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Quiver and Cluster Mutation
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Figure: Example of quiver mutation

Binomial Exchange Relation x ′1 =
x2x5 + x3x4

x1
.
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The Del Pezzo 2 Quiver (dP2) and its Brane Tiling

The second Del Pezzo Surface (dP2) is first introduced in the physics
literature.

1

2

34

5

1

2 3

45
1

2 3

45
1

2 3

45

1

2 3

45
1

2 3

45

Figure: dP2 quiver and its corresponding brane tiling [HS12]
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Toric Mutations

Definition (Toric Mutations)

A toric mutation is a cluster mutation at a vertex with in-degree 2 and
out-degree 2.
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Two Models of the dP2 Quiver

Same Model: isomorphic or reverse isomorphic.

1

2

34

5

1

2

34

5

Figure: Model 1 (left) and Model 2 (right) of the dP2 quiver [HS12]

Gao, Li, Vuong, Yang dP2 Cluster Variables July 29, 2016 6 / 29



Two Models of the dP2 Quiver

Same Model: isomorphic or reverse isomorphic.

1

2

34

5

1

2

34

5

Figure: Model 1 (left) and Model 2 (right) of the dP2 quiver [HS12]

Gao, Li, Vuong, Yang dP2 Cluster Variables July 29, 2016 6 / 29



Classification of Toric Mutation Sequences

2

2

1 1 1 2 2

1

1

Figure: Adjacency between different models
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ρ−mutation sequence
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Figure: All possible toric mutation sequences that start from model 1 and return
to model 1 the first time.

Definition (ρ-mutations)

ρ1 = µ1 ◦ (54321), ρ2 = µ5 ◦ (12345), ρ3 = µ2 ◦ µ4 ◦ (24),

ρ4 = µ2 ◦ µ1 ◦ µ4 ◦ (531), ρ5 = µ4 ◦ µ5 ◦ µ2 ◦ (351),

ρ6 = µ2 ◦ µ1 ◦ µ2 ◦ (531)(24), ρ7 = µ4 ◦ µ5 ◦ µ4 ◦ (135)(24).

A ρ−mutation sequence is a sequence of ρ−mutations.

Gao, Li, Vuong, Yang dP2 Cluster Variables July 29, 2016 8 / 29



ρ−mutation sequence

1
2

2

2

24

4

4

4

1

5

5

2 2 2 2

1

1 1

1

1

1 1

Figure: All possible toric mutation sequences that start from model 1 and return
to model 1 the first time.

Definition (ρ-mutations)

ρ1 = µ1 ◦ (54321), ρ2 = µ5 ◦ (12345), ρ3 = µ2 ◦ µ4 ◦ (24),

ρ4 = µ2 ◦ µ1 ◦ µ4 ◦ (531), ρ5 = µ4 ◦ µ5 ◦ µ2 ◦ (351),

ρ6 = µ2 ◦ µ1 ◦ µ2 ◦ (531)(24), ρ7 = µ4 ◦ µ5 ◦ µ4 ◦ (135)(24).

A ρ−mutation sequence is a sequence of ρ−mutations.

Gao, Li, Vuong, Yang dP2 Cluster Variables July 29, 2016 8 / 29



ρ−mutation sequence

1
2

2

2

24

4

4

4

1

5

5

2 2 2 2

1

1 1

1

1

1 1

Figure: All possible toric mutation sequences that start from model 1 and return
to model 1 the first time.

Definition (ρ-mutations)

ρ1 = µ1 ◦ (54321), ρ2 = µ5 ◦ (12345), ρ3 = µ2 ◦ µ4 ◦ (24),

ρ4 = µ2 ◦ µ1 ◦ µ4 ◦ (531), ρ5 = µ4 ◦ µ5 ◦ µ2 ◦ (351),

ρ6 = µ2 ◦ µ1 ◦ µ2 ◦ (531)(24), ρ7 = µ4 ◦ µ5 ◦ µ4 ◦ (135)(24).

A ρ−mutation sequence is a sequence of ρ−mutations.
Gao, Li, Vuong, Yang dP2 Cluster Variables July 29, 2016 8 / 29



ρ−mutations

An example: ρ1 = µ1 ◦ (54321).
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(x1, x2, x3, x4, x5) −→ (
x2x5 + x3x4

x1
= x6, x2, x3, x4, x5) −→ (x2, x3, x4, x5, x6)
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ρ−mutations

Proposition (Relations between ρ−mutations)

ρ4 = ρ21ρ3, ρ5 = ρ22ρ3, ρ6 = ρ21, ρ7 = ρ22.

