Stable Cluster Variables

Grace Zhang

August 1, 2016

Outline

(1) Background
(2) Stable Cluster Variables
(3) Kronecker Quiver
(4) Conifold Quiver
(5) F_{0} Quiver
(6) Conclusion

Background

A quiver is a directed graph. Multiple edges are allowed. Self-loops are not allowed.

A quiver is a directed graph. Multiple edges are allowed. Self-loops are not allowed.

Frame a quiver by adding a new "frozen vertex" i^{\prime} for each vertex i and drawing an arrow $i \rightarrow i^{\prime}$.

A quiver is a directed graph. Multiple edges are allowed. Self-loops are not allowed.

Frame a quiver by adding a new "frozen vertex" i^{\prime} for each vertex i and drawing an arrow $i \rightarrow i^{\prime}$.

Set the initial cluster variable for each non-frozen vertex as 1 , and for each frozen vertex i^{\prime} as y_{i}.

Mutation at a vertex i :

(1) Update the cluster variable for vertex i :

$$
\frac{\prod_{v \rightarrow i} \text { cluster var for } v+\prod_{i \rightarrow v} \text { cluster var for } v}{\text { old cluster var for } i}
$$

(2) For every 2-path $u \rightarrow i \rightarrow v$, draw an arrow $u \rightarrow v$.
(3) If any self-loops or 2-cycles were newly created, delete them.
(9) Reverse all arrows incident to i.

Mutation at a vertex i :
(1) Update the cluster variable for vertex i :

$$
\frac{\prod_{v \rightarrow i} \text { cluster var for } v+\prod_{i \rightarrow v} \text { cluster var for } v}{\text { old cluster var for } i}
$$

(2) For every 2-path $u \rightarrow i \rightarrow v$, draw an arrow $u \rightarrow v$.
(3) If any self-loops or 2-cycles were newly created, delete them.
(9) Reverse all arrows incident to i.

Mutation at a vertex i :

(1) Update the cluster variable for vertex i :

$$
\frac{\prod_{v \rightarrow i} \text { cluster var for } v+\prod_{i \rightarrow v} \text { cluster var for } v}{\text { old cluster var for } i}
$$

(2) For every 2-path $u \rightarrow i \rightarrow v$, draw an arrow $u \rightarrow v$.
(3) If any self-loops or 2-cycles were newly created, delete them.
(9) Reverse all arrows incident to i.

For framed quivers we mutate only at non-frozen vertices. The resulting cluster variables are known as F-polynomials.

For framed quivers we mutate only at non-frozen vertices. The resulting cluster variables are known as F-polynomials.

We will keep this running example and fix the mutation sequence

$$
\mu=(0,1,0,1, \ldots)
$$

Stable Cluster Variables

Eager and Franco defined a transformation on F-polynomials that seems to stabilize them, or make them converge to a limit as a formal power series.

$F_{0}=1$
$C_{0}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

$F_{1}=y_{0}+1$

$$
F_{2}=y_{0}^{2} y_{1}+y_{0}^{2}+2 y_{0}+1
$$

$C_{1}=\left[\begin{array}{ll}1 & -2 \\ 0 & -1\end{array}\right]$
$C_{2}=\left[\begin{array}{ll}-3 & 2 \\ -2 & 1\end{array}\right]$

At any step in the mutation sequence, define the C-matrix:

$$
C_{i j}=\# \text { arrows } i^{\prime} \rightarrow j
$$

(negative value if the arrows point from j to i^{\prime})

$F_{0}=1$
$F_{1}=y_{0}+1$

$$
F_{2}=y_{0}^{2} y_{1}+y_{0}^{2}+2 y_{0}+1
$$

$$
C_{0}^{-1}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \quad C_{1}^{-1}=\left[\begin{array}{cc}
1 & -2 \\
0 & -1
\end{array}\right] \quad C_{2}^{-1}=\left[\begin{array}{cc}
1 & -2 \\
2 & -3
\end{array}\right]
$$

Given a C-matrix and a monomial $m=y_{0}^{a_{0}} y_{1}^{a_{1}}$, its C-matrix transform is

$$
\tilde{m}=y_{0}^{b_{0}} y_{1}^{b_{1}}
$$

where $C^{-1}\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right]=\left[\begin{array}{l}b_{0} \\ b_{1}\end{array}\right]$

$F_{0}=1$
$C_{0}^{-1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
$\tilde{F}_{0}=1$

$F_{1}=y_{0}+1$
$C_{1}^{-1}=\left[\begin{array}{ll}1 & -2 \\ 0 & -1\end{array}\right]$
$\tilde{F}_{1}=y_{0}+1$

$$
F_{2}=y_{0}^{2} y_{1}+y_{0}^{2}+2 y_{0}+1
$$

$$
C_{2}^{-1}=\left[\begin{array}{ll}
1 & -2 \\
2 & -3
\end{array}\right]
$$

$\tilde{F}_{2}=y_{0}^{2} y_{1}^{4}+2 y_{0} y_{1}^{2}+y_{1}+1$

For each F_{n}, get the C-matrix transformation \tilde{F}_{n} by transforming each monomial individually, using C_{n}.

Table of the first few transformed cluster variables, illustrating the stabilization property. The low order terms match, up to a fluctuation between y_{0} and y_{1}.

n	\tilde{F}_{n}
1	$y_{0}^{2} y_{1}^{4}+2 y_{0} y_{1}^{2}+\underline{y_{0}+1}$
2	$y_{1}+1$
3	$y_{0}^{9} y_{1}^{6}+3 y_{0}^{6} y_{1}^{4}+2 y_{0}^{5} y_{1}^{3}+3 y_{0}^{3} y_{1}^{2}+2 y_{0}^{2} y_{1}+y_{0}+1$
4	$\ldots+3 y_{0}^{4} y_{1}^{6}+4 y_{0}^{3} y_{1}^{4}+3 y_{0}^{2} y_{1}^{3}+2 y_{0} y_{1}^{2}+y_{1}+1$

