Combinatorics of Gelfand-Tsetlin Polytopes

Yibo Gao, Ben Krakoff, Lisa Yang

July 27, 2016

Overview

(1) Introduction and Preliminaries

- GT Polytopes
- Main Results
- Ladder Diagrams and Face Posets
(2) Combinatorial Diameter
- Proof
(3) Combinatorial Automorphisms
- Generators
- Automorphism Groups
- Facet Chains
- Proof

GT Polytopes

Definition (GT Polytope)

Given a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, the Gelfand-Tsetlin Polytope GT_{λ} is the set of points $\vec{x}=\left(x_{i, j}\right)_{1 \leq j \leq i \leq n} \in \mathbb{R}^{n(n+1) / 2}$ with $x_{i, i}=\lambda_{i}$ satisfying the following inequalities:
(1) $x_{i-1, j} \leq x_{i, j} \leq x_{i+1, j}$,
(2) $x_{i, j-1} \leq x_{i, j} \leq x_{i, j+1}$.

GT Polytopes

$$
\begin{aligned}
& \lambda_{1} \\
& \text { । } \wedge \\
& x_{2,1} \leq \lambda_{2} \\
& 1 \wedge \quad \mid \wedge \\
& x_{3,1} \leq x_{3,2} \leq \lambda_{3} \\
& 1 \wedge \quad|\wedge \quad| \wedge \\
& x_{4,1} \leq x_{4,2} \leq x_{4,3} \leq \lambda_{4} \\
& \begin{array}{ccc}
\vdots & \vdots & \ddots \\
x_{n, 1} \leq & \ddots \\
x_{n, 2} & \leq \\
x_{n, n-1} & \leq \lambda_{n}
\end{array}
\end{aligned}
$$

Figure: Inequality constraints of GT polytopes.

Main Results

Theorem (Diameter)

$\operatorname{diam}\left(G T_{\lambda}\right)=2 m-2-\delta_{1, a_{1}}-\delta_{1, a_{m}}$.
Theorem ($m=2$ Automorphism Group)
Suppose $\lambda=\left(1^{a_{1}}, 2^{a_{2}}\right)$ and $a_{1}, a_{2} \geq 2$. Then

$$
\operatorname{Aut}\left(G T_{\lambda}\right)=D_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}^{\delta_{a_{1}, a_{2} \neq 2}}
$$

Theorem ($m \geq 3$ Automorphism Group)

Suppose $\lambda=1^{a_{1}} \ldots m^{a_{m}}$ and $m \geq 3$. Let $t=1$ if λ is reverse symmetric and let $t=0$ otherwise. Let j be the number of pairs $a_{k}, a_{k+1} \geq 2$. Then

$$
\operatorname{Aut}\left(G T_{\lambda}\right) \cong \mathbb{Z}_{2}^{t} \ltimes_{\varphi}\left(S_{a_{2}}^{\delta_{1, a_{1}}} \times S_{a_{m-1}}^{\delta_{1, a m}} \times \mathbb{Z}_{2}^{j+1}\right)
$$

Ladder Diagrams

Definition (Ladder Diagrams)

For $\lambda=\left(1^{a_{1}}, \ldots, m^{a_{m}}\right)$, the grid Γ_{λ} is an induced subgraph of Q constructed as follows. Let the origin be the vertex $(0,0)$. Set $s_{j}:=\sum_{i=1}^{j} a_{i}$, and define terminal vertices $t_{j}=\left(s_{j}, n-s_{j}\right)$ for $0 \leq j \leq m . \Gamma_{\lambda}$ consists of all vertices and edges appearing on any North-East path between the origin and a terminal vertex.
A ladder diagram is a subgraph of Γ_{λ} such that
(1) the origin is connected to every terminal vertex by some North-East path.
(2) every edge in the graph is on a North-East path from the origin to some terminal vertex.

Face Posets

Theorem (ACK)

Let $\mathcal{F}\left(\Gamma_{\lambda}\right)$ denote the poset of ladder diagrams induced by λ ordered by inclusion. Then $\mathcal{F}\left(G T_{\lambda}\right) \cong \mathcal{F}\left(\Gamma_{\lambda}\right)$.

