suffices to understand a Gröbner basis for the ideal

$$I_n := (x_1^2 - 1, \dots, x_n^2 - 1, n - \sum x_i)$$

in $Z[x_1, ..., x_n]$.

- 4 同 6 4 日 6 4 日 6

Theorem

Let $I \triangleleft R$ be an ideal. Then, as *T*-modules,

 $R/I \cong R/LT(I).$

Remark

By the isomorphism mentioned previously, to understand $K(Q_n)$ it suffices to understand a Gröbner basis for the ideal

$$I_n := (x_1^2 - 1, \dots, x_n^2 - 1, n - \sum x_i)$$

in $\mathbf{Z}[x_1, \ldots, x_n]$. However, the Gröbner basis is very complicated.

Lemma

Let J_n denote the ideal $(x_1^2 - 1, \ldots, x_n^2 - 1, n - \sum x_i)$ in $\mathbb{Z}/2^i \mathbb{Z}[x_1, \ldots, x_n]$. Then the factors of $\mathbb{Z}/2\mathbb{Z}, \ldots, \mathbb{Z}/2^{i-1}\mathbb{Z}$ in $\mathbb{Z}[x_1, \ldots, x_n]/I_n$ and $\mathbb{Z}/2^i \mathbb{Z}[x_1, \ldots, x_n]/J_n$ are the same.

イロト 不得 トイヨト イヨト 二日

Lemma

Let J_n denote the ideal $(x_1^2 - 1, \dots, x_n^2 - 1, n - \sum x_i)$ in $\mathbb{Z}/2^i \mathbb{Z}[x_1, \dots, x_n]$. Then the factors of $\mathbb{Z}/2\mathbb{Z}, \dots, \mathbb{Z}/2^{i-1}\mathbb{Z}$ in $\mathbb{Z}[x_1, \dots, x_n]/I_n$ and $\mathbb{Z}/2^i \mathbb{Z}[x_1, \dots, x_n]/J_n$ are the same.

Goal

Understand a Gröbner basis of J_n for i = 2, and thus understand the number of $\mathbb{Z}/2\mathbb{Z}$ -factors in Syl₂ $K(Q_n)$.

イロト 不得下 イヨト イヨト 三日

The Case i = 2

Conjecture

For every odd integer m, let

$$W_m = \{ (2 + \epsilon_2, 4 + \epsilon_4, \dots, m - 3 + \epsilon_{m-3}, m - 1, m) \mid \epsilon_i \in \{0, 1\} \}.$$

3

(日) (同) (三) (三)

The Case i = 2

Conjecture

For every odd integer m, let

$$W_m = \{(2 + \epsilon_2, 4 + \epsilon_4, \dots, m - 3 + \epsilon_{m-3}, m - 1, m) \mid \epsilon_i \in \{0, 1\}\}.$$

Then

$$LT(J_n) = (x_1) + (x_2^2, \dots, x_n^2) + \sum_{\substack{m \le n \ m \text{ odd}}} \sum_{I \in W_m} (2x_I).$$

3

(日) (同) (三) (三)

Observation

The highest cyclic factor has size equal to the highest additive order of an element in

$$K(Q_n) \cong \mathbf{Z}[x_1, x_2, \dots, x_n]/(x_1^2 - 1, \dots, x_n^2 - 1, n - x_1 - x_2 - \dots - x_n)$$

Observation

The highest cyclic factor has size equal to the highest additive order of an element in

$$K(Q_n) \cong \mathbf{Z}[x_1, x_2, \dots, x_n]/(x_1^2 - 1, \dots, x_n^2 - 1, n - x_1 - x_2 - \dots - x_n)$$

Lemma

The elements $x_i - 1$ have highest additive order in $K(Q_n)$ for all $i \in \{1, ..., n\}$.

