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0 1

A quiver is a directed graph. Multiple edges are allowed. Self-loops are
not allowed.
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0 1

0’ 1’

A quiver is a directed graph. Multiple edges are allowed. Self-loops are
not allowed.

Frame a quiver by adding a new ”frozen vertex” i ′ for each vertex i and
drawing an arrow i → i ′.
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0 1

0’ 1’

{1, 1, y0, y1}

A quiver is a directed graph. Multiple edges are allowed. Self-loops are
not allowed.

Frame a quiver by adding a new ”frozen vertex” i ′ for each vertex i and
drawing an arrow i → i ′.

Set the initial cluster variable for each non-frozen vertex as 1, and for each
frozen vertex i ′ as yi .
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0 1

0’ 1’

{1, 1, y0, y1}

Mutation at a vertex i :

1 Update the cluster variable for vertex i :∏
v→i cluster var for v +

∏
i→v cluster var for v

old cluster var for i

2 For every 2-path u → i → v , draw an arrow u → v .

3 If any self-loops or 2-cycles were newly created, delete them.

4 Reverse all arrows incident to i .
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0 1

0’ 1’

{1, 1, y0, y1}

→
µ0

0 1

0’ 1’

{1 + y0, 1, y0, y1}

Mutation at a vertex i :

1 Update the cluster variable for vertex i :∏
v→i cluster var for v +

∏
i→v cluster var for v

old cluster var for i

2 For every 2-path u → i → v , draw an arrow u → v .

3 If any self-loops or 2-cycles were newly created, delete them.

4 Reverse all arrows incident to i .
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0 1

0’ 1’

{1, 1, y0, y1}

→
µ0

0 1

0’ 1’

{1 + y0, 1, y0, y1}

→
µ1

0 1

0’ 1’

{1 + y0, y2
0 y1 + (1 + y0)2, y0, y1}

Mutation at a vertex i :

1 Update the cluster variable for vertex i :∏
v→i cluster var for v +

∏
i→v cluster var for v

old cluster var for i

2 For every 2-path u → i → v , draw an arrow u → v .

3 If any self-loops or 2-cycles were newly created, delete them.

4 Reverse all arrows incident to i .
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0 1

0’ 1’

F0 = 1

→
µ0

0 1

0’ 1’

F1 = 1 + y0

→
µ1

0 1

0’ 1’

F2 = y2
0 y1 + (1 + y0)2

For framed quivers we mutate only at non-frozen vertices. The resulting
cluster variables are known as F-polynomials.
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0 1

0’ 1’

F0 = 1

→
µ0

0 1

0’ 1’

F1 = 1 + y0

→
µ1

0 1

0’ 1’

F2 = y2
0 y1 + (1 + y0)2

For framed quivers we mutate only at non-frozen vertices. The resulting
cluster variables are known as F-polynomials.

We will keep this running example and fix the mutation sequence

µ = (0, 1, 0, 1, . . .)
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Stable Cluster Variables
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Eager and Franco defined a transformation on F -polynomials that seems to
stabilize them, or make them converge to a limit as a formal power series.
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0 1

0’ 1’

F0 = 1

C0 =

[
−1 0
0 −1

]

→
µ0

0 1

0’ 1’

F1 = y0 + 1

C1 =

[
1 −2
0 −1

]

→
µ1

0 1

0’ 1’

F2 = y2
0 y1 + y2

0 + 2y0 + 1

C2 =

[
−3 2
−2 1

]

At any step in the mutation sequence, define the C -matrix:

Cij = # arrows i ′ → j

(negative value if the arrows point from j to i ′)
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0 1

0’ 1’

F0 = 1

C−10 =

[
−1 0
0 −1

]

→
µ0

0 1

0’ 1’

F1 = y0 + 1

C−11 =

[
1 −2
0 −1

]

→
µ1

0 1

0’ 1’

F2 = y2
0 y1 + y2

0 + 2y0 + 1

C−12 =

[
1 −2
2 −3

]

Given a C-matrix and a monomial m = ya00 ya11 , its C-matrix transform is

m̃ = yb00 yb11

where C−1
[
a0
a1

]
=

[
b0
b1

]
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0 1

0’ 1’