Figure: Let $\lambda=\left(1^{2}, 2^{1}, 4^{2}, 7^{3}, 8^{1}\right)$. From left to right: Γ_{λ} with origin and terminal vertices in red and a dashed line indicating the main diagonal, ladder diagram for a point in GT_{λ}, ladder diagram for a 0-dimensional face (vertex), and ladder diagram for a 2-dimensional face.

Diameter Theorem

By the previous Theorem, it suffices to consider $\lambda=\left(1^{a_{1}}, \ldots, m^{a_{m}}\right)$.
Our proofs will use ladder diagrams to model faces of GT_{λ}.

> Theorem (Diameter)
> $\operatorname{diam}\left(G T_{\lambda}\right)=2 m-2-\delta_{1, \mathrm{a}_{1}}-\delta_{1, \mathrm{a}_{m}}$

Diameter Upper Bound

Lemma

Any two vertices v and w of $G T_{\lambda}$ are separated by at most $2 m-2-\delta_{1, a_{1}}-\delta_{1, a_{m}}$ edges.

As ladder diagrams, a vertex is a set of $m-1$ noncrossing paths.

Figure: Vertices v and w.

For each terminal vertex t_{i}, there is a path $v_{i} \in v$ and a path $w_{i} \in w$. We want to change each v_{i} to w_{i} by traveling along edges.

Diameter Lower Bound: Phase 1

Traveling along an edge corresponds to moving a subpath of the diagram. We call this a move.

Formally, two vertices are adjacent iff the union of two vertices is (the ladder diagram of) an edge.

Diameter Lower Bound: Phase 1

Figure: Phase 1 of the algorithm. $v \rightarrow v^{\prime}, w \rightarrow w^{\prime}(=w)$.

Diameter Lower Bound: Phase 2

Figure: Phase 2 of the algorithm. First line: $v^{\prime} \rightarrow u$. Second line: $w^{\prime} \rightarrow u$.

Diameter Lower Bound

Lemma

There exist two vertices separated by $\geq 2 m-2-\delta_{1, a_{1}}-\delta_{1, a_{m}}$ edges.
We construct the vertices z_{h} and z_{v} that have this separation.

Definition (Zigzag lattice path)

Figure: Vertices z_{h} and z_{v} of $G T_{\lambda}$.

Diameter Lower Bound

Lemma

There exist two vertices separated by $\geq 2 m-2-\delta_{1, a_{1}}-\delta_{1, a_{m}}$ edges.

Proof outline.

One would like to argue that each path of z_{h} requires two moves to be changed into the corresponding path of z_{v}. But a single move can alter multiple paths. To do this, paths must be merged together first.

We create sets to account for the merges that occur before altering ≥ 2 paths simultaneously.

Diameter Lower Bound

Proof outline cont.

For any sequence of ℓ edges (moves) between z_{h} and z_{v}, we can associate sets X_{1}, \ldots, X_{ℓ} where X_{i} is the set of indices of paths altered by the i th move.
Claim: $\quad X_{1}, \ldots, X_{\ell}$ satisfies the following conditions:
(1) Any index (except possibly 1 and $m-1$) appears in at least two sets.
(2) The last set one index appears cannot be the last set another index appears in.
(3) If $X_{k}=\{i, i+1, \ldots, j\}$, then at least $j-i$ of $i, i+1, \ldots, j$ appear in sets before X_{k}.
(9) If $X_{k}=\{i, i+1, \ldots, j\}$ and is the last set an index appears in, then each of $i, i+1, \ldots, j$ appears in sets before X_{k}.

Diameter Lower Bound

Proof outline cont.

(1) Any index (except possibly 1 and $m-1$) appears in at least two sets.
(2) The last set one index appears cannot be the last set another index appears in.
(3) If $X_{k}=\{i, i+1, \ldots, j\}$, then at least $j-i$ of $i, i+1, \ldots, j$ appear in sets before X_{k}.
(9) If $X_{k}=\{i, i+1, \ldots, j\}$ and is the last set an index appears in, then each of $i, i+1, \ldots, j$ appears in sets before X_{k}.
Claim: Any sequence of sets satisfying these conditions has length $\geq 2 m-2-\delta_{1, a_{1}}-\delta_{1, a_{m}}$.

Idea: Starting at the end of the sequence X_{1}, \ldots, X_{ℓ}, we replace any tuples by singletons. After each replacement, the sequence still satisfy these conditions. At the end, we are left with $\geq 2 m-2-\delta_{1, a_{1}}-\delta_{1, a_{m}}$ singletons.