It suffices to consider ρ1, ρ2, ρ3.

Proposition (Relations between ρ1, ρ2, ρ3)

ρ1ρ2 = ρ2ρ1 = ρ23 = 1.

ρ21ρ3 = ρ3ρ
2
1, ρ22ρ3 = ρ3ρ

2
2, ρ1ρ3ρ2 = ρ2ρ3ρ1.
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ρ−mutation sequence: a visualization

Proposition (Relations between ρ1, ρ2, ρ3)

ρ1ρ2 = ρ2ρ1 = ρ23 = 1.

ρ21ρ3 = ρ3ρ
2
1, ρ22ρ3 = ρ3ρ

2
2, ρ1ρ3ρ2 = ρ2ρ3ρ1.

Figure: A visualization for ρ−mutation sequence.

ρ1 :→, ρ2 :←, ρ3 :↑ / ↓ .
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ρ−mutation sequence

Theorem

Every toric mutation sequence that starts at Q (the original dP2 quiver)
and ends in model 1 can be written as either

ρk1(ρ3ρ1)m or ρk1(ρ3ρ1)mρ3,

where k ∈ Z, m ∈ Z≥0 and ρ−11 = ρ2.
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Explicit Formula for Cluster Variables

Definition (Laurent Polynomial for Somos-5 Sequence)

Let x1, x2, x3, x4, x5 be our initial variables. Define xn for each n ∈ Z by

xnxn−5 = xn−1xn−4 + xn−2xn−3.

Notice that {xn}n≥1 is the somos-5 sequence if
x1 = x2 = x3 = x4 = x5 = 1.

Definition (Some Constants)

A :=
x1x5 + x23

x2x4
, B :=

x2x6 + x24
x3x5

(
=

x1x
2
4 + x2x3x4 + x22x5

x1x3x5

)
.
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Explicit Formula for Cluster Variables

Theorem

Define g(s, k) :=
⌊
s
2

⌋ ⌊
s+1
2

⌋
if k is even and g(s, k) :=

⌊
s−1
2

⌋ ⌊
s
2

⌋
if k is

odd. Then we have, for k ∈ Z and s ∈ Z≥0,

ρk1(ρ3ρ1)s{x1, x2, x3, x4, x5} = {Ag(s+1,k)Bg(s+1,k+1)xk+s+1,

Ag(s,k)Bg(s,k+1)xk+s+2,

Ag(s+1,k)Bg(s+1,k+1)xk+s+3,

Ag(s,k)Bg(s,k+1)xk+s+4,

Ag(s+1,k)Bg(s+1,k+1)xk+s+5}.

Corollary

All cluster variables generated by toric mutations can be written as either

An2Bn(n−1)x2m or An(n−1)Bn2x2m−1 for some m, n ∈ Z.
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Subgraph of the Brane Tiling

Definition (Weighting Scheme)

Associate a weight w(e) := 1
xixj

to each edge bordering blocks labeled i

and j . Let M(G ) be the collection of perfect matchings of G . For each
M ∈M(G ), define its weight w(M) =

∏
e∈M w(e).

Define the weight of the graph G as

w(G ) :=
∑

M∈M(G)

w(M).

3 2 3

5

1
45

3 2 3

5

1
45

3 2 3

5

1
45

Figure: w(G ) = 1
x1x5x2

2 x
2
3

+ 1
x2
1 x

2
5 x

2
2

+ 1
x2
1 x2x3x4x5
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Subgraph of the Brane Tiling

Definition (Covering Monomial)

Given a subgraph G , let aj be the number of blocks labeled j in G . Let bj
be the number of blocks labeled j adjacent to G . Let c3 be the number of
blocks labeled 3 adjacent to G with 4 edges inside G . The covering
monomial m(G ) is the product xa1+b1

1 xa2+b2
2 x2a3+b3+c3

3 xa4+b4
4 xa5+b5

5 .

3 2 3

5

1
45

Figure: Example of Covering Monomial: x1x2x
2
3 x4x

2
5
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Subgraph of the Brane Tiling

Definition (Covering Monomial)

Given a subgraph G , let aj be the number of blocks labeled j in G . Let bj
be the number of blocks labeled j adjacent to G . Let c3 be the number of
blocks labeled 3 adjacent to G with 4 edges inside G . The covering
monomial m(G ) is the product xa1+b1

1 xa2+b2
2 x2a3+b3+c3

3 xa4+b4
4 xa5+b5

5 .

