Toric Mutations in the dP2 Quiver

Yibo Gao, Zhaoqi Li, Thuy-Duong Vuong, Lisa Yang

July 29, 2016

Overview

(1) Introduction and Preliminaries

- Quiver and cluster mutation
- The Del Pezzo 2 Quiver (dP2) and its brane tiling
- Toric mutations
- Two models of the dP2 quiver

Overview

(1) Introduction and Preliminaries

- Quiver and cluster mutation
- The Del Pezzo 2 Quiver (dP2) and its brane tiling
- Toric mutations
- Two models of the dP2 quiver
(2) Classification of Toric Mutation Sequences
- Adjacency between different models
- ρ-mutations

Overview

(1) Introduction and Preliminaries

- Quiver and cluster mutation
- The Del Pezzo 2 Quiver (dP2) and its brane tiling
- Toric mutations
- Two models of the dP2 quiver
(2) Classification of Toric Mutation Sequences
- Adjacency between different models
- ρ-mutations
(3) Explicit Formula for Cluster Variables

Overview

(1) Introduction and Preliminaries

- Quiver and cluster mutation
- The Del Pezzo 2 Quiver (dP2) and its brane tiling
- Toric mutations
- Two models of the dP2 quiver
(2) Classification of Toric Mutation Sequences
- Adjacency between different models
- ρ-mutations
(3) Explicit Formula for Cluster Variables
(4) Subgraph of the Brane Tiling
- Weighting Scheme and Covering Monomial

Overview

(1) Introduction and Preliminaries

- Quiver and cluster mutation
- The Del Pezzo 2 Quiver (dP2) and its brane tiling
- Toric mutations
- Two models of the dP2 quiver
(2) Classification of Toric Mutation Sequences
- Adjacency between different models
- ρ-mutations
(3) Explicit Formula for Cluster Variables
(4) Subgraph of the Brane Tiling
- Weighting Scheme and Covering Monomial
(5) Contour
- Fundamental Shape and Definitions
- Main Result
- Kuo's Condensation Theorems
- Proof Sketch

Quiver and Cluster Mutation

Figure: Example of quiver mutation

Binomial Exchange Relation

$$
x_{1}^{\prime}=\frac{x_{2} x_{5}+x_{3} x_{4}}{x_{1}}
$$

The Del Pezzo 2 Quiver (dP2) and its Brane Tiling

The Del Pezzo 2 Quiver (dP2) and its Brane Tiling

The second Del Pezzo Surface (dP2) is first introduced in the physics literature.

Figure: dP 2 quiver and its corresponding brane tiling [HS12]

Toric Mutations

Definition (Toric Mutations)

A toric mutation is a cluster mutation at a vertex with in-degree 2 and out-degree 2.

Toric Mutations

Definition (Toric Mutations)

A toric mutation is a cluster mutation at a vertex with in-degree 2 and out-degree 2.

Two Models of the dP2 Quiver

Same Model: isomorphic or reverse isomorphic.

Two Models of the dP2 Quiver

Same Model: isomorphic or reverse isomorphic.

Figure: Model 1 (left) and Model 2 (right) of the dP2 quiver [HS12]

Classification of Toric Mutation Sequences

Classification of Toric Mutation Sequences

Figure: Adjacency between different models

ρ-mutation sequence

Figure: All possible toric mutation sequences that start from model 1 and return to model 1 the first time.

ρ-mutation sequence

Figure: All possible toric mutation sequences that start from model 1 and return to model 1 the first time.

Definition (ρ-mutations)

$$
\begin{gathered}
\rho_{1}=\mu_{1} \circ(54321), \quad \rho_{2}=\mu_{5} \circ(12345), \quad \rho_{3}=\mu_{2} \circ \mu_{4} \circ(24), \\
\rho_{4}=\mu_{2} \circ \mu_{1} \circ \mu_{4} \circ(531), \quad \rho_{5}=\mu_{4} \circ \mu_{5} \circ \mu_{2} \circ(351), \\
\rho_{6}=\mu_{2} \circ \mu_{1} \circ \mu_{2} \circ(531)(24), \quad \rho_{7}=\mu_{4} \circ \mu_{5} \circ \mu_{4} \circ(135)(24) .
\end{gathered}
$$

ρ-mutation sequence

Figure: All possible toric mutation sequences that start from model 1 and return to model 1 the first time.

