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1 Introduction

2 Historical Development

2.1 Alternating Sign Matrices

An alternating sign matrix (ASM) is a square matrix consisting of 0’s, 1’s
and −1’s such that the entries in each row and each column sum to 1 and the
nonzero entries in each row and each column alternate in sign. An example is
shown: 

0 0 1 0
1 0 0 0
0 1 −1 1
0 0 1 0


As a consequence of its definition, the first row of an alternating sign matrix
contains exactly one 1 and no −1’s. Therefore, the set of n×n alternating sign
matrices An can be partitioned into n sets

An,1, An,2, . . . , An,n

where An,r is the set of n × n alternating sign matrices such that the position
of the lone 1 in the first row is the rth entry.

2.2 Lattice models for ASMs

Shortly after Zielberger presented the first proof of the ASM conjecture in early
1995, Kuperberg presented a much shorter proof in December of the same year
that drew inspiration from physics and statistical mechanics. For years, physi-
cists have studied lattice models because of their use in describing physical sys-
tems. A lattice model called the square ice model with domain wall boundary
conditions was noted in 1992 [citation here] to be in bijection with alternating
sign matrices.
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Figure 1: Square Ice

A state of this lattice model corresponds to a filling of the lattice with arrows,
where each vertex is required to have exactly 2 inward facing arrows. The
boundary arrows are fixed and refer to the ’domain wall boundary conditions.’
There are 6 types of vertices in the square ice model:

a1 a2 b1 b2 c1 c2

Figure 2: Square Ice Vertices

The following correspondence gives a bijection between square ice with domain
wall boundary conditions and alternating sign matrices.

0 0 0 0 -1 1

Figure 3: ASM and Square Ice bijection

(
1 0
0 1

)
←→

(
0 1
1 0

)
←→

0 1 0
1 −1 1
0 1 0

←→

Figure 4: ASM and Square Ice examples

Kuperberg considered something called the partition function on the square ice
model. First, parameterize square ice by ~x, ~y ∈ Rn.
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Figure 5: Parameterized Square Ice

Next, assign a weight to each vertex based on its type and position. For example,
the weight of a vertex v of type a1 in row i and column j is given by w(v) =
a1(xi, yj). Define the weight of a filling to be the product of the weights of the
vertices it contains. A weighting system with this property is called Boltzmann.
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a1(xi, yj) a2(xi, yj) b1(xi, yj) b2(xi, yj) c1(xi, yj) c2(xi, yj)

Figure 6: Parameterized Boltzmann Weights

Define the partition function to be

Z(x1 . . . , xn; y1, . . . , yn) :=
∑

fillings F

w(F )

=
∑

fillings F

∏
vertices v∈F

w(v).

Physicists considered the following Boltzmann weights, where Z is further pa-
rameterized by q.

a1 a2 b1 b2 c1 c2
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Figure 7: Some Boltzmann Weights

With these Boltzmann weights, Z has two remarkable properties.
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1. Z is symmetric in ~x and ~y. That is,

Z(x1, . . . , xi, . . . , xj , . . . xn; y1, . . . , yn) = Z(x1, . . . , xj , . . . , xi, . . . xn; y1, · · · yn)

and

Z(x1, . . . xn; y1, . . . , yk, . . . , y`, . . . yn) = Z(x1, . . . xn; y1, . . . , y`, . . . , yk, . . . yn).

2. Z is completely determined recursively.

Property 1 is another way of saying that the weights satisfy the Yang-Baxter
equation.

2.2.1 The Yang-Baxter Equation

Define a new “rotated” vertex R and assign Boltzmann weights a1(R), . . . , c2(R)
to each configuration.

R R R R R R

b1 b2 a1 a2 c1 c2

Figure 8: R weights

Let a1(S), . . . , c2(S) and a1(T ), . . . , c2(T ) denote the (no longer parameterized)
Boltzmann weights of vertex S and T configurations, as in Figure 7. We say
that vertices R, S, and T satisfy the YBE if, for all fixed combinations of in/out
arrows a, . . . , f , we have

a

b

c

d

e

f

S

T

R =

a

b

c

d

e

f

T

S

R

Figure 9: Yang-Baxter Equation
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Equality here is in the sense that the partition function of the left hand side is
equal to the partition function of the RHS:∑

Fillings of LHS

(filling weight) =
∑

Fillings of RHS

(filling weight).

Since the weights are Boltzmann, the the weight of a filling is simply the product
of the weights of the vertices it contains. Exactly 3 of a, . . . , f must be pointing
inward, and therefore there are

(
6
3

)
= 20 equations that must be satisfied. In the

field-free case, i.e. a1 = a2, b1 = b2, and c1 = c2, 10 equations are eliminated
since weights are unaffected by rotation by 180◦.

2.2.2 Symmetry of Z

We will use the YBE to show that, for the weights in Figure 7, Z is symmetric in
~x and ~y separately. To show that Z is symmetric in ~x, we examine the horizontal
YBE, which was the formulation of YBE in the previous section. Symmetry in
~y is similar, except we examine the vertical YBE, which is the same as the
horizontal YBE but rotated by 90◦. One can check that if we let the weight of
a rotated vertex be the same as the weight of the regular vertex obtained by
rotating 90◦ clockwise, then the weights satisfy the horizontal YBE. Explicitly,
we let
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xi
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xi+1

xi

xi+1

xi

xi+1

xi+1

xi
− xi
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Figure 10: R weights satisfying YBE
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Figure 11: Parameterized horizontal YBE
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2.2.3 Evaluation

(discussion of recursion)
Korepin and Izergin [cite] explicitly formulated the partition function for the
square ice model with these weights.

Theorem 2.1 (Izergin, 1987 [Ize87]).

Z =

∏n
i,j=1(xj/yi − yi/xj)(qxj/yi − q−1yi/yj)∏
1≤i<j≤n(xi/xj − xj/