Table of the first few transformed cluster variables, illustrating the stabilization property. The low order terms match, up to a fluctuation between y_{0} and y_{1}.

n	\tilde{F}_{n}
1	$y_{0}^{2} y_{1}^{4}+2 y_{0} y_{1}^{2}+\underline{y_{0}+1}$
2	$y_{1}+1$
3	$y_{0}^{9} y_{1}^{6}+3 y_{0}^{6} y_{1}^{4}+2 y_{0}^{5} y_{1}^{3}+3 y_{0}^{3} y_{1}^{2}+2 y_{0}^{2} y_{1}+y_{0}+1$
4	$\ldots+3 y_{0}^{4} y_{1}^{6}+4 y_{0}^{3} y_{1}^{4}+3 y_{0}^{2} y_{1}^{3}+2 y_{0} y_{1}^{2}+y_{1}+1$

It appears that

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=1+y_{0}+2 y_{0}^{2} y_{1}+3 y_{0}^{3} y_{1}^{2}+4 y_{0}^{4} y_{1}^{3}+\ldots
$$

Table of the first few transformed cluster variables, illustrating the stabilization property. The low order terms match, up to a fluctuation between y_{0} and y_{1}.

n	\tilde{F}_{n}
1	$y_{0}^{2} y_{1}^{4}+2 y_{0} y_{1}^{2}+\underline{y_{0}+1}$
2	$y_{1}+1$
3	$y_{0}^{9} y_{1}^{6}+3 y_{0}^{6} y_{1}^{4}+2 y_{0}^{5} y_{1}^{3}+3 y_{0}^{3} y_{1}^{2}+2 y_{0}^{2} y_{1}+y_{0}+1$
4	$\ldots+3 y_{0}^{4} y_{1}^{6}+4 y_{0}^{3} y_{1}^{4}+3 y_{0}^{2} y_{1}^{3}+2 y_{0} y_{1}^{2}+y_{1}+1$

It appears that

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=1+y_{0}+2 y_{0}^{2} y_{1}+3 y_{0}^{3} y_{1}^{2}+4 y_{0}^{4} y_{1}^{3}+\ldots
$$

In the remainder of the talk, I prove this convergence and present two more examples of quivers where stabilization happens. I also give a combinatorial interpretation of the limit in each case.

Kronecker Quiver

Framed Kronecker Quiver

Fix the mutation sequence $\mu=(0,1,0,1, \ldots)$.

The Kronecker quiver mutates with a predictable structure.

The Kronecker quiver mutates with a predictable structure.

Hence, the C-matrix has a predictable structure.
$C_{n}=\left\{\begin{array}{ll}{\left[\begin{array}{cc}-(n+1) & n \\ -n & n-1\end{array}\right]} & \text { if } n \text { even } \\ {\left[\begin{array}{cc}n & -(n+1) \\ n-1 & -n\end{array}\right]} & \text { if } n \text { odd }\end{array} C_{n}^{-1}= \begin{cases}{\left[\begin{array}{cc}n-1 & -n \\ n & -(n+1)\end{array}\right]} & \text { if } n \text { even } \\ {\left[\begin{array}{cc}n & -(n+1) \\ n-1 & -n\end{array}\right]} & \text { if } n \text { odd }\end{cases}\right.$

Hence, the C-matrix has a predictable structure.
$C_{n}=\left\{\begin{array}{ll}{\left[\begin{array}{cc}-(n+1) & n \\ -n & n-1\end{array}\right]} & \text { if } n \text { even } \\ {\left[\begin{array}{cc}n & -(n+1) \\ n-1 & -n\end{array}\right]} & \text { if } n \text { odd }\end{array} C_{n}^{-1}= \begin{cases}{\left[\begin{array}{cc}n-1 & -n \\ n & -(n+1)\end{array}\right]} & \text { if } n \text { even } \\ {\left[\begin{array}{cc}n & -(n+1) \\ n-1 & -n\end{array}\right]} & \text { if } n \text { odd }\end{cases}\right.$

The two forms of C_{n}^{-1} just have their rows swapped. This accounts for the fluctuation in variables in \tilde{F}_{n}. To simplify computation, we eliminate this fluctuation by ignoring the even case.

Hence, the C-matrix has a predictable structure.
$C_{n}=\left\{\begin{array}{ll}{\left[\begin{array}{cc}-(n+1) & n \\ -n & n-1\end{array}\right]} & \text { if } n \text { even } \\ {\left[\begin{array}{cc}n & -(n+1) \\ n-1 & -n\end{array}\right]} & \text { if } n \text { odd }\end{array} C_{n}^{-1}= \begin{cases}{\left[\begin{array}{cc}n-1 & -n \\ n & -(n+1)\end{array}\right]} & \text { if } n \text { even } \\ {\left[\begin{array}{cc}n & -(n+1) \\ n-1 & -n\end{array}\right]} & \text { if } n \text { odd }\end{cases}\right.$
The two forms of C_{n}^{-1} just have their rows swapped. This accounts for the fluctuation in variables in \tilde{F}_{n}. To simplify computation, we eliminate this fluctuation by ignoring the even case.

$$
C_{n}=C_{n}^{-1}=\left[\begin{array}{cc}
n & -(n+1) \\
n-1 & -n
\end{array}\right]
$$

Hence, the C-matrix has a predictable structure.
$C_{n}=\left\{\begin{array}{ll}{\left[\begin{array}{cc}-(n+1) & n \\ -n & n-1\end{array}\right]} & \text { if } n \text { even } \\ {\left[\begin{array}{cc}n & -(n+1) \\ n-1 & -n\end{array}\right]} & \text { if } n \text { odd }\end{array} C_{n}^{-1}= \begin{cases}{\left[\begin{array}{cc}n-1 & -n \\ n & -(n+1)\end{array}\right]} & \text { if } n \text { even } \\ {\left[\begin{array}{cc}n & -(n+1) \\ n-1 & -n\end{array}\right]} & \text { if } n \text { odd }\end{cases}\right.$
The two forms of C_{n}^{-1} just have their rows swapped. This accounts for the fluctuation in variables in \tilde{F}_{n}. To simplify computation, we eliminate this fluctuation by ignoring the even case.

$$
C_{n}=C_{n}^{-1}=\left[\begin{array}{cc}
n & -(n+1) \\
n-1 & -n
\end{array}\right]
$$

Then for any monomial $m=y_{0}^{a}, y_{1}^{b}, C_{n}$ transforms it to

$$
\tilde{m}=y_{0}^{n(a-b)-b} y_{1}^{n(a-b)-a}
$$

Definition (Row pyramid of length n)

$R_{n}:=$ two-layer arrangement of stones with n white stones on the top and $n-1$ black stones on the bottom, as shown.

