Shards and noncrossing tree partitions

Alexander Clifton and Peter Dillery

August 4, 2016

Outline

(1) Broad overview
(2) What is a noncrossing tree partition?
(3) Lattice theory
(1) The structure of noncrossing tree partitions
(1) Grading
(2) Self-duality
(3) Enumerative results
(6) Defining a CU-labeling of $\operatorname{Bic}(T)$
(6) Shard intersection order of $\operatorname{Bic}(T)$
(1) Describing $\psi(B)$
(2) Describing $\psi(C) \cap \psi(D)$
(3) Putting it all together
(3) Further enumerative results

Broad Overview

Fix a tree T embedded in a disk with exactly its leaves on the boundary and whose interior vertices (the vertices not on the boundary) have degree at least 3 .

Broad Overview

We obtain the following diagram of posets defined from T :

Goal: Understand the combinatorics of $\operatorname{NCP}(T)$

Noncrossing tree partitions: Overview

The poset $\mathrm{NCP}(T)$ is called the noncrossing tree partitions of T. In this part of the talk, we will discuss our research of the following properties of $\mathrm{NCP}(T)$:
(1) $\mathrm{NCP}(T)$ is a lattice
(2) $\mathrm{NCP}(T)$ is graded (conjecture)
(3) $\operatorname{NCP}(T)$ is not self-dual
(1) How to count the maximal chains in $\mathrm{NCP}(T)$

What is $\operatorname{NCP}(T) ?$

For a tree T, a segment $s=\left(v_{0}, \ldots, v_{t}\right)=\left[v_{0}, v_{t}\right]$ with $t \geqslant 1$ is a sequence of interior vertices of T that takes a "sharp" turn at each v_{i}. In particular, the interior vertices of T are not segments.

Example

In the tree below, $(1,5)$ and $(2,4,6)$ are segments. The sequence $(1,3)$ is not a segment.

A noncrossing partition $\mathbf{B}=\left(B_{1}, \ldots, B_{k}\right)$ is a set partition of the interior vertices of T where

- the vertices in B_{i} can be connected by red admissible curves (i.e. curves whose endpoints define segments of T and leave their endpoints to the right), where any pair of such curves can only agree at their endpoints, and
- red admissible curves connecting vertices of B_{i} do not cross those of B_{j} for $i \neq j$. We let $\operatorname{NCP}(T)$ denote the poset of noncrossing tree partitions ordered by refinement.

Example

$\mathbf{B}=\{\{1,4,6\},\{2,3\},\{5\}\}$ is an element of $\operatorname{NCP}(T)$.

Theorem (Garver-McConville)

The poset $\mathrm{NCP}(T)$ is a lattice.

Lattice Theory

Before we talk about the structural properties of $\operatorname{NCP}(T)$, we need to discuss the relevant lattice theory.

Definition

A lattice is called congruence-uniform if it can be constructed from a single point using interval doublings.

Here is an example of a lattice constructed from interval doublings:

Lattice Theory

Theorem

A lattice is congruence-uniform if and only if it admits an edge labeling known as a $\boldsymbol{C U}$-labeling.
\odot

In fact, the colors on the edges of the picture above form a CU-labeling, where the color set is ordered $s \leqslant t$ if the color s appears before t in the sequence of doublings.

Lattice Theory

L a lattice
λ a CU-labeling of $L \mathrm{~mm} \rightarrow$
$\Psi(L)$
Shard intersection order
$\Psi(L)$ consists of sets

$$
\psi(x)=\left\{\text { labels appearing between } \bigwedge_{i=1}^{k} y_{i} \text { and } x\right\}
$$

where $\left\{y_{i}\right\}_{i=1}^{k}$ is the set of elements immediately below x in L. The partial ordering on $\Psi(L)$ is inclusion. We call the interval [$\left.\bigwedge_{i=1}^{k} y_{i}, x\right]$ the facial interval corresponding to x.

Back to NCP (T)

Theorem (Garver-McConville)

For a tree $T, \operatorname{NCP}(T)$ is isomorphic to $\Psi(\overrightarrow{F G}(T))$.
This brings us to one of the main objects in our project:

Conjecture

The lattice $\mathrm{NCP}(T)$ is graded by the number of blocks in a partition.