F0 = 1

C−10 =

[
−1 0
0 −1

]
F̃0 = 1

→
µ0

0 1

0’ 1’

F1 = y0 + 1

C−11 =

[
1 −2
0 −1

]
F̃1 = y0 + 1

→
µ1

0 1

0’ 1’

F2 = y2
0 y1 + y2

0 + 2y0 + 1

C−12 =

[
1 −2
2 −3

]
F̃2 = y2

0 y
4
1 + 2y0y

2
1 + y1 + 1

For each Fn, get the C-matrix transformation F̃n by transforming each
monomial individually, using Cn.
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Table of the first few transformed cluster variables, illustrating the
stabilization property. The low order terms match, up to a fluctuation
between y0 and y1.

n F̃n
1 y0 + 1

2 y20 y
4
1 + 2y0y

2
1 + y1 + 1

3 y90 y
6
1 + 3y60 y

4
1 + 2y50 y

3
1 + 3y30 y

2
1 + 2y20 y1 + y0 + 1

4 . . .+ 3y40 y
6
1 + 4y30 y

4
1 + 3y20 y

3
1 + 2y0y

2
1 + y1 + 1

It appears that

lim
n→∞

F̃n = 1 + y0 + 2y20 y1 + 3y30 y
2
1 + 4y40 y

3
1 + . . .

In the remainder of the talk, I prove this convergence and present two
more examples of quivers where stabilization happens. I also give a
combinatorial interpretation of the limit in each case.
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Kronecker Quiver
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Framed Kronecker Quiver

0 1

0’ 1’

Fix the mutation sequence µ = (0, 1, 0, 1, . . .).
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The Kronecker quiver mutates with a predictable structure.

Q0

0 1

0’ 1’

µ0

Q1

0 1

0’ 1’

µ1 . . .

Qn if n even

0 1

0’ 1’

2

nn
+

1 n−
1

n

Qn if n odd

0 1

0’ 1’

2

n−
1n

n

n+
1

The two forms of C−1n just have their rows swapped. This accounts for the
fluctuation in variables in F̃n. To simplify computation, we eliminate this
fluctuation by ignoring the even case.

Then for any monomial m = ya0 , y
b
1 , Cn transforms it to

m̃ = y
n(a−b)−b
0 y

n(a−b)−a
1
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Definition (Row pyramid of length n)

Rn := two-layer arrangement of stones with n white stones on the top and
n − 1 black stones on the bottom, as shown.

R1 R2 R3

Definitions

A partition of Rn is a stable configuration achieved by removing
stones from Rn.

The weight of a partition P is

y # white stones removed
0 y# black stones removed

1

Example (A partition of R9 with weight y 5
0 y1)

Grace Zhang Stable Cluster Variables August 1, 2016 7 / 30



Definition (Row pyramid of length n)

Rn := two-layer arrangement of stones with n white stones on the top and
n − 1 black stones on the bottom, as shown.

R1 R2 R3

Definitions

A partition of Rn is a stable configuration achieved by removing
stones from Rn.

The weight of a partition P is

y # white stones removed
0 y# black stones removed

1

Example (A partition of R9 with weight y 5
0 y1)

Grace Zhang Stable Cluster Variables August 1, 2016 7 / 30



Definition (Row pyramid of length n)

Rn := two-layer arrangement of stones with n white stones on the top and
n − 1 black stones on the bottom, as shown.

R1 R2 R3

Definitions

A partition of Rn is a stable configuration achieved by removing
stones from Rn.

The weight of a partition P is

y # white stones removed
0 y# black stones removed

1

Example (A partition of R9 with weight y 5
0 y1)

Grace Zhang Stable Cluster Variables August 1, 2016 7 / 30



Definition (Row pyramid of length n)

Rn := two-layer arrangement of stones with n white stones on the top and
n − 1 black stones on the bottom, as shown.

R1 R2 R3

Definitions

A partition of Rn is a stable configuration achieved by removing
stones from Rn.

The weight of a partition P is

y # white stones removed
0 y# black stones removed

1

Example (A partition of R9 with weight y 5
0 y1)

Grace Zhang Stable Cluster Variables August 1, 2016 7 / 30



Lemma

Fn is the partition function for Rn.