Definition (Row pyramid of length n)

$R_{n}:=$ two-layer arrangement of stones with n white stones on the top and $n-1$ black stones on the bottom, as shown.

Definitions

- A partition of R_{n} is a stable configuration achieved by removing stones from R_{n}.

Definition (Row pyramid of length n)

$R_{n}:=$ two-layer arrangement of stones with n white stones on the top and $n-1$ black stones on the bottom, as shown.

Definitions

- A partition of R_{n} is a stable configuration achieved by removing stones from R_{n}.
- The weight of a partition P is

$$
y_{0}^{\#} \text { white stones removed } y_{1}^{\# \text { black stones removed }}
$$

Definition (Row pyramid of length n)

$R_{n}:=$ two-layer arrangement of stones with n white stones on the top and $n-1$ black stones on the bottom, as shown.

Definitions

- A partition of R_{n} is a stable configuration achieved by removing stones from R_{n}.
- The weight of a partition P is

$$
y_{0}^{\#} \text { white stones removed } y_{1}^{\# \text { black stones removed }}
$$

Example (A partition of R_{9} with weight $y_{0}^{5} y_{1}$)

Lemma

F_{n} is the partition function for R_{n}.

$$
F_{n}=\sum_{\text {Partitions } P \text { of } R_{n}} \text { weight }(P)
$$

Lemma

F_{n} is the partition function for R_{n}.

$$
F_{n}=\sum_{\text {Partitions } P \text { of } R_{n}} \text { weight }(P)
$$

Example

$F_{2}=1+2 y_{0}+y_{0}^{2}+y_{0}^{2} y_{1}$

1:

$y_{0}^{2} y_{1}:$

Definition

A simple partition of R_{n} is a partition such that the removed white stones form one consecutive block, and no exposed black stones remain.

Definition

A simple partition of R_{n} is a partition such that the removed white stones form one consecutive block, and no exposed black stones remain.

Example (A simple partition of R_{6} with weight $y_{0}^{3} y_{1}^{2}$)

Definition

A simple partition of R_{n} is a partition such that the removed white stones form one consecutive block, and no exposed black stones remain.

Example (A simple partition of R_{6} with weight $y_{0}^{3} y_{1}^{2}$)

Recall that

$$
y_{0}^{a} y_{1}^{b} \mapsto y_{0}^{n(a-b)-b} y_{1}^{n(a-b)-a}
$$

Definition

A simple partition of R_{n} is a partition such that the removed white stones form one consecutive block, and no exposed black stones remain.

Example (A simple partition of R_{6} with weight $y_{0}^{3} y_{1}^{2}$)

Recall that

$$
y_{0}^{a} y_{1}^{b} \mapsto y_{0}^{n(a-b)-b} y_{1}^{n(a-b)-a}
$$

For nonempty simple partitions $a-b=1$. So

$$
y_{0}^{a} y_{1}^{b} \mapsto y_{0}^{n-b} y_{1}^{n-a}
$$

Definition

A simple partition of R_{n} is a partition such that the removed white stones form one consecutive block, and no exposed black stones remain.

Example (A simple partition of R_{6} with weight $y_{0}^{3} y_{1}^{2}$)

Recall that

$$
y_{0}^{a} y_{1}^{b} \mapsto y_{0}^{n(a-b)-b} y_{1}^{n(a-b)-a}
$$

For nonempty simple partitions $a-b=1$. So

$$
y_{0}^{a} y_{1}^{b} \mapsto y_{0}^{n-b} y_{1}^{n-a}
$$

$=y_{0} \#$ non-removed white stones $+1 y_{1}^{\#}$ non-removed black stones

Theorem
For the Kronecker quiver with $\mu=(0,1,0,1, \ldots)$

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=1+y_{0}+2 y_{0}^{2} y_{1}+3 y_{0}^{3} y_{1}^{2}+4 y_{0}^{4} y_{1}^{3}+\ldots
$$

Proof sketch:

Theorem

For the Kronecker quiver with $\mu=(0,1,0,1, \ldots)$

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=1+y_{0}+2 y_{0}^{2} y_{1}+3 y_{0}^{3} y_{1}^{2}+4 y_{0}^{4} y_{1}^{3}+\ldots
$$

Proof sketch:
The idea is that stable terms are contributed exactly by simple partitions.

Theorem
For the Kronecker quiver with $\mu=(0,1,0,1, \ldots)$

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=1+y_{0}+2 y_{0}^{2} y_{1}+3 y_{0}^{3} y_{1}^{2}+4 y_{0}^{4} y_{1}^{3}+\ldots
$$

Proof sketch:
The idea is that stable terms are contributed exactly by simple partitions.

The term 1 stabilizes, since every F_{n} includes 1 , and it transforms to 1 .

Theorem

For the Kronecker quiver with $\mu=(0,1,0,1, \ldots)$

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=1+y_{0}+2 y_{0}^{2} y_{1}+3 y_{0}^{3} y_{1}^{2}+4 y_{0}^{4} y_{1}^{3}+\ldots
$$

Proof sketch:
The idea is that stable terms are contributed exactly by simple partitions.

The term 1 stabilizes, since every F_{n} includes 1 , and it transforms to 1 .

It can be shown that for any monomial $y_{0}^{a} y_{1}^{b} \neq 1$ in $\tilde{F}_{n}, a>b$.

So consider $\tilde{m}=y_{0}^{a} y_{1}^{a-k}$ with $k \geq 1$.