Conjecture

The lattice $\mathrm{NCP}(T)$ is graded by the number of blocks in a partition.
How we want to prove this conjecture:

- Show that every covering relation in $\operatorname{NCP}(T)$ is given by merging two blocks of a partition (which is what happens with $\mathrm{NC}(n)$).
- To do this, it suffices to show that if we can merge m blocks of \mathbf{B}, $m \geqslant 3$, then we can merge $m-1$ blocks.
- To show the above, we work with $\overrightarrow{F G}(T)$. We know that \mathbf{B} corresponds to a facial interval in $\overrightarrow{F G}(T)$. We want to show that it is contained in a facial interval "one dimension lower" than the entire lattice.

$$
\mathbf{B} \mapsto \psi(x) \sim[a, x] \subsetneq\left[a^{\prime}, x^{\prime}\right] \subsetneq \overrightarrow{F G}(T)
$$

Corollaries of conjecture and further structure

Garver and McConville defined a bijection $\mathrm{NCP}(T)$ called the Kreweras Complement. The Kreweras complement sends a partition with m blocks to a partition with $\# V^{o}(T)+1-m$ blocks. A corollary of this map and the previous conjecture is the following:

Corollary

The lattice $\operatorname{NCP}(T)$ is rank-symmetric.
The above property is shared by $\mathrm{NC}(n)$. A natural question to ask is: How many of the nice properties of $\mathrm{NC}(n)$ carry over to $\mathrm{NCP}(T)$? We provide a partial answer here:

Theorem

In general, $\operatorname{NCP}(T)$ is not self-dual.

We conclude our discussion of $\operatorname{NCP}(T)$ with a method of calculating the number of maximal chains, denoted $\mathrm{mc}(T)$.

We will exploit the following fact in order to obtain recursions: let $\left\{a_{i}\right\}_{i=1}^{n}$ be the set of coatoms of $\operatorname{NCP}(T)$; then

$$
\operatorname{mc}(T)=\sum_{i=1}^{n} \operatorname{mc}\left(\left[\hat{0}, a_{i}\right]\right)
$$

From here, we can note that $\left[\hat{0}, a_{i}\right]$ is isomorphic to the product of two noncrossing tree partitions of smaller trees, as shown by the following picture:

We have that $\left[\hat{0}, a_{i}\right] \cong \operatorname{NCP}\left(T_{1}\right) \times \operatorname{NCP}\left(T_{2}\right)$, where

Using this method, we can count the maximal chains of the k th star-graph, denoted S_{k}, which is the family of trees of the following form:

We get that $\operatorname{mc}\left(S_{k}\right)=\frac{k!F_{k+1}}{2}$, where F_{k+1} is the $(k+1)$ th fibonacci number.

Segments $S_{1}, S_{2} \in S e g(T)$ whose composition is also in $\operatorname{Seg}(T)$ are composable.

A subset $B \subset \operatorname{Seg}(T)$ is closed if for any composable $S_{1}, S_{2} \in B$, we have $S_{1} \dot{S}_{2} \in B$.

A subset $B \subset \operatorname{Seg}(T)$ is closed if for any composable $S_{1}, S_{2} \in B$, we have $S_{1} \dot{S}_{2} \in B$.

A subset $B \subset \operatorname{Seg}(T)$ is biclosed if both B and B^{C} are closed.

A subset $B \subset \operatorname{Seg}(T)$ is closed if for any composable $S_{1}, S_{2} \in B$, we have $S_{1} \dot{S}_{2} \in B$.

A subset $B \subset \operatorname{Seg}(T)$ is biclosed if both B and B^{C} are closed.
$\operatorname{Bic}(T)$ is a poset who elements are biclosed sets $B \subset S e g(T)$, partially ordered by inclusion.

We will explicitly demonstrate the CU-labeling for $\operatorname{Bic}(T)$.

For a segment $[a, c]$ with vertex b in between, we say that $[a, b]$ and $[b, c]$ constitute a break of $[a, c]$

For a segment $[a, c]$ with vertex b in between, we say that $[a, b]$ and $[b, c]$ constitute a break of $[a, c]$

Each of $[a, b]$ and $[b, c]$ is a split of $[a, c]$ corresponding to that break.

Recall that a CU-labeling is a map λ : \{covering relations of $\operatorname{Bic}(T)\} \rightarrow P$ for some poset P of labels.

Recall that a CU-labeling is a map λ : \{covering relations of $\operatorname{Bic}(T)\} \rightarrow P$ for some poset P of labels.

We choose P with elements of the form S_{Δ} where $S \in S e g(T)$ and Δ is a set of splits of S. The partial ordering is given by $S_{\Delta} \geqslant Q_{\mu}$ if S contains Q.

Covering relations in $\operatorname{Bic}(T)$ look like:

$B \cup\{s\}$

 B

Covering relations in $\operatorname{Bic}(T)$ look like:

$B \cup\{s\}$

 B

Example:

Example:

Example:

Example:

Example:

Example:

Covering relations look like
$\{2,12,23,123\}$

$\{2,12,23\}$

Example:

Covering relations look like
$\{2,12,23,123\}$

$\{2,12,23\}$

Example:

Covering relations look like
$\{2,12,23,123\}$

$\{2,12,23\}$

Example:

Covering relations look like
$\{2,12,23,123\}$

$\{2,12,23\}$
$\Psi(\operatorname{Bic}(T))$ has a maximum element.