Definition (ρ-mutations)

$$
\begin{gathered}
\rho_{1}=\mu_{1} \circ(54321), \quad \rho_{2}=\mu_{5} \circ(12345), \quad \rho_{3}=\mu_{2} \circ \mu_{4} \circ(24), \\
\rho_{4}=\mu_{2} \circ \mu_{1} \circ \mu_{4} \circ(531), \quad \rho_{5}=\mu_{4} \circ \mu_{5} \circ \mu_{2} \circ(351), \\
\rho_{6}=\mu_{2} \circ \mu_{1} \circ \mu_{2} \circ(531)(24), \quad \rho_{7}=\mu_{4} \circ \mu_{5} \circ \mu_{4} \circ(135)(24) .
\end{gathered}
$$

A ρ-mutation sequence is a sequence of ρ-mutations

ρ-mutations

An example: $\rho_{1}=\mu_{1} \circ(54321)$.

$\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \longrightarrow\left(\frac{x_{2} x_{5}+x_{3} x_{4}}{x_{1}}=x_{6}, x_{2}, x_{3}, x_{4}, x_{5}\right) \longrightarrow\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$

ρ-mutations

ρ-mutations

Proposition (Relations between ρ-mutations)

$$
\rho_{4}=\rho_{1}^{2} \rho_{3}, \quad \rho_{5}=\rho_{2}^{2} \rho_{3}, \quad \rho_{6}=\rho_{1}^{2}, \quad \rho_{7}=\rho_{2}^{2}
$$

It suffices to consider $\rho_{1}, \rho_{2}, \rho_{3}$.

ρ-mutations

Proposition (Relations between ρ-mutations)

$$
\rho_{4}=\rho_{1}^{2} \rho_{3}, \quad \rho_{5}=\rho_{2}^{2} \rho_{3}, \quad \rho_{6}=\rho_{1}^{2}, \quad \rho_{7}=\rho_{2}^{2}
$$

It suffices to consider $\rho_{1}, \rho_{2}, \rho_{3}$.

Proposition (Relations between $\rho_{1}, \rho_{2}, \rho_{3}$)

$$
\begin{gathered}
\rho_{1} \rho_{2}=\rho_{2} \rho_{1}=\rho_{3}^{2}=1 \\
\rho_{1}^{2} \rho_{3}=\rho_{3} \rho_{1}^{2}, \quad \rho_{2}^{2} \rho_{3}=\rho_{3} \rho_{2}^{2}, \quad \rho_{1} \rho_{3} \rho_{2}=\rho_{2} \rho_{3} \rho_{1}
\end{gathered}
$$

ρ-mutation sequence: a visualization

Proposition (Relations between $\rho_{1}, \rho_{2}, \rho_{3}$)

$$
\begin{gathered}
\rho_{1} \rho_{2}=\rho_{2} \rho_{1}=\rho_{3}^{2}=1 \\
\rho_{1}^{2} \rho_{3}=\rho_{3} \rho_{1}^{2}, \quad \rho_{2}^{2} \rho_{3}=\rho_{3} \rho_{2}^{2}, \quad \rho_{1} \rho_{3} \rho_{2}=\rho_{2} \rho_{3} \rho_{1}
\end{gathered}
$$

ρ-mutation sequence: a visualization

Proposition (Relations between $\rho_{1}, \rho_{2}, \rho_{3}$)

$$
\begin{gathered}
\rho_{1} \rho_{2}=\rho_{2} \rho_{1}=\rho_{3}^{2}=1 \\
\rho_{1}^{2} \rho_{3}=\rho_{3} \rho_{1}^{2}, \quad \rho_{2}^{2} \rho_{3}=\rho_{3} \rho_{2}^{2}, \quad \rho_{1} \rho_{3} \rho_{2}=\rho_{2} \rho_{3} \rho_{1}
\end{gathered}
$$