So consider $\tilde{m}=y_{0}^{a} y_{1}^{a-k}$ with $k \geq 1$.

Case 1: $k=1$.
For all sufficiently large $n, y_{0}^{a} y_{1}^{a-1}$ is in \tilde{F}_{n} with coefficient a.

So consider $\tilde{m}=y_{0}^{a} y_{1}^{a-k}$ with $k \geq 1$.

Case 1: $k=1$.
For all sufficiently large $n, y_{0}^{a} y_{1}^{a-1}$ is in \tilde{F}_{n} with coefficient a.
Proof by example: $a=3$.
$y_{0}^{n-2} y_{1}^{n-3}$ transforms to $y_{0}^{3} y_{1}^{2}$.
Always 3 simple partitions leaving 2 white and 2 black stones (for $n \geq 3$):

So consider $\tilde{m}=y_{0}^{a} y_{1}^{a-k}$ with $k \geq 1$.

Case 1: $k=1$.
For all sufficiently large $n, y_{0}^{a} y_{1}^{a-1}$ is in \tilde{F}_{n} with coefficient a.

Proof by example: $a=3$.
$y_{0}^{n-2} y_{1}^{n-3}$ transforms to $y_{0}^{3} y_{1}^{2}$.
Always 3 simple partitions leaving 2 white and 2 black stones (for $n \geq 3$):

00

Case $2: k \geq 2$.
For all sufficiently large $n, y_{0}^{a} y_{1}^{a-k}$ is not in \tilde{F}_{n}.

So consider $\tilde{m}=y_{0}^{a} y_{1}^{a-k}$ with $k \geq 1$.
Case 1: $k=1$.
For all sufficiently large $n, y_{0}^{a} y_{1}^{a-1}$ is in \tilde{F}_{n} with coefficient a.
Proof by example: $a=3$.
$y_{0}^{n-2} y_{1}^{n-3}$ transforms to $y_{0}^{3} y_{1}^{2}$.
Always 3 simple partitions leaving 2 white and 2 black stones (for $n \geq 3$):

00
Case 2: $k \geq 2$.
For all sufficiently large $n, y_{0}^{a} y_{1}^{a-k}$ is not in \tilde{F}_{n}.

Partitions of F_{z} and F_{z+1} mapping to the same \tilde{m} differ by k stones of each color. (i.e. bump up each exponent by k). But only 2 stones are added to R_{z}. So eventually exponents grow too large for any partition.
$R_{\infty}:=$ infinite row pyramid as shown.

$R_{\infty}:=$ infinite row pyramid as shown.

Definitions

- A partition of R_{∞} is a stable configuration achieved by removing stones so only a finite number are left.
$R_{\infty}:=$ infinite row pyramid as shown.

Definitions

- A partition of R_{∞} is a stable configuration achieved by removing stones so only a finite number are left.
- A simple partition is the same as before.
$R_{\infty}:=$ infinite row pyramid as shown.

Definitions

- A partition of R_{∞} is a stable configuration achieved by removing stones so only a finite number are left.
- A simple partition is the same as before.
- weight $(P)=y_{0}^{\# \text { non-removed white stones }+1} y_{1}^{\# \text { non-removed black stones }}$
$R_{\infty}:=$ infinite row pyramid as shown.

Definitions

- A partition of R_{∞} is a stable configuration achieved by removing stones so only a finite number are left.
- A simple partition is the same as before.
- weight $(P)=y_{0}^{\# \text { non-removed white stones }+1} y_{1}^{\# \text { non-removed black stones }}$

Example (A simple partition of R_{∞} with weight $y_{0}^{4} y_{1}^{3}$)

Definition

$$
R=\sum_{\text {Simple partitions } P \text { of } R_{\infty}} \text { weight }(P)
$$

Definition

$$
R=\sum_{\text {Simple partitions } P \text { of } R_{\infty}} \text { weight }(P)
$$

Theorem

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=1+R
$$

Conifold Quiver

Framed Conifold quiver

Fix mutation sequence $\mu=(0,1,0,1, \ldots)$

Framed Conifold quiver

Fix mutation sequence $\mu=(0,1,0,1, \ldots)$
A table again suggests that the C-matrix transformation stabilizes the cluster variables.

n	\tilde{F}_{n}
1	$y_{0}^{2} y_{1}^{5}+y_{0}^{2} y_{1}^{4}+2 y_{0} y_{1}^{3}+2 y_{0} y_{1}^{2}+\frac{y_{0}+1}{y_{1}+1}$
2	$\ldots+4 y_{0}^{4} y_{1}^{2}+3 y_{0}^{3} y_{1}^{2}+2 y_{0}^{3} y_{1}+2 y_{0}^{2} y_{1}+y_{0}+1$
3	$\ldots+4 y_{0}^{2} y_{1}^{4}+3 y_{0}^{2} y_{1}^{3}+2 y_{0} y_{1}^{3}+2 y_{0} y_{1}^{2}+y_{1}+1$

The stable cluster variables do converge, and the limit can be combinatorially interpreted in an analogous way as in the previous section.

The stable cluster variables do converge, and the limit can be combinatorially interpreted in an analogous way as in the previous section.

Here is a larger number of stable terms:

$$
\begin{gathered}
\ldots+33 y_{0}^{10} y_{1}^{6}+60 y_{0}^{9} y_{1}^{7}+63 y_{0}^{9} y_{1}^{6}+8 y_{0}^{8} y_{1}^{7}+10 y_{0}^{9} y_{1}^{5}+40 y_{0}^{8} y_{1}^{6}+32 y_{0}^{8} y_{1}^{5} \\
+7 y_{0}^{7} y_{1}^{6}+3 y_{0}^{8} y_{1}^{4}+28 y_{0}^{7} y_{1}^{5}+14 y_{0}^{7} y_{1}^{4}+6 y_{0}^{6} y_{1}^{5}+16 y_{0}^{6} y_{1}^{4}+6 y_{0}^{6} y_{1}^{3}+5 y_{0}^{5} y_{1}^{4} \\
+10 y_{0}^{5} y_{1}^{3}+y_{0}^{5} y_{1}^{2}+4 y_{0}^{4} y_{1}^{3}+4 y_{0}^{4} y_{1}^{2}+3 y_{0}^{3} y_{1}^{2}+2 y_{0}^{3} y_{1}+2 y_{0}^{2} y_{1}+y_{0}+1
\end{gathered}
$$

The stable cluster variables do converge, and the limit can be combinatorially interpreted in an analogous way as in the previous section.