For any graph G , denote the product of its weight and its cover monomial
as

c(G ) := w(G )m(G ).
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Contour: Fundamental Shape

e

a

b

c

d

Figure: 5-sided fundamental shape.
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Contour: Length

Similar to [LM15], we define the length of our contour.

Definition (Length of Contour)

∀i ∈ {a, b, c , d , e},

len(i) =

{
|i |, if same direction as the associated side

−|i |, otherwise
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Contour: Length

e

a

b

c

d

Figure: 5-sided fundamental shape.

a=6
b=-4

c=2

d=2
e=-4

Figure: Length of Contour.
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From Contour to Subgraph

Definition (Rules to Get Subgraph)

positive length → keep black points; negative length → keep white points.

b ≡ d (mod 2), keep special point; b 6≡ d (mod 2), remove special point.

a=6
b=-4

c=2

d=2
e=-4

Figure: Length of Contour.
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Figure: Example of Subgraph.
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Main Result

Theorem (Formula of Contours)

Define the contours as follows:

An2Bn2−nx2k =

(
k − 2 + n,−

⌈
k − 4 + 5n

2

⌉
, 2n − 1,

⌊
k − 3n

2

⌋
, 1 + n − k

)
An2+nBn2x2k−1 =

(
k − 2 + n,−

⌈
k − 2 + 5n

2

⌉
, 2n,

⌊
k − 2− 3n

2

⌋
, 2 + n − k

)
For any such cluster variable, if G is the subgraph of its corresponding contour,
then c(G ) is the Laurent polynomial of the cluster variable.
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Kuo’s Condensation Theorems

Kuo’s Condensation Theorems [Kuo04] tell us how to write the weight of a
large graph in terms of smaller ones.

Let G = (V1,V2,E ) be a weighted planar bipartite graph.
Let p1, p2, p3, p4 be four vertices in a cyclic order on the boundary of G .

Theorem (Balanced Kuo Condensation)

Assume |V1| = |V2|, p1, p3 ∈ V1 and p2, p4 ∈ V2. Then

w(G )w(G − {p1, p2, p3, p4}) =w(G − {p1, p2})w(G − {p3, p4})
+ w(G − {p1, p4})w(G − {p2, p3}).
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Let G = (V1,V2,E ) be a weighted planar bipartite graph.
Let p1, p2, p3, p4 be four vertices in a cyclic order on the boundary of G .

Theorem (Unbalanced Kuo Condensation)

Assume |V1| = |V2|+ 1, p1, p2, p3 ∈ V1 and p4 ∈ V2. Then

w(G − {p2})w(G − {p1, p3, p4}) =w(G − {p1})w(G − {p2, p3, p4})
+ w(G − {p3})w(G − {p1, p2, p4}).
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Let G = (V1,V2,E ) be a weighted planar bipartite graph.
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Proof Sketch

We use induction on n.
Base case: xk → Somos-5 Sequence.
Inductive Step:

(A(n+1)2Bn2+nx2k)(An2Bn2−nx2k+2) =(An2+nBn2x2k+3)(An2+nBn2x2k−1)

+ (An2+nBn2x2k+1)2

w(G − {p1, p2})w(G − {p3, p4}) =w(G )w(G − {p1, p2, p3, p4})
+ w(G − {p1, p3})w(G − {p2, p4}).

Gao, Li, Vuong, Yang dP2 Cluster Variables July 29, 2016 26 / 29



Proof Sketch

We use induction on n.
Base case: xk → Somos-5 Sequence.
Inductive Step:

(A(n+1)2Bn2+nx2k)(An2Bn2−nx2k+2) =(An2+nBn2x2k+3)(An2+nBn2x2k−1)

+ (An2+nBn2x2k+1)2

w(G − {p1, p2})w(G − {p3, p4}) =w(G )w(G − {p1, p2, p3, p4})
+ w(G − {p1, p3})w(G − {p2, p4}).

Gao, Li, Vuong, Yang dP2 Cluster Variables July 29, 2016 26 / 29



Proof Sketch
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Figure: Position of p1 through p4 when (a, b, c , d , e) = (+,−,+,+,−)− R
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