- 4 同 6 4 日 6 4 日 6

Proof Outline

• Show a polynomial has a multiple in I_n only if it has the form

$$f(x_1,\ldots,x_n)=\sum_{I\subseteq [n]}c_I(x_I-1)$$

-

• • • • • • • • • • • •

Proof Outline

• Show a polynomial has a multiple in I_n only if it has the form

$$f(x_1,\ldots,x_n)=\sum_{I\subseteq [n]}c_I(x_I-1)$$

• Show $x_I - 1$ has a multiple in I_n for every $I \subseteq [n]$.

Proof Outline

• Show a polynomial has a multiple in I_n only if it has the form

$$f(x_1,\ldots,x_n)=\sum_{I\subseteq [n]}c_I(x_I-1)$$

- Show $x_l 1$ has a multiple in I_n for every $I \subseteq [n]$.
- Show $\operatorname{ord}(x_i 1) \ge \operatorname{ord}(x_i 1)$ for any $I \subseteq [n]$.

- 4 同 6 4 日 6 4 日 6

The Order of $x_1 - 1$

We switch back to \mathbf{Q}^{2^n} :

$$x_1 - 1 \sim \begin{pmatrix} -1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

1

<ロ> (日) (日) (日) (日) (日)

The Order of $x_1 - 1$

We want to find the smallest C such that $\exists v \in Z^{2^n}$ satisfying

$$L(Q_n) \cdot \mathbf{v} = \begin{pmatrix} -C \\ C \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We want to find the smallest C such that $\exists v \in Z^{2^n}$ satisfying

$$L(Q_n) \cdot \mathbf{v} = \begin{pmatrix} -C \\ C \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Idea: Work in the χ_u -basis!

- 32

イロト イポト イヨト イヨト

Both terms are nice:

We now have the χ_u -coordinates of **v**:

$$\mathbf{v} \sim \begin{pmatrix} 0 & \frac{1}{2^n} & 0 & \frac{1}{2^{n+1}} & \dots & \frac{1}{n^{2^n}} \end{pmatrix}^T$$

イロト イポト イヨト イヨト

We now have the χ_u -coordinates of **v**:

$$\mathbf{v} \sim \begin{pmatrix} 0 & \frac{1}{2^n} & 0 & \frac{1}{2^{n+1}} & \dots & \frac{1}{n2^n} \end{pmatrix}^T$$

Theorem

The order of $x_1 - 1$ is $\leq 2^n \cdot LCM(1, 2, \dots, n)$

We now have the χ_u -coordinates of **v**:

$$\mathbf{v} \sim \begin{pmatrix} 0 & \frac{1}{2^n} & 0 & \frac{1}{2^{n+1}} & \dots & \frac{1}{n2^n} \end{pmatrix}^T$$

Theorem

The order of $x_1 - 1$ is $\leq 2^n \cdot LCM(1, 2, \dots, n)$

Corollary

The size of the largest cyclic factor in $Syl_2(K(Q_n))$ is $\leq 2^{n+\log_2 n}$

Other Cayley Graphs

Goal

Generalize the technique used for the cube graph to other Cayley graphs.

3

∃ ► < ∃ ►</p>

< 4 → <

Other Cayley Graphs

Goal

Generalize the technique used for the cube graph to other Cayley graphs.

Key Theorem [Benkart, Klivans, Reiner]

Let G be the *n*-th power of a directed cycle of size k. Then

$$\mathcal{K}(\mathcal{G}) \cong \mathbf{Z}[x_1,\ldots,x_n]/(x_1^k-1,\ldots,x_n^k-1,n-\sum x_i).$$

Other Cayley Graphs

Goal

Generalize the technique used for the cube graph to other Cayley graphs.

Key Theorem [Benkart, Klivans, Reiner]

Let G be the *n*-th power of a directed cycle of size k. Then

$$\mathcal{K}(G) \cong \mathbf{Z}[x_1,\ldots,x_n]/(x_1^k-1,\ldots,x_n^k-1,n-\sum x_i).$$

Lemma [Benkart, Klivans, Reiner]

For every $u \in (\mathbb{Z}/k\mathbb{Z})^n$, let $\chi_u \in \mathbb{Z}^{k^n}$ be the vector with entry in position $v \in (\mathbb{Z}/k\mathbb{Z})^n$ equal to $\zeta_k^{u \cdot v}$. Then χ_u is an eigenvector of L(G) with eigenvalue $k \cdot \operatorname{wt}(u)$, where $\operatorname{wt}(u)$ is the number of non-zero entries in u.