Here is a larger number of stable terms:

$$
\begin{gathered}
\ldots+33 y_{0}^{10} y_{1}^{6}+60 y_{0}^{9} y_{1}^{7}+63 y_{0}^{9} y_{1}^{6}+8 y_{0}^{8} y_{1}^{7}+10 y_{0}^{9} y_{1}^{5}+40 y_{0}^{8} y_{1}^{6}+32 y_{0}^{8} y_{1}^{5} \\
+7 y_{0}^{7} y_{1}^{6}+3 y_{0}^{8} y_{1}^{4}+28 y_{0}^{7} y_{1}^{5}+14 y_{0}^{7} y_{1}^{4}+6 y_{0}^{6} y_{1}^{5}+16 y_{0}^{6} y_{1}^{4}+6 y_{0}^{6} y_{1}^{3}+5 y_{0}^{5} y_{1}^{4} \\
+10 y_{0}^{5} y_{1}^{3}+y_{0}^{5} y_{1}^{2}+4 y_{0}^{4} y_{1}^{3}+4 y_{0}^{4} y_{1}^{2}+3 y_{0}^{3} y_{1}^{2}+2 y_{0}^{3} y_{1}+2 y_{0}^{2} y_{1}+y_{0}+1
\end{gathered}
$$

The conifold mutates with a predictable structure, and the C-matrix has the same form as in the previous section.

$$
C_{n}=C_{n}^{-1}=\left[\begin{array}{cc}
n & -(n+1) \\
n-1 & -n
\end{array}\right]
$$

$A D_{n}^{(2)}:=$ the 2-color Aztec diamond pyramid shown below.

$A D_{n}^{(2)}:=$ the 2-color Aztec diamond pyramid shown below.

Partitions and their weights are defined the same way as before.
$A D_{n}^{(2)}:=$ the 2-color Aztec diamond pyramid shown below.

Partitions and their weights are defined the same way as before.
Example (A partition of $A D_{4}^{(2)}$ with weight $y_{0}^{4} y_{1}^{2}$)

Theorem

$$
F_{n}=\sum_{\text {Partitions } P \text { of } A D_{n}^{(2)}} \text { weight }(P)
$$

$A D_{n}^{(2)}$ can be decomposed into layers of row pyramids.
$A D_{n}^{(2)}$ can be decomposed into layers of row pyramids.

Example (Row pyramid decomposition of $A D_{3}^{(2)}$, shown layer by layer)

3 rows of length 1
2 rows of length 2
1 row of length 3

Definitions

- A simple partition of $A D_{n}^{(2)}$ is a partition such that its restriction to each row is simple.

Definitions

- A simple partition of $A D_{n}^{(2)}$ is a partition such that its restriction to each row is simple.
- We call a row r altered if at least one stone is removed from it.

Definitions

- A simple partition of $A D_{n}^{(2)}$ is a partition such that its restriction to each row is simple.
- We call a row r altered if at least one stone is removed from it.

Example (A simple partition of $A D_{4}^{(2)}$ with 2 altered rows)

Definitions

- A simple partition of $A D_{n}^{(2)}$ is a partition such that its restriction to each row is simple.
- We call a row r altered if at least one stone is removed from it.

Example (A simple partition of $A D_{4}^{(2)}$ with 2 altered rows)

Analogous to the situation before, the idea of the proof that \tilde{F}_{n} stabilizes is that the stable terms are contributed by the simple partitions.

Theorem
For the conifold, $\lim _{n \rightarrow \infty} \tilde{F}_{n}$ converges as a formal power series.

Proof sketch:

Theorem
For the conifold, $\lim _{n \rightarrow \infty} \tilde{F}_{n}$ converges as a formal power series.
Proof sketch:
The term 1 is clearly in the limit.

Theorem

For the conifold, $\lim _{n \rightarrow \infty} \tilde{F}_{n}$ converges as a formal power series.
Proof sketch:
The term 1 is clearly in the limit.

For the same reason as before, every monomial $y_{0}^{a} y_{1}^{b} \neq 1$ appearing in \tilde{F}_{n} for any n has $a>b$.

Claim:

Let $\tilde{m}=y_{0}^{a} y_{1}^{a-k}$, with $k \geq 1$. For sufficiently large n, the terms in F_{n} transforming to \tilde{m} come only from simple partitions (possibly none).

Proof sketch:

Claim:

Let $\tilde{m}=y_{0}^{a} y_{1}^{a-k}$, with $k \geq 1$. For sufficiently large n, the terms in F_{n} transforming to \tilde{m} come only from simple partitions (possibly none).

Proof sketch:
Suppose a partition removes k more white than black stones. It is simple iff it alters k rows, and non-simple iff it alters fewer than k rows.

Claim:

Let $\tilde{m}=y_{0}^{a} y_{1}^{a-k}$, with $k \geq 1$. For sufficiently large n, the terms in F_{n} transforming to \tilde{m} come only from simple partitions (possibly none).

Proof sketch:
Suppose a partition removes k more white than black stones. It is simple iff it alters k rows, and non-simple iff it alters fewer than k rows.

A partition transforming to \tilde{m} removes k more white than black stones.

Claim:

Let $\tilde{m}=y_{0}^{a} y_{1}^{a-k}$, with $k \geq 1$. For sufficiently large n, the terms in F_{n} transforming to \tilde{m} come only from simple partitions (possibly none).

Proof sketch:
Suppose a partition removes k more white than black stones. It is simple iff it alters k rows, and non-simple iff it alters fewer than k rows.

A partition transforming to \tilde{m} removes k more white than black stones.