Figure: A visualization for ρ-mutation sequence.

$$
\rho_{1}: \rightarrow, \quad \rho_{2}: \leftarrow, \quad \rho_{3}: \uparrow / \downarrow .
$$

ρ-mutation sequence

Theorem

Every toric mutation sequence that starts at Q (the original dP2 quiver) and ends in model 1 can be written as either

$$
\rho_{1}^{k}\left(\rho_{3} \rho_{1}\right)^{m} \quad \text { or } \quad \rho_{1}^{k}\left(\rho_{3} \rho_{1}\right)^{m} \rho_{3}
$$

where $k \in \mathbb{Z}, m \in \mathbb{Z}_{\geq 0}$ and $\rho_{1}^{-1}=\rho_{2}$.

Explicit Formula for Cluster Variables

Explicit Formula for Cluster Variables

Definition (Laurent Polynomial for Somos-5 Sequence)

Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be our initial variables. Define x_{n} for each $n \in \mathbb{Z}$ by

$$
x_{n} x_{n-5}=x_{n-1} x_{n-4}+x_{n-2} x_{n-3}
$$

Explicit Formula for Cluster Variables

Definition (Laurent Polynomial for Somos-5 Sequence)

Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be our initial variables. Define x_{n} for each $n \in \mathbb{Z}$ by

$$
x_{n} x_{n-5}=x_{n-1} x_{n-4}+x_{n-2} x_{n-3}
$$

Notice that $\left\{x_{n}\right\}_{n \geq 1}$ is the somos- 5 sequence if $x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=1$.

Explicit Formula for Cluster Variables

Definition (Laurent Polynomial for Somos-5 Sequence)

Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be our initial variables. Define x_{n} for each $n \in \mathbb{Z}$ by

$$
x_{n} x_{n-5}=x_{n-1} x_{n-4}+x_{n-2} x_{n-3}
$$

Notice that $\left\{x_{n}\right\}_{n \geq 1}$ is the somos- 5 sequence if $x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=1$.

Definition (Some Constants)

$$
A:=\frac{x_{1} x_{5}+x_{3}^{2}}{x_{2} x_{4}}
$$

$$
B:=\frac{x_{2} x_{6}+x_{4}^{2}}{x_{3} x_{5}}\left(=\frac{x_{1} x_{4}^{2}+x_{2} x_{3} x_{4}+x_{2}^{2} x_{5}}{x_{1} x_{3} x_{5}}\right) .
$$

Explicit Formula for Cluster Variables

Theorem

Define $g(s, k):=\left\lfloor\frac{s}{2}\right\rfloor\left\lfloor\frac{s+1}{2}\right\rfloor$ if k is even and $g(s, k):=\left\lfloor\frac{s-1}{2}\right\rfloor\left\lfloor\frac{s}{2}\right\rfloor$ if k is odd. Then we have, for $k \in \mathbb{Z}$ and $s \in \mathbb{Z}_{\geq 0}$,

$$
\begin{array}{r}
\rho_{1}^{k}\left(\rho_{3} \rho_{1}\right)^{s}\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}=\left\{A^{g(s+1, k)} B^{g(s+1, k+1)} x_{k+s+1},\right. \\
A^{g(s, k)} B^{g(s, k+1)} x_{k+s+2} \\
A^{g(s+1, k)} B^{g(s+1, k+1)} x_{k+s+3} \\
A^{g(s, k)} B^{g(s, k+1)} x_{k+s+4} \\
\left.A^{g(s+1, k)} B^{g(s+1, k+1)} x_{k+s+5}\right\} .
\end{array}
$$