Generalize $x_1 - 1$

Lemma

As before, $x_i - 1$ has maximal order in K(G) for all $i \in \{1, ..., n\}$.

3

Generalize $x_1 - 1$

Lemma

As before, $x_i - 1$ has maximal order in K(G) for all $i \in \{1, ..., n\}$.

Remark

However, $x_i - 1$ does not have a nice form in the χ_u -basis. So we must find another high-order term with a nice form. One such element is $(k-1) - x_i - x_i^2 - \cdots - x_i^{k-1}$.

Generalize $x_1 - 1$

Lemma

As before, $x_i - 1$ has maximal order in K(G) for all $i \in \{1, ..., n\}$.

Remark

However, $x_i - 1$ does not have a nice form in the χ_u -basis. So we must find another high-order term with a nice form. One such element is $(k-1) - x_i - x_i^2 - \cdots - x_i^{k-1}$.

Lemma

$$k \cdot \operatorname{ord} \left((k-1) - x_i - x_i^2 - \cdots - x_i^{k-1} \right) = \operatorname{ord}(x_i - 1).$$

イロト 人間ト イヨト イヨト

Form in χ_u -basis

The form for $(k-1) - x_i - x_i^2 - \cdots - x_i^{k-1}$ in the χ_u -basis is as follows:

$$\begin{pmatrix} k-1\\ -1\\ -1\\ \vdots\\ -1\\ 0\\ \vdots\\ 0 \end{pmatrix} \sim \begin{pmatrix} 0\\ \frac{1}{k^n}\\ \vdots\\ \frac{1}{k^n}\\ 0\\ \frac{1}{k^n}\\ \vdots\\ \frac{1}{k^n}\\ \vdots\\ \frac{1}{k^n}\\ \vdots \end{pmatrix}$$

٠

Bounds for k = 3, 4

Theorem (k = 3**)**

Let k = 3. Then the size of the largest cyclic factor of $Syl_3(K(G))$ is $< 3^{n+1+\lfloor \log_3(n) \rfloor}$.

Theorem (k = 4)

Let k = 4. Then the size of the largest cyclic factor of $Syl_2(K(G))$ is $< 4^{n+1+\lfloor \log_4(n) \rfloor}$.

A Different Viewpoint

Set $C_1(G)$, $C_0(G)$ to be formal groups of **Z**-linear combinations of the edges and vertices of G respectively.

3

A Different Viewpoint

Set $C_1(G)$, $C_0(G)$ to be formal groups of **Z**-linear combinations of the edges and vertices of *G* respectively. There is a chain complex

$$0 \to C_1(G) \xrightarrow{E} C_0(G) \xrightarrow{\epsilon} \mathbf{Z} \to 0$$

where *E* is the **incidence matrix** of *G* and $\epsilon(\sum n_i v_i) = \sum n_i$ is the **augmentation map**.

イロト 不得下 イヨト イヨト 二日

A Different Viewpoint

Set $C_1(G)$, $C_0(G)$ to be formal groups of **Z**-linear combinations of the edges and vertices of *G* respectively. There is a chain complex

$$0 \to C_1(G) \xrightarrow{E} C_0(G) \xrightarrow{\epsilon} \mathbf{Z} \to 0$$

where *E* is the **incidence matrix** of *G* and $\epsilon(\sum n_i v_i) = \sum n_i$ is the **augmentation map**.