To get the same \tilde{m} from terms in F_{z} and F_{z+1}, we must add k to each exponent. The increase from z to $z+1$ adds 2 stones to each row. So for partitions altering fewer than k rows the exponents eventually grow too large.

Claim:

Let $\tilde{m}=y_{0}^{a} y_{1}^{a-k}$, with $k \geq 1$. For sufficiently large n, the terms in F_{n} transforming to \tilde{m} come only from simple partitions (possibly none).

Proof sketch:

Suppose a partition removes k more white than black stones. It is simple iff it alters k rows, and non-simple iff it alters fewer than k rows.

A partition transforming to \tilde{m} removes k more white than black stones.

To get the same \tilde{m} from terms in F_{z} and F_{z+1}, we must add k to each exponent. The increase from z to $z+1$ adds 2 stones to each row. So for partitions altering fewer than k rows the exponents eventually grow too large.

The only possible partitions left are those altering exactly k rows.

Claim:

For sufficiently large n, the coefficient in front of \tilde{m} in \tilde{F}_{n} is constant.

Claim:

For sufficiently large n, the coefficient in front of \tilde{m} in \tilde{F}_{n} is constant.

Proof by example: $y_{0}^{4} y_{1}^{2}$

Has coefficient 4 in the limit. $y_{0}^{2 n-2} y_{1}^{2 n-4}$ transforms to it.

Claim:

For sufficiently large n, the coefficient in front of \tilde{m} in \tilde{F}_{n} is constant.

Proof by example: $y_{0}^{4} y_{1}^{2}$

Has coefficient 4 in the limit. $y_{0}^{2 n-2} y_{1}^{2 n-4}$ transforms to it.

$$
n=4
$$

Claim:

For sufficiently large n, the coefficient in front of \tilde{m} in \tilde{F}_{n} is constant.
Proof by example: $y_{0}^{4} y_{1}^{2}$
Has coefficient 4 in the limit. $y_{0}^{2 n-2} y_{1}^{2 n-4}$ transforms to it.

$$
n=4
$$

$$
n=5
$$

$A D_{\infty}^{(2)}:=$ the infinite Aztec Diamond pyramid shown.

Definition

$$
\begin{aligned}
& P \text { a simple partition of } A D_{\infty}^{(2)}
\end{aligned}
$$

Definition

$$
Q=\sum_{P \text { a simple partition of } A D_{\infty}^{(2)}} y_{0}^{h(P)+x(P)+\# \text { altered rows } y_{1}^{h(P)+x(P)}, ~(P)}
$$

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=Q
$$

Definition

$$
\begin{aligned}
& Q=\quad \sum \\
& y_{0}^{h(P)+x(P)+\# \text { altered rows } y_{1}^{h(P)+x(P)}, ~(1)} \\
& P \text { a simple partition of } A D_{\infty}^{(2)}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=Q
$$

- A partition of $A D_{\infty}^{(2)}$ is a stable configuration achieved by removing stones so that for each row, either no stones are removed, or only a finite number remain.

Definition

$$
\begin{aligned}
& Q=\quad \sum \\
& y_{0}^{h(P)+x(P)+\# \text { altered rows } y_{1}^{h(P)+x(P)}, ~(1)} \\
& P \text { a simple partition of } A D_{\infty}^{(2)}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=Q
$$

- A partition of $A D_{\infty}^{(2)}$ is a stable configuration achieved by removing stones so that for each row, either no stones are removed, or only a finite number remain.
- A simple partition of $A D_{\infty}^{(2)}$ is the same as before.

Definition

$$
\begin{aligned}
& Q=\quad \sum
\end{aligned}
$$

$$
\begin{aligned}
& P \text { a simple partition of } A D_{\infty}^{(2)}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=Q
$$

- A partition of $A D_{\infty}^{(2)}$ is a stable configuration achieved by removing stones so that for each row, either no stones are removed, or only a finite number remain.
- A simple partition of $A D_{\infty}^{(2)}$ is the same as before.
- $h(P)=\quad \sum$ distance of r from the top layer altered rows r of P

Definition

$$
\begin{aligned}
& Q=\quad \sum
\end{aligned}
$$

$$
\begin{aligned}
& P \text { a simple partition of } A D_{\infty}^{(2)}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \tilde{F}_{n}=Q
$$

- A partition of $A D_{\infty}^{(2)}$ is a stable configuration achieved by removing stones so that for each row, either no stones are removed, or only a finite number remain.
- A simple partition of $A D_{\infty}^{(2)}$ is the same as before.
- $h(P)=\quad \sum$ distance of r from the top layer altered rows r of P
- $x(P)=\#$ non-removed white/black stones in altered rows

Definition

$$
\begin{aligned}
& P \text { a simple partition of } A D_{\infty}^{(2)}
\end{aligned}
$$

- A partition of $A D_{\infty}^{(2)}$ is a stable configuration achieved by removing stones so that for each row, either no stones are removed, or only a finite number remain.
- A simple partition of $A D_{\infty}^{(2)}$ is the same as before.
- $h(P)=\quad \sum$ distance of r from the top layer altered rows r of P
- $x(P)=\#$ non-removed white/black stones in altered rows

Compare to:

P a simple partition of R_{∞}

F_{0} Quiver

Framed F_{0} Quiver

Fix $\mu=01230123 \ldots$

The even-indexed cluster variables appear to converge to one limit, and the odd-indexed cluster variables appear to converge to another limit.

The even-indexed cluster variables appear to converge to one limit, and the odd-indexed cluster variables appear to converge to another limit.