Proof of Diameter

Theorem (Diameter)

$\operatorname{diam}\left(G T_{\lambda}\right)=2 m-2-\delta_{1, a_{1}}-\delta_{1, a_{m}}$.

Proof.

Combine the upper and lower bounds in the previous two lemmas.

Generators

Definition (The Corner Symmetry)

For any λ, there is a \mathbb{Z}_{2} automorphism μ on $\mathcal{F}\left(\Gamma_{\lambda}\right)$ given by swapping two pairs of edges $((0,0),(1,0))$ with $((0,0),(0,1))$ and $((1,0),(1,1))$ with $((0,1),(1,1))$ in any positive path leaving (0,0)

Figure: Action of μ

Generators

Definition (The k-Corner Symmetry)

Denote the $k^{\text {th }}$ terminal vertex by $(n-i, i)$, and suppose that $a_{k}, a_{k+1} \geq 2$. There is a \mathbb{Z}_{2} automorphism μ_{k} on $\mathcal{F}\left(\Gamma_{\lambda}\right)$ given by swapping two pairs of edges, $((n-i, i)(n-i, i-1))$ with $((n-i, i)(i-1, i)$ and $((n-i, i-1),(n-i-1, i-1))$ with $((n-i-1, i),(n-i-1, i-1))$ in any positive path going to $(n-i, i)$.

Figure: Action of μ_{k}

Generators

Definition (Symmetric Group Symmetry)

Suppose that $a_{1}=1$. Then there is a $S_{a_{2}}$ automorphism group acting on $\mathcal{F}\left(\Gamma_{\lambda}\right)$ in the following way. Take the first column of possible horizontal edges, and label the top a_{2} edges 1 though $a_{2} . S_{a_{2}}$ then acts by if $\sigma(i)=j$, the edges corresponding to i are mapped to edges corresponding to j.

Figure: Action of (123)

Generators

Definition (The Flip Symmetry)

Suppose that $\lambda=\left(1^{a_{1}}, 2^{a_{2}}, \ldots, m^{a_{m}}\right)=\left(1^{a_{m}}, 2^{a_{m-1}}, \ldots, m^{a_{1}}\right)=: \lambda^{\prime}$. There is a \mathbb{Z}_{2} automorphism ρ on $\mathcal{F}\left(\Gamma_{\lambda}\right)$ given by reflecting a subgraph over the line $y=x$.

Figure: Action of ρ.

Generators

Definition (The $m=2$ Rotation Symmetry)

Suppose that $m=2$. Note that any ladder diagram only has 3 terminal vertices, two on the the x or y axis and one not on the axes, call it v. There is a \mathbb{Z}_{2} automorphism τ on $\mathcal{F}\left(\Gamma_{\lambda}\right)$ taking paths from $(0,0)$ to v and rotating them 180° so that they are paths from v to $(0,0)$.

Figure: Action of τ

Generators

Definition (The $m=2$ Vertex Symmetry)

When $m=2$, there are two special vertices that are connected to every vertex. This symmetry α maps these two vertices to each other.

Figure: Vertices acted on by α

Classifying Automorphism Groups

Theorem ($m=2$ Automorphism Group)

Suppose $\lambda=\left(1^{a_{1}}, 2^{a_{2}}\right)$ and $a_{1}, a_{2} \geq 2$.
If $a_{1}=a_{2}=2$, then

$$
\operatorname{Aut}\left(G T_{\lambda}\right) \cong D_{4} \times \mathbb{Z}_{2}
$$

Otherwise,

$$
\operatorname{Aut}\left(G T_{\lambda}\right) \cong D_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}^{\delta_{a_{1}, a_{2}}}
$$

Theorem ($m \geq 3$ Automorphism Group)

Suppose $\lambda=1^{a_{1}} \ldots m^{a_{m}}$ and $m \geq 3$. Let $t=1$ if $\lambda=\lambda^{\prime}$ and let $t=0$ otherwise. Let j be the number of pairs $a_{k}, a_{k+1} \geq 2$. Then

$$
\operatorname{Aut}\left(G T_{\lambda}\right) \cong \mathbb{Z}_{2}^{t} \ltimes_{\varphi}\left(S_{a_{2}}^{\delta_{1, a_{1}}} \times S_{a_{m-1}}^{\delta_{1, a m}} \times \mathbb{Z}_{2}^{j+1}\right)
$$

Representing Facets

Figure: Left: interior edges of Γ_{λ}. Right: representing a facet.