Explicit Formula for Cluster Variables

Theorem

Define $g(s, k):=\left\lfloor\frac{s}{2}\right\rfloor\left\lfloor\frac{s+1}{2}\right\rfloor$ if k is even and $g(s, k):=\left\lfloor\frac{s-1}{2}\right\rfloor\left\lfloor\frac{s}{2}\right\rfloor$ if k is odd. Then we have, for $k \in \mathbb{Z}$ and $s \in \mathbb{Z}_{\geq 0}$,

$$
\begin{array}{r}
\rho_{1}^{k}\left(\rho_{3} \rho_{1}\right)^{s}\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}=\left\{A^{g(s+1, k)} B^{g(s+1, k+1)} x_{k+s+1},\right. \\
A^{g(s, k)} B^{g(s, k+1)} x_{k+s+2}, \\
A^{g(s+1, k)} B^{g(s+1, k+1)} x_{k+s+3}, \\
A^{g(s, k)} B^{g(s, k+1)} x_{k+s+4}, \\
\left.A^{g(s+1, k)} B^{g(s+1, k+1)} x_{k+s+5}\right\} .
\end{array}
$$

Corollary

All cluster variables generated by toric mutations can be written as either

$$
A^{n^{2}} B^{n(n-1)} x_{2 m} \quad \text { or } \quad A^{n(n-1)} B^{n^{2}} x_{2 m-1} \quad \text { for some } m, n \in \mathbb{Z} .
$$

Subgraph of the Brane Tiling

Subgraph of the Brane Tiling

Definition (Weighting Scheme)

Associate a weight $w(e):=\frac{1}{x_{i} x_{j}}$ to each edge bordering blocks labeled i and j. Let $\mathcal{M}(G)$ be the collection of perfect matchings of G. For each $M \in \mathcal{M}(G)$, define its weight $w(M)=\prod_{e \in M} w(e)$.
Define the weight of the graph G as

$$
w(G):=\sum_{M \in \mathcal{M}(G)} w(M)
$$

Subgraph of the Brane Tiling

Definition (Weighting Scheme)

Associate a weight $w(e):=\frac{1}{x_{i} x_{j}}$ to each edge bordering blocks labeled i and j. Let $\mathcal{M}(G)$ be the collection of perfect matchings of G. For each $M \in \mathcal{M}(G)$, define its weight $w(M)=\prod_{e \in M} w(e)$.
Define the weight of the graph G as

$$
w(G):=\sum_{M \in \mathcal{M}(G)} w(M)
$$

Figure: $w(G)=\frac{1}{x_{1} x_{5} x_{2}^{2} x_{3}^{2}}+\frac{1}{x_{1}^{2} x_{5}^{2} x_{2}^{2}}+\frac{1}{x_{1}^{2} x_{2} x_{3} x_{4} x_{5}}$

Subgraph of the Brane Tiling

Subgraph of the Brane Tiling

Definition (Covering Monomial)

Given a subgraph G, let a_{j} be the number of blocks labeled j in G. Let b_{j} be the number of blocks labeled j adjacent to G. Let c_{3} be the number of blocks labeled 3 adjacent to G with 4 edges inside G. The covering monomial $m(G)$ is the product $x_{1}^{a_{1}+b_{1}} x_{2}^{a_{2}+b_{2}} x_{3}^{2 a_{3}+b_{3}+c_{3}} x_{4}^{a_{4}+b_{4}} x_{5}^{a_{5}+b_{5}}$.

Figure: Example of Covering Monomial: $x_{1} x_{2} x_{3}^{2} x_{4} x_{5}^{2}$

Subgraph of the Brane Tiling

Definition (Covering Monomial)

Given a subgraph G, let a_{j} be the number of blocks labeled j in G. Let b_{j} be the number of blocks labeled j adjacent to G. Let c_{3} be the number of blocks labeled 3 adjacent to G with 4 edges inside G. The covering monomial $m(G)$ is the product $x_{1}^{a_{1}+b_{1}} x_{2}^{a_{2}+b_{2}} x_{3}^{2 a_{3}+b_{3}+c_{3}} x_{4}^{a_{4}+b_{4}} x_{5}^{a_{5}+b_{5}}$.

For any graph G, denote the product of its weight and its cover monomial as

$$
c(G):=w(G) m(G)
$$

Contour: Fundamental Shape

Contour: Fundamental Shape

Figure: 5-sided fundamental shape.