A table of the odd-indexed cluster variables.

n	F_{n}	\tilde{F}_{n}
1	$y_{0}+1$	$y_{0}+1$
3	$y_{0}^{2} y_{1}^{2} y_{2}+2 y_{0}^{2} y_{1} y_{2}+y_{0}^{2} y_{2}+y_{0}^{2}+2 y_{0}+1$	$y_{0}^{2} y_{2}^{4}+y_{1}^{2} y_{2}+2 y_{0} y_{2}^{2}+2 y_{1} y_{2}+y_{2}+1$
5	$\ldots+4 y_{0}^{2} y_{1} y_{2}+y_{0}^{3}+2 y_{0}^{2} y_{2}+3 y_{0}^{2}+3 y_{0}+1$	$\ldots+4 y_{0} y_{1} y_{3}^{2}+y_{0} y_{3}^{2}+2 y_{0}^{2} y_{2}+2 y_{0} y_{3}+y_{0}+1$
7	$\ldots+6 y_{0}^{2} y_{1} y_{2}+4 y_{0}^{3}+3 y_{0}^{2} y_{2}+6 y_{0}^{2}+4 y_{0}+1$	$\ldots+4 y_{1}^{2} y_{2} y_{3}+y_{1}^{2} y_{2}+2 y_{0} y_{2}^{2}+2 y_{1} y_{2}+y_{2}+1$

The even-indexed cluster variables appear to converge to one limit, and the odd-indexed cluster variables appear to converge to another limit.

A table of the odd-indexed cluster variables.

n	F_{n}	\tilde{F}_{n}
1	$y_{0}+1$	$y_{0}+1$
3	$y_{0}^{2} y_{1}^{2} y_{2}+2 y_{0}^{2} y_{1} y_{2}+y_{0}^{2} y_{2}+y_{0}^{2}+2 y_{0}+1$	$y_{0}^{2} y_{2}^{4}+y_{1}^{2} y_{2}+2 y_{0} y_{2}^{2}+2 y_{1} y_{2}+y_{2}+1$
5	$\ldots+4 y_{0}^{2} y_{1} y_{2}+y_{0}^{3}+2 y_{0}^{2} y_{2}+3 y_{0}^{2}+3 y_{0}+1$	$\ldots+4 y_{0} y_{1} y_{3}^{2}+y_{0} y_{3}^{2}+2 y_{0}^{2} y_{2}+2 y_{0} y_{3}+y_{0}+1$
7	$\ldots+6 y_{0}^{2} y_{1} y_{2}+4 y_{0}^{3}+3 y_{0}^{2} y_{2}+6 y_{0}^{2}+4 y_{0}+1$	$\ldots+4 y_{1}^{2} y_{2} y_{3}+y_{1}^{2} y_{2}+2 y_{0} y_{2}^{2}+2 y_{1} y_{2}+y_{2}+1$

A table of the even-indexed cluster variables.

n	F_{n}	\tilde{F}_{n}
2	$y_{1}+1$	
4	$y_{0}^{2} y_{1}^{2} y_{3}+2 y_{0} y_{1}^{2} y_{3}+y_{1}^{2} y_{3}+y_{1}^{2}+2 y_{1}+1$	$y_{1}+1$
6	$\ldots+4 y_{0} y_{1}^{2} y_{3}+y_{1}^{3}+2 y_{1}^{2} y_{3}+3 y_{1}^{2}+3 y_{1}+1$	$\ldots+4 y_{0}^{3} y_{1} y_{2}^{2}+3 y_{1}^{3} y_{3}^{2}+2 y_{0}^{2} y_{1} y_{2}+2 y_{1}^{2} y_{3}+y_{1}+1$
8	$\ldots+6 y_{0} y_{1}^{2} y_{3}+4 y_{1}^{3}+3 y_{1}^{2} y_{3}+6 y_{1}^{2}+4 y_{1}+1$	$\ldots+4 y_{0}^{2} y_{2}^{3} y_{3}+3 y_{1}^{2} y_{3}^{3}+2 y_{0} y_{2}^{2} y_{3}+2 y_{1} y_{3}^{2}+y_{3}+1$

Currently, I only understand the even-indexed cluster variables, whose limit generalizes the conifold case further.

Currently, I only understand the even-indexed cluster variables, whose limit generalizes the conifold case further.

From now on, we consider only the even-indexed cluster variables. We re-index them from $F_{2}, F_{4}, F_{6}, \ldots$ to $F_{1}, F_{2}, F_{3}, \ldots$.

Currently, I only understand the even-indexed cluster variables, whose limit generalizes the conifold case further.

From now on, we consider only the even-indexed cluster variables. We re-index them from $F_{2}, F_{4}, F_{6}, \ldots$ to $F_{1}, F_{2}, F_{3}, \ldots$

Here is a larger number of stable terms:

$$
\begin{array}{r}
\ldots+6 y_{0}^{6} y_{1}^{5}+4 y_{0}^{5} y_{1}^{3} y_{2} y_{3}^{2}+10 y_{0} y_{2}^{4} y_{3}^{6}+8 y_{0}^{2} y_{1} y_{2}^{3} y_{3}^{4}+8 y_{0} y_{2}^{4} y_{3}^{5}+5 y_{0}^{5} y_{1}^{4} \\
+2 y_{0}^{4} y_{1}^{2} y_{2} y_{3}^{2}+4 y_{0} y_{2}^{3} y_{3}^{5}+4 y_{0}^{2} y_{1} y_{2}^{2} y_{3}^{3}+6 y_{0} y_{2}^{3} y_{3}^{4}+4 y_{0}^{4} y_{1}^{3}+y_{0} y_{2}^{2} y_{3}^{4} \\
+4 y_{0} y_{2}^{2} y_{3}^{3}+3 y_{0}^{3} y_{1}^{2}+2 y_{0} y_{2} y_{3}^{2}+2 y_{0}^{2} y_{1}+y_{0}+1
\end{array}
$$

Currently, I only understand the even-indexed cluster variables, whose limit generalizes the conifold case further.

From now on, we consider only the even-indexed cluster variables. We re-index them from $F_{2}, F_{4}, F_{6}, \ldots$ to $F_{1}, F_{2}, F_{3}, \ldots$

Here is a larger number of stable terms:

$$
\begin{array}{r}
\cdots+6 y_{0}^{6} y_{1}^{5}+4 y_{0}^{5} y_{1}^{3} y_{2} y_{3}^{2}+10 y_{0} y_{2}^{4} y_{3}^{6}+8 y_{0}^{2} y_{1} y_{2}^{3} y_{3}^{4}+8 y_{0} y_{2}^{4} y_{3}^{5}+5 y_{0}^{5} y_{1}^{4} \\
+2 y_{0}^{4} y_{1}^{2} y_{2} y_{3}^{2}+4 y_{0} y_{2}^{3} y_{3}^{5}+4 y_{0}^{2} y_{1} y_{2}^{2} y_{3}^{3}+6 y_{0} y_{2}^{3} y_{3}^{4}+4 y_{0}^{4} y_{1}^{3}+y_{0} y_{2}^{2} y_{3}^{4} \\
+4 y_{0} y_{2}^{2} y_{3}^{3}+3 y_{0}^{3} y_{1}^{2}+2 y_{0} y_{2} y_{3}^{2}+2 y_{0}^{2} y_{1}+y_{0}+1
\end{array}
$$

If you identify pairs of y_{i} 's, this collapses down to the conifold case.
$A D_{n}^{(4)}:=$ the 4-color Aztec diamond pyramid shown.

$A D_{n}^{(4)}:=$ the 4-color Aztec diamond pyramid shown.

Partitions are the same as before.

$A D_{n}^{(4)}:=$ the 4-color Aztec diamond pyramid shown.

$A D_{1}^{(4)} \bigcirc$
 $A D_{2}^{(4)}$

 $A D_{3}^{(4)}$
 Partitions are the same as before.

$A D_{4}^{(4)}$

weight $(P)=y_{0}^{\# \text { yellow removed }} y_{1}^{\# \text { white removed }} y_{2}^{\# \text { blue removed }} y_{3}^{\#}$ black removed
$A D_{n}^{(4)}:=$ the 4-color Aztec diamond pyramid shown.

$A D_{3}^{(4)}$

$A D_{4}^{(4)}$

Partitions are the same as before.

$$
\text { weight }(P)=y_{0}^{\# \text { yellow removed }} y_{1}^{\# \text { white removed }} y_{2}^{\# \text { blue removed }} y_{3}^{\# \text { black removed }}
$$

$$
F_{n}=\sum_{\text {Partitions } P \text { of } A D_{n}^{(4)}} \text { weight }(P)
$$

It can be shown by the same method as before that the \tilde{F} 's converge.

It can be shown by the same method as before that the \tilde{F} 's converge.
$A D_{\infty}^{(4)}:=$ the 4-color infinite Aztec Diamond pyramid shown.

It can be shown by the same method as before that the \tilde{F} 's converge.
$A D_{\infty}^{(4)}:=$ the 4-color infinite Aztec Diamond pyramid shown.

Analogous to before, the limit can be interpreted as a partition function for $A D_{\infty}^{(4)}$. This function generalizes that of the previous case.

Conclusion

There are still lots of questions to be answered:

There are still lots of questions to be answered:

- Interpret the odd-indexed $\tilde{F}_{\text {s }}$ for the F_{0} quiver. Can we predict for which quivers it splits into multiple sequences?

There are still lots of questions to be answered:

- Interpret the odd-indexed $\tilde{F}_{\text {s }}$ for the F_{0} quiver. Can we predict for which quivers it splits into multiple sequences?
- What family of quivers and mutation sequences does this method extend to? (Conjecture: Even-length double-arrow cycles, with the appropriate mutation sequence.)

There are still lots of questions to be answered:

- Interpret the odd-indexed $\tilde{F}_{\text {s }}$ for the F_{0} quiver. Can we predict for which quivers it splits into multiple sequences?
- What family of quivers and mutation sequences does this method extend to? (Conjecture: Even-length double-arrow cycles, with the appropriate mutation sequence.)
- Eager and Franco originally observed stabilization for the dP1 quiver. Hasn't been proven yet.

There are still lots of questions to be answered:

- Interpret the odd-indexed $\tilde{F}_{\text {s }}$ for the F_{0} quiver. Can we predict for which quivers it splits into multiple sequences?
- What family of quivers and mutation sequences does this method extend to? (Conjecture: Even-length double-arrow cycles, with the appropriate mutation sequence.)
- Eager and Franco originally observed stabilization for the dP1 quiver. Hasn't been proven yet.
- What about different mutation sequences on the same quivers seen today?

There are still lots of questions to be answered:

- Interpret the odd-indexed $\tilde{F}_{\text {s }}$ for the F_{0} quiver. Can we predict for which quivers it splits into multiple sequences?
- What family of quivers and mutation sequences does this method extend to? (Conjecture: Even-length double-arrow cycles, with the appropriate mutation sequence.)
- Eager and Franco originally observed stabilization for the dP1 quiver. Hasn't been proven yet.
- What about different mutation sequences on the same quivers seen today?
- Explain what it is about the C-matrix that causes stabilization.

There are still lots of questions to be answered:

- Interpret the odd-indexed \tilde{F}_{s} for the F_{0} quiver. Can we predict for which quivers it splits into multiple sequences?
- What family of quivers and mutation sequences does this method extend to? (Conjecture: Even-length double-arrow cycles, with the appropriate mutation sequence.)
- Eager and Franco originally observed stabilization for the dP1 quiver. Hasn't been proven yet.
- What about different mutation sequences on the same quivers seen today?
- Explain what it is about the C-matrix that causes stabilization.
- Characterize for which quivers and mutation sequences stabilization occurs.

References

- S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, 2001, arXiv:math/0104151
- S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients, 2001, arXiv:math/0602259
- R. Eager and S. Franco, Colored BPS Pyramid Partition Functions, Quivers and Cluster Transformations, J. High Energy Phys. 1209 (2012), 038.
- N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, Alternating sign matrices and domino tilings, J. Algebraic Combin. 1 (1992), no. 2, 111-132; J. Algebraic Combin. 1 (1992), no. 3, 219-234, arXiv:math/9201305

Acknowledgements

This research was carried out as part of the 2016 summer REU program at the School of Mathematics, University of Minnesota, Twin Cities, and was supported by NSF RTG grant DMS-1148634. Thank you to everyone at the REU, and special thank yous to Gregg Musiker and Ben Strasser!!