Facets of $\mathrm{G} T_{\lambda}$ are in bijection with interior edges of Γ_{λ}. We will denote a facet by its corresponding interior edge.

Dependent Facets

Two facets are called dependent if their intersection is a $d-3$ dimensional face. This occurs iff they are arranged in one of two ways.

Figure: The gray boxes indicate entries $x_{i, j}$ that are equal on each facet. The red box indicates the entry forced to be equal to the other three.

Facet Chains

We can form maximal chains of dependent facets. These chains partition the interior edges of Γ_{λ}.
There is always a unique longest chain.

Adjacent Chains

Chains C_{1}, C_{2} are adjacent if the intersection of two facets of C_{1} equals the intersection of two facets of C_{2}.

This occurs iff one chain sits directly to the North-East of the other chain.

Proof of Automorphism Group

Theorem ($m \geq 3$ Automorphism Group)

Suppose $\lambda=1^{a_{1}} \ldots m^{a_{m}}$ and $m \geq 3$. Let $t=1$ if $\lambda=\lambda^{\prime}$ and let $t=0$ otherwise. Let j be the number of pairs $a_{k}, a_{k+1} \geq 2$. Then

$$
\operatorname{Aut}\left(G T_{\lambda}\right) \cong \mathbb{Z}_{2}^{t} \ltimes_{\varphi}\left(S_{a_{2}}^{\delta_{1, a_{1}}} \times S_{a_{m-1}}^{\delta_{1, a m}} \times \mathbb{Z}_{2}^{j+1}\right)
$$

Idea of proof:

We know $\mathbb{Z}_{2}^{t} \ltimes_{\varphi}\left(S_{a_{2}}^{\delta_{1, a_{1}}} \times S_{a_{m-1}}^{\delta_{1, a m}} \times \mathbb{Z}_{2}^{j+1}\right) \subseteq \operatorname{Aut}\left(\mathrm{GT}_{\lambda}\right)$.
Fact: Any $\phi \in \operatorname{Aut}\left(\mathrm{GT}_{\lambda}\right)$ is determined by where it sends the facets of GT_{λ}.

We upperbound the size of $\operatorname{Aut}\left(\mathrm{GT}_{\lambda}\right)$ by looking at the action of any $\phi \in \operatorname{Aut}\left(\mathrm{GT}_{\lambda}\right)$ on facets and applying the Orbit-Stabilizer theorem. This suffices to show equality.

Proof of Automorphism Group

Any $\phi \in \operatorname{Aut}\left(\mathrm{GT}_{\lambda}\right)$ must preserve many of the properties we've described. Useful facts:

- ϕ preserves dependency of facets. If $\phi\left(C_{1}\right)=C_{2}$, then C_{1} is mapped to C_{2} or the flip of C_{2}.

- ϕ preserves the lengths of chains.
- ϕ preserves adjacency of chains.

Proof of Automorphism Group

Useful facts:

- If $\phi\left(C_{1}\right)=C_{2}$, then C_{1} is mapped to C_{2} or the flip of C_{2}.
- ϕ preserves the lengths of chains.
- ϕ preserves adjacency of chains.

Proof outline.

First fix the facets in chains of length ≤ 2 and the facets in $C_{\text {long }}$. This is sufficient to fix the image of every facet.

Figure: Flipping short red chains accounts for $\mu, \mu_{1}, \ldots, \mu_{m-1}$. Permuting blue chains accounts for $\sigma \in S_{\mathrm{a}_{2}}, S_{a_{m-1}}$.

Proof of Automorphism Group

We show this determines the image of every facet.

Proof outline.

Figure: Arguing towards $C_{\text {long }}$.

Acknowledgements. This research was carried out as part of the 2016 REU program at the University of Minnesota, Twin Cities, and was supported by NSF RTG grant DMS-1148634 and by NSF grant DMS-1351590.

The authors would like to thank Elise delMas and Craig Corsi for their valuable advice and comments. The authors are especially grateful to Victor Reiner for his mentorship and support, and for many fruitful conversations.

Thank you!!