Contour: Length

Similar to [LM15], we define the length of our contour.

Definition (Length of Contour)

$$
\forall i \in\{a, b, c, d, e\}
$$

$$
\operatorname{len}(i)= \begin{cases}|i|, & \text { if same direction as the associated side } \\ -|i|, & \text { otherwise }\end{cases}
$$

Contour: Length

Figure: 5-sided fundamental shape.

Figure: Length of Contour.

From Contour to Subgraph

Definition (Rules to Get Subgraph)

- positive length \rightarrow keep black points; negative length \rightarrow keep white points.
- $b \equiv d(\bmod 2)$, keep special point; $b \not \equiv d(\bmod 2)$, remove special point.

Figure: Length of Contour.

Figure: Example of Subgraph.

Main Result

Theorem (Formula of Contours)

Define the contours as follows:

$$
\begin{aligned}
A^{n^{2}} B^{n^{2}-n} x_{2 k} & =\left(k-2+n,-\left\lceil\frac{k-4+5 n}{2}\right\rceil, 2 n-1,\left\lfloor\frac{k-3 n}{2}\right\rfloor, 1+n-k\right) \\
A^{n^{2}+n} B^{n^{2}} x_{2 k-1} & =\left(k-2+n,-\left\lceil\frac{k-2+5 n}{2}\right\rceil, 2 n,\left\lfloor\frac{k-2-3 n}{2}\right\rfloor, 2+n-k\right)
\end{aligned}
$$

For any such cluster variable, if G is the subgraph of its corresponding contour, then $c(G)$ is the Laurent polynomial of the cluster variable.

Kuo's Condensation Theorems

Kuo's Condensation Theorems [Kuo04] tell us how to write the weight of a large graph in terms of smaller ones.

Kuo's Condensation Theorems

Kuo's Condensation Theorems [Kuo04] tell us how to write the weight of a large graph in terms of smaller ones.
Let $G=\left(V_{1}, V_{2}, E\right)$ be a weighted planar bipartite graph.
Let $p_{1}, p_{2}, p_{3}, p_{4}$ be four vertices in a cyclic order on the boundary of G.

Kuo's Condensation Theorems

Kuo's Condensation Theorems [Kuo04] tell us how to write the weight of a large graph in terms of smaller ones.
Let $G=\left(V_{1}, V_{2}, E\right)$ be a weighted planar bipartite graph.
Let $p_{1}, p_{2}, p_{3}, p_{4}$ be four vertices in a cyclic order on the boundary of G.

Theorem (Balanced Kuo Condensation)

Assume $\left|V_{1}\right|=\left|V_{2}\right|, p_{1}, p_{3} \in V_{1}$ and $p_{2}, p_{4} \in V_{2}$. Then

$$
\begin{aligned}
w(G) w\left(G-\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right)= & w\left(G-\left\{p_{1}, p_{2}\right\}\right) w\left(G-\left\{p_{3}, p_{4}\right\}\right) \\
& +w\left(G-\left\{p_{1}, p_{4}\right\}\right) w\left(G-\left\{p_{2}, p_{3}\right\}\right) .
\end{aligned}
$$

Kuo's Condensation Theorems

Kuo's Condensation Theorems [Kuo04] tell us how to write the weight of a large graph in terms of smaller ones.
Let $G=\left(V_{1}, V_{2}, E\right)$ be a weighted planar bipartite graph.
Let $p_{1}, p_{2}, p_{3}, p_{4}$ be four vertices in a cyclic order on the boundary of G.

Kuo's Condensation Theorems

Kuo's Condensation Theorems [Kuo04] tell us how to write the weight of a large graph in terms of smaller ones.
Let $G=\left(V_{1}, V_{2}, E\right)$ be a weighted planar bipartite graph.
Let $p_{1}, p_{2}, p_{3}, p_{4}$ be four vertices in a cyclic order on the boundary of G.