Fn =
∑

Partitions P of Rn

weight (P)

Example

F2 = 1 + 2y0 + y20 + y20 y1

1: y0: y0: y20 : y20 y1:
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Definition

A simple partition of Rn is a partition such that the removed white
stones form one consecutive block, and no exposed black stones remain.

Example (A simple partition of R6 with weight y 3
0 y

2
1 )

Recall that
ya0 y

b
1 7→ y

n(a−b)−b
0 y

n(a−b)−a
1

For nonempty simple partitions a− b = 1. So

ya0 y
b
1 7→ yn−b0 yn−a1

= y # non-removed white stones + 1
0 y# non-removed black stones

1
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Theorem

For the Kronecker quiver with µ = (0, 1, 0, 1, . . .)

lim
n→∞

F̃n = 1 + y0 + 2y20 y1 + 3y30 y
2
1 + 4y40 y

3
1 + . . .

Proof sketch:

The idea is that stable terms are contributed exactly by simple partitions.

The term 1 stabilizes, since every Fn includes 1, and it transforms to 1.

It can be shown that for any monomial ya0 y
b
1 6= 1 in F̃n, a > b.
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So consider m̃ = ya0 y
a−k
1 with k ≥ 1.

Case 1: k = 1.

For all sufficiently large n, ya0 y
a−1
1 is in F̃n with coefficient a.

Proof by example: a = 3.

yn−20 yn−31 transforms to y30 y
2
1 .

Always 3 simple partitions leaving 2 white and 2 black stones (for n ≥ 3):
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So consider m̃ = ya0 y
a−k
1 with k ≥ 1.

Case 1: k = 1.

For all sufficiently large n, ya0 y
a−1
1 is in F̃n with coefficient a.

Proof by example: a = 3.

yn−20 yn−31 transforms to y30 y
2
1 .

Always 3 simple partitions leaving 2 white and 2 black stones (for n ≥ 3):

1. 2. 3.

Case 2: k ≥ 2.

For all sufficiently large n, ya0 y
a−k
1 is not in F̃n.

Partitions of Fz and Fz+1 mapping to the same m̃ differ by k stones of
each color. (i.e. bump up each exponent by k). But only 2 stones are
added to Rz . So eventually exponents grow too large for any partition.
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R∞ := infinite row pyramid as shown.

. . .

Definitions
A partition of R∞ is a stable configuration achieved by removing stones so
only a finite number are left.

A simple partition is the same as before.

weight(P) = y# non-removed white stones + 1
0 y# non-removed black stones

1

Example (A simple partition of R∞ with weight y 4
0 y

3
1 )

. . .
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Definition

R =
∑

Simple partitions P of R∞

weight(P)

Theorem

lim
n→∞

F̃n = 1 + R
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Conifold Quiver
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Framed Conifold quiver

0 1

0’ 1’

Fix mutation sequence µ = (0, 1, 0, 1, . . .)

A table again suggests that the C-matrix transformation stabilizes the
cluster variables.

n F̃n
1 y0 + 1

2 y20 y
5
1 + y20 y

4
1 + 2y0y

3
1 + 2y0y

2
1 + y1 + 1

3 . . .+ 4y40 y
2
1 + 3y30 y

2
1 + 2y30 y1 + 2y20 y1 + y0 + 1

4 . . .+ 4y20 y
4
1 + 3y20 y

3
1 + 2y0y

3
1 + 2y0y

2
1 + y1 + 1
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The stable cluster variables do converge, and the limit can be
combinatorially interpreted in an analogous way as in the previous section.

Here is a larger number of stable terms:

. . .+ 33y100 y61 + 60y90 y
7
1 + 63y90 y

6
1 + 8y80 y

7
1 + 10y90 y

5
1 + 40y80 y

6
1 + 32y80 y

5
1

+ 7y70 y
6
1 + 3y80 y

4
1 + 28y70 y

5
1 + 14y70 y

4
1 + 6y60 y

5
1 + 16y60 y

4
1 + 6y60 y

3
1 + 5y50 y

4
1

+ 10y50 y
3
1 + y50 y

2
1 + 4y40 y

3
1 + 4y40 y

2
1 + 3y30 y

2
1 + 2y30 y1 + 2y20 y1 + y0 + 1

The conifold mutates with a predictable structure, and the C -matrix has
the same form as in the previous section.