If we can show that for all $C, D \in \operatorname{Bic}(T)$, there exists some $B \in \operatorname{Bic}(T)$ such that $\psi(C) \cap \psi(D)=\psi(B)$, then we can conclude that $\Psi(\operatorname{Bic}(T))$ is a lattice.

Elements of $\psi(B)$ are those of the form S_{Δ} where S is a composition of some of $S_{1}, S_{2}, \ldots, S_{m}$ and Δ is a set of splits of S with certain stipulations.

Vertices within S which are endpoints of some S_{i} correspond to faultline breaks.

Other vertices correspond to non-faultline breaks.

Vertices within S which are endpoints of some S_{i} correspond to faultline breaks.

Other vertices correspond to non-faultline breaks.

What splits of S are in Δ ?

What splits of S are in Δ ?

For non-faultline breaks, these are predetermined by $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{m}$.

What splits of S are in Δ ?

For non-faultline breaks, these are predetermined by $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{m}$. For each faultline break, there is an independent choice.

Labels in $\psi(C) \cap \psi(D)$ are of the form S_{Δ} where:

Labels in $\psi(C) \cap \psi(D)$ are of the form S_{Δ} where: S must simultaneously be a composition of S_{i} 's and Q_{i} 's.

Labels in $\psi(C) \cap \psi(D)$ are of the form S_{Δ} where: S must simultaneously be a composition of S_{i} 's and Q_{i} 's. Furthermore, the splits determined by the corresponding Δ_{i} 's and μ_{i} 's must be compatible.
S must simultaneously be a composition of S_{i} 's and Q_{i} 's:

The only breaks for which there is a choice of what split of S to include in Δ are when the break is a faultline for S viewed as a composition of S_{i} 's and S viewed as a composition of Q_{i} 's.

The only breaks for which there is a choice of what split of S to include in Δ are when the break is a faultline for S viewed as a composition of S_{i} 's and S viewed as a composition of Q_{i} 's.

The only breaks for which there is a choice of what split of S to include in Δ are when the break is a faultline for S viewed as a composition of S_{i} 's and S viewed as a composition of Q_{i} 's.

Call an element of $\psi(C) \cap \psi(D)$ pseudominimal if it does not contain any double faultlines in its composition pair.

Call an element of $\psi(C) \cap \psi(D)$ pseudominimal if it does not contain any double faultlines in its composition pair.

Pseudominimal elements generate all of $\psi(C) \cap \psi(D)$ in the sense that any $S_{\Delta} \in \psi(C) \cap \psi(D)$ satisfies

Call an element of $\psi(C) \cap \psi(D)$ pseudominimal if it does not contain any double faultlines in its composition pair.

Pseudominimal elements generate all of $\psi(C) \cap \psi(D)$ in the sense that any $S_{\Delta} \in \psi(C) \cap \psi(D)$ satisfies
(1) S is a composition of the segment parts of pseudominimal labels.

Call an element of $\psi(C) \cap \psi(D)$ pseudominimal if it does not contain any double faultlines in its composition pair.

Pseudominimal elements generate all of $\psi(C) \cap \psi(D)$ in the sense that any $S_{\Delta} \in \psi(C) \cap \psi(D)$ satisfies
(1) S is a composition of the segment parts of pseudominimal labels.
(2) The only choices for which splits of S to include in Δ occur at breaks where two such pseudominimal lables are joined together.

Pseudominimal elements of $\psi(C) \cap \psi(D)$ generate $\psi(C) \cap \psi(D)$ the same way $\psi(B)$ is generated by the labels on its covering relations.

We can conceivably take $B=\vee\{$ pseudominimal elements of $\psi(C) \cap \psi(D)\}$ to obtain $\psi(B)=\psi(C) \cap \psi(D)$.

For the star graph S_{k} :
$\left|N C P\left(S_{k}\right)\right|=$

For the star graph S_{k} :

$\left|N C P\left(S_{k}\right)\right|=2\left|N C P\left(S_{k-1}\right)\right|+\left|N C P\left(S_{k-2}\right)\right|$

For the star graph S_{k} :

$\left|N C P\left(S_{k}\right)\right|=2\left|N C P\left(S_{k-1}\right)\right|+\left|N C P\left(S_{k-2}\right)\right|$ with $\left|N C P\left(S_{3}\right)\right|=14,\left|N C P\left(S_{4}\right)\right|=34$

Straight trees like

are analagous to classical non-crossing partitions.

Thank you to project mentor Al Garver, project TA Craig Corsi, Thomas McConville, Vic Reiner, the University of Minnesota, and the National Science Foundation.

References

E A．Garver and T．McConville．Oriented flip graphs and noncrossing tree partitions．arXiv：1604．06009， 2016.

N．Reading．Noncrossing partitions and the shard intersection order．Journal of Algebraic Combinatorics， 2011.春号

R．Simion and D．Ullman．On the structure of the lattice of noncrossing partitions．Discrete Mathematics， 1989.