Theorem (Unbalanced Kuo Condensation)

Assume $\left|V_{1}\right|=\left|V_{2}\right|+1, p_{1}, p_{2}, p_{3} \in V_{1}$ and $p_{4} \in V_{2}$. Then

$$
\begin{aligned}
w\left(G-\left\{p_{2}\right\}\right) w\left(G-\left\{p_{1}, p_{3}, p_{4}\right\}\right)= & w\left(G-\left\{p_{1}\right\}\right) w\left(G-\left\{p_{2}, p_{3}, p_{4}\right\}\right) \\
& +w\left(G-\left\{p_{3}\right\}\right) w\left(G-\left\{p_{1}, p_{2}, p_{4}\right\}\right)
\end{aligned}
$$

Kuo's Condensation Theorems

Kuo's Condensation Theorems [Kuo04] tell us how to write the weight of a large graph in terms of smaller ones.
Let $G=\left(V_{1}, V_{2}, E\right)$ be a weighted planar bipartite graph.
Let $p_{1}, p_{2}, p_{3}, p_{4}$ be four vertices in a cyclic order on the boundary of G.

Kuo's Condensation Theorems

Kuo's Condensation Theorems [Kuo04] tell us how to write the weight of a large graph in terms of smaller ones.
Let $G=\left(V_{1}, V_{2}, E\right)$ be a weighted planar bipartite graph.
Let $p_{1}, p_{2}, p_{3}, p_{4}$ be four vertices in a cyclic order on the boundary of G.

Theorem (Non-alternating Kuo Condensation)

Assume $\left|V_{1}\right|=\left|V_{2}\right|, p_{1}, p_{2} \in V_{1}$ and $p_{3}, p_{4} \in V_{2}$. Then

$$
\begin{aligned}
w\left(G-\left\{p_{1}, p_{4}\right\}\right) w\left(G-\left\{p_{2}, p_{3}\right\}\right)= & w(G) w\left(G-\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right) \\
& +w\left(G-\left\{p_{1}, p_{3}\right\}\right) w\left(G-\left\{p_{2}, p_{4}\right\}\right)
\end{aligned}
$$

Proof Sketch

Proof Sketch

We use induction on n.
Base case: $x_{k} \rightarrow$ Somos-5 Sequence.

Inductive Step:

$$
\begin{aligned}
\left(A^{(n+1)^{2}} B^{n^{2}+n} x_{2 k}\right)\left(A^{n^{2}} B^{n^{2}-n} x_{2 k+2}\right)= & \left(A^{n^{2}+n} B^{n^{2}} x_{2 k+3}\right)\left(A^{n^{2}+n} B^{n^{2}} x_{2 k-1}\right) \\
& +\left(A^{n^{2}+n} B^{n^{2}} x_{2 k+1}\right)^{2} \\
w\left(G-\left\{p_{1}, p_{2}\right\}\right) w\left(G-\left\{p_{3}, p_{4}\right\}\right)= & w(G) w\left(G-\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right) \\
& +w\left(G-\left\{p_{1}, p_{3}\right\}\right) w\left(G-\left\{p_{2}, p_{4}\right\}\right)
\end{aligned}
$$

Proof Sketch

Figure: Position of p_{1} through p_{4} when $(a, b, c, d, e)=(+,-,+,+,-)-R$

References

Amihay Hanany and R-K Seong.
Brane tilings and reflexive polygons.
Fortschritte der Physik, 60(6):695-803, 2012.
Eric H Kuo.
Applications of graphical condensation for enumerating matchings and tilings.
Theoretical Computer Science, 319(1):29-57, 2004.
R
Tri Lai and Gregg Musiker.
Beyond aztec castles: Toric cascades in the $d p_{3}$ quiver.
arXiv preprint arXiv:1512.00507, 2015.

Acknowledgements. This research was carried out as part of the 2016 REU program at the University of Minnesota, Twin Cities, and was supported by NSF RTG grant DMS-1148634 and by NSF grant DMS-1351590.

The authors would like to thank Victor Reiner, Sunita Chepuri and Elise delMas for their advice and comments. The authors are especially grateful to Gregg Musiker for his mentorship, support, and valuable advice.

Thank you!!