Cn = C−1n =

[
n −(n + 1)

n − 1 −n

]

Grace Zhang Stable Cluster Variables August 1, 2016 15 / 30



The stable cluster variables do converge, and the limit can be
combinatorially interpreted in an analogous way as in the previous section.

Here is a larger number of stable terms:

. . .+ 33y100 y61 + 60y90 y
7
1 + 63y90 y

6
1 + 8y80 y

7
1 + 10y90 y

5
1 + 40y80 y

6
1 + 32y80 y

5
1

+ 7y70 y
6
1 + 3y80 y

4
1 + 28y70 y

5
1 + 14y70 y

4
1 + 6y60 y

5
1 + 16y60 y

4
1 + 6y60 y

3
1 + 5y50 y

4
1

+ 10y50 y
3
1 + y50 y

2
1 + 4y40 y

3
1 + 4y40 y

2
1 + 3y30 y

2
1 + 2y30 y1 + 2y20 y1 + y0 + 1

The conifold mutates with a predictable structure, and the C -matrix has
the same form as in the previous section.

Cn = C−1n =

[
n −(n + 1)

n − 1 −n

]

Grace Zhang Stable Cluster Variables August 1, 2016 15 / 30



The stable cluster variables do converge, and the limit can be
combinatorially interpreted in an analogous way as in the previous section.

Here is a larger number of stable terms:

. . .+ 33y100 y61 + 60y90 y
7
1 + 63y90 y

6
1 + 8y80 y

7
1 + 10y90 y

5
1 + 40y80 y

6
1 + 32y80 y

5
1

+ 7y70 y
6
1 + 3y80 y

4
1 + 28y70 y

5
1 + 14y70 y

4
1 + 6y60 y

5
1 + 16y60 y

4
1 + 6y60 y

3
1 + 5y50 y

4
1

+ 10y50 y
3
1 + y50 y

2
1 + 4y40 y

3
1 + 4y40 y

2
1 + 3y30 y

2
1 + 2y30 y1 + 2y20 y1 + y0 + 1

The conifold mutates with a predictable structure, and the C -matrix has
the same form as in the previous section.

Cn = C−1n =

[
n −(n + 1)

n − 1 −n

]

Grace Zhang Stable Cluster Variables August 1, 2016 15 / 30



AD
(2)
n := the 2-color Aztec diamond pyramid shown below.

AD
(2)
1 AD

(2)
2 AD

(2)
3 AD

(2)
4

Partitions and their weights are defined the same way as before.

Example (A partition of AD
(2)
4 with weight y 4

0 y
2
1 )
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Theorem

Fn =
∑

Partitions P of AD
(2)
n

weight(P)
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AD
(2)
n can be decomposed into layers of row pyramids.

Example (Row pyramid decomposition of AD
(2)
3 , shown layer by layer)

3 rows of length 1 2 rows of length 2 1 row of length 3
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Definitions

A simple partition of AD
(2)
n is a partition such that its restriction to

each row is simple.

We call a row r altered if at least one stone is removed from it.

Example (A simple partition of AD
(2)
4 with 2 altered rows)

Analogous to the situation before, the idea of the proof that F̃n stabilizes
is that the stable terms are contributed by the simple partitions.
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Theorem

For the conifold, limn→∞ F̃n converges as a formal power series.

Proof sketch:

The term 1 is clearly in the limit.

For the same reason as before, every monomial ya0 y
b
1 6= 1 appearing in F̃n

for any n has a > b.
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Claim:

Let m̃ = ya0 y
a−k
1 , with k ≥ 1. For sufficiently large n, the terms in Fn

transforming to m̃ come only from simple partitions (possibly none).

Proof sketch:

Suppose a partition removes k more white than black stones. It is simple
iff it alters k rows, and non-simple iff it alters fewer than k rows.

A partition transforming to m̃ removes k more white than black stones.

To get the same m̃ from terms in Fz and Fz+1, we must add k to each
exponent. The increase from z to z + 1 adds 2 stones to each row. So for
partitions altering fewer than k rows the exponents eventually grow too
large.

The only possible partitions left are those altering exactly k rows.
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Claim:

For sufficiently large n, the coefficient in front of m̃ in F̃n is constant.