Lemma

$$L(G) = EE^{T}$$
 and $K(G) = \ker(\epsilon) / \operatorname{Im}(L(G)) = \ker(\epsilon) / \operatorname{Im}(EE^{T})$

イロト 不得下 イヨト イヨト 二日

Extension to Cell Complexes

Fix a cell complex X. There is a cellular chain complex

 $\ldots \to C_i(X) \xrightarrow{\partial_i} C_{i-1}(X) \to \ldots \to C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\epsilon} \mathbf{Z} \to 0$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Extension to Cell Complexes

Fix a cell complex X. There is a cellular chain complex

$$\ldots o C_i(X) \stackrel{\partial_i}{ o} C_{i-1}(X) o \ldots o C_1(X) \stackrel{\partial_1}{ o} C_0(X) \stackrel{\epsilon}{ o} {\sf Z} o 0$$

Definition

The *i*-th critical group of X is $K_i(X) = \ker(\partial_i) / \operatorname{Im}(\partial_{i+1} \partial_{i+1}^T)$

(日) (同) (三) (三)

Extension to Cell Complexes

Fix a cell complex X. There is a cellular chain complex

$$\ldots o C_i(X) \xrightarrow{\partial_i} C_{i-1}(X) o \ldots o C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\epsilon} {\sf Z} o 0$$

Definition

The *i*-th critical group of X is $K_i(X) = \ker(\partial_i) / \operatorname{Im}(\partial_{i+1} \partial_{i+1}^T)$

Related to cellular spanning trees, higher-dimensional dynamical systems on X.

(日) (周) (三) (三)

Initial Results

We have an extension of Bai's Theorem:

Theorem

For any prime p > 2,

$$\operatorname{Syl}_{p}(K_{i}(Q_{n})) \simeq \operatorname{Syl}_{p}\left(\bigoplus_{j=i+1}^{n} (\mathbf{Z}/j\mathbf{Z})^{\binom{n}{j}\binom{j-1}{i}} \right)$$

3

Initial Results

We have an extension of Bai's Theorem:

Theorem

For any prime p > 2,

$$\operatorname{Syl}_{p}(K_{i}(Q_{n})) \simeq \operatorname{Syl}_{p}\left(\bigoplus_{j=i+1}^{n} (\mathbf{Z}/j\mathbf{Z})^{\binom{n}{j}\binom{j-1}{i}} \right)$$

Proof Outline

• Can show $\partial_{i+1}\partial_{i+1}^T + \partial_i^T \partial_i = L(Q_{n-i})^{\oplus \binom{n}{i}}$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Initial Results

We have an extension of Bai's Theorem:

Theorem

For any prime p > 2,

$$\operatorname{Syl}_{p}(K_{i}(Q_{n})) \simeq \operatorname{Syl}_{p}\left(\bigoplus_{j=i+1}^{n} (\mathbf{Z}/j\mathbf{Z})^{\binom{n}{j}\binom{j-1}{i}}\right)$$

Proof Outline

- Can show $\partial_{i+1}\partial_{i+1}^T + \partial_i^T \partial_i = L(Q_{n-i})^{\oplus \binom{n}{i}}$.
- ∂_{i+1}∂^T_{i+1} and ∂^T_i∂_i are diagonalizable and commute, so they have the same eigenvectors.

- 4 同 6 4 日 6 4 日 6

Further Directions

Further Directions

- A lower bound on the top cyclic factor: Examine minors of $L(Q_n)$?
- Top cyclic factor bounds on $K_{s_1} \times K_{s_2} \times \ldots \times K_{s_n}$.
- Extend the top cyclic factor bound to higher critical groups.

Acknowledgments

Acknowledgments

We would like to acknowledge support from NSF RTG grant DMS-1148634 as well as the UMN Twin Cities 2016 Math REU. Special thanks to Vic Reiner for his mentorship and advice, as well as to Will Grodzicki for helpful comments.

Acknowledgments

Acknowledgments

We would like to acknowledge support from NSF RTG grant DMS-1148634 as well as the UMN Twin Cities 2016 Math REU. Special thanks to Vic Reiner for his mentorship and advice, as well as to Will Grodzicki for helpful comments.

Questions?