Proof by example: y 4
0 y

2
1

Has coefficient 4 in the limit. y2n−20 y2n−41 transforms to it.

n = 4

n = 5
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AD
(2)
∞ := the infinite Aztec Diamond pyramid shown.

. . .
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Definition

Q =
∑

P a simple partition of AD
(2)
∞

y
h(P)+x(P)+# altered rows
0 y

h(P)+x(P)
1

A partition of AD
(2)
∞ is a stable configuration achieved by removing

stones so that for each row, either no stones are removed, or only a
finite number remain.

A simple partition of AD
(2)
∞ is the same as before.

h(P) =
∑

altered rows r of P

distance of r from the top layer

x(P) = # non-removed white/black stones in altered rows

Compare to:∑
P a simple partition of R∞

y# non-removed white stones + 1
0 y# non-removed black stones

1
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F0 Quiver
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Framed F0 Quiver

0 3

2 1

0’

1’2’

3’

Fix µ = 01230123 . . ..
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The even-indexed cluster variables appear to converge to one limit, and
the odd-indexed cluster variables appear to converge to another limit.

A table of the odd-indexed cluster variables.

n Fn F̃n
1 y0 + 1 y0 + 1

3 y20 y
2
1 y2 + 2y20 y1y2 + y20 y2 + y20 + 2y0 + 1 y20 y

4
2 + y21 y2 + 2y0y

2
2 + 2y1y2 + y2 + 1

5 . . . + 4y20 y1y2 + y30 + 2y20 y2 + 3y20 + 3y0 + 1 . . . + 4y0y1y
2
3 + y0y

2
3 + 2y20 y2 + 2y0y3 + y0 + 1

7 . . . + 6y20 y1y2 + 4y30 + 3y20 y2 + 6y20 + 4y0 + 1 . . . + 4y21 y2y3 + y21 y2 + 2y0y
2
2 + 2y1y2 + y2 + 1

A table of the even-indexed cluster variables.

n Fn F̃n
2 y1 + 1 y1 + 1

4 y20 y
2
1 y3 + 2y0y

2
1 y3 + y21 y3 + y21 + 2y1 + 1 y20 y

4
2 y3 + y21 y

4
3 + 2y0y

2
2 y3 + 2y1y

2
3 + y3 + 1

6 . . . + 4y0y
2
1 y3 + y31 + 2y21 y3 + 3y21 + 3y1 + 1 . . . + 4y30 y1y

2
2 + 3y31 y

2
3 + 2y20 y1y2 + 2y21 y3 + y1 + 1

8 . . . + 6y0y
2
1 y3 + 4y31 + 3y21 y3 + 6y21 + 4y1 + 1 . . . + 4y20 y

3
2 y3 + 3y21 y

3
3 + 2y0y

2
2 y3 + 2y1y

2
3 + y3 + 1
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Currently, I only understand the even-indexed cluster variables, whose limit
generalizes the conifold case further.

From now on, we consider only the even-indexed cluster variables. We
re-index them from F2,F4,F6, . . . to F1,F2,F3, . . ..

Here is a larger number of stable terms:

. . .+ 6y60 y
5
1 + 4y50 y

3
1 y2y

2
3 + 10y0y

4
2 y

6
3 + 8y20 y1y

3
2 y

4
3 + 8y0y

4
2 y

5
3 + 5y50 y

4
1

+ 2y40 y
2
1 y2y

2
3 + 4y0y

3
2 y

5
3 + 4y20 y1y

2
2 y

3
3 + 6y0y

3
2 y

4
3 + 4y40 y

3
1 + y0y

2
2 y

4
3

+ 4y0y
2
2 y

3
3 + 3y30 y

2
1 + 2y0y2y

2
3 + 2y20 y1 + y0 + 1

If you identify pairs of yi ’s, this collapses down to the conifold case.

Grace Zhang Stable Cluster Variables August 1, 2016 27 / 30



Currently, I only understand the even-indexed cluster variables, whose limit
generalizes the conifold case further.

From now on, we consider only the even-indexed cluster variables. We
re-index them from F2,F4,F6, . . . to F1,F2,F3, . . ..

Here is a larger number of stable terms:

. . .+ 6y60 y
5
1 + 4y50 y

3
1 y2y

2
3 + 10y0y

4
2 y

6
3 + 8y20 y1y

3
2 y

4
3 + 8y0y

4
2 y

5
3 + 5y50 y

4
1

+ 2y40 y
2
1 y2y

2
3 + 4y0y

3
2 y

5
3 + 4y20 y1y

2
2 y

3
3 + 6y0y

3
2 y

4
3 + 4y40 y

3
1 + y0y

2
2 y

4
3

+ 4y0y
2
2 y

3
3 + 3y30 y

2
1 + 2y0y2y

2
3 + 2y20 y1 + y0 + 1

If you identify pairs of yi ’s, this collapses down to the conifold case.

Grace Zhang Stable Cluster Variables August 1, 2016 27 / 30



Currently, I only understand the even-indexed cluster variables, whose limit
generalizes the conifold case further.

From now on, we consider only the even-indexed cluster variables. We
re-index them from F2,F4,F6, . . . to F1,F2,F3, . . ..

Here is a larger number of stable terms:

. . .+ 6y60 y
5
1 + 4y50 y

3
1 y2y

2
3 + 10y0y

4
2 y

6
3 + 8y20 y1y

3
2 y

4
3 + 8y0y

4
2 y

5
3 + 5y50 y

4
1

+ 2y40 y
2
1 y2y

2
3 + 4y0y

3
2 y

5
3 + 4y20 y1y

2
2 y

3
3 + 6y0y

3
2 y

4
3 + 4y40 y

3
1 + y0y

2
2 y

4
3

+ 4y0y
2
2 y

3
3 + 3y30 y

2
1 + 2y0y2y

2
3 + 2y20 y1 + y0 + 1

If you identify pairs of yi ’s, this collapses down to the conifold case.

Grace Zhang Stable Cluster Variables August 1, 2016 27 / 30



Currently, I only understand the even-indexed cluster variables, whose limit
generalizes the conifold case further.

From now on, we consider only the even-indexed cluster variables. We
re-index them from F2,F4,F6, . . . to F1,F2,F3, . . ..

Here is a larger number of stable terms:

. . .+ 6y60 y
5
1 + 4y50 y

3
1 y2y

2
3 + 10y0y

4
2 y

6
3 + 8y20 y1y

3
2 y

4
3 + 8y0y

4
2 y

5
3 + 5y50 y

4
1

+ 2y40 y
2
1 y2y

2
3 + 4y0y

3
2 y

5
3 + 4y20 y1y

2
2 y

3
3 + 6y0y

3
2 y

4
3 + 4y40 y

3
1 + y0y

2
2 y

4
3

+ 4y0y
2
2 y

3
3 + 3y30 y

2
1 + 2y0y2y

2
3 + 2y20 y1 + y0 + 1

If you identify pairs of yi ’s, this collapses down to the conifold case.

Grace Zhang Stable Cluster Variables August 1, 2016 27 / 30



AD
(4)
n := the 4-color Aztec diamond pyramid shown.

AD
(4)
1 AD

(4)
2 AD

(4)
3 AD

(4)
4

Partitions are the same as before.

weight(P) = y# yellow removed
0 y# white removed

1 y# blue removed
2 y# black removed

3

Fn =
∑

Partitions P of AD
(4)
n

weight(P)
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It can be shown by the same method as before that the F̃ ’s converge.

AD
(4)
∞ := the 4-color infinite Aztec Diamond pyramid shown.

. . .

Analogous to before, the limit can be interpreted as a partition function

for AD
(4)
∞ . This function generalizes that of the previous case.
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Conclusion
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There are still lots of questions to be answered:

Interpret the odd-indexed F̃ s for the F0 quiver. Can we predict for
which quivers it splits into multiple sequences?

What family of quivers and mutation sequences does this method
extend to? (Conjecture: Even-length double-arrow cycles, with the
appropriate mutation sequence.)

Eager and Franco originally observed stabilization for the dP1 quiver.
Hasn’t been proven yet.

What about different mutation sequences on the same quivers seen
today?

Explain what it is about the C -matrix that causes stabilization.

Characterize for which quivers and mutation sequences stabilization
occurs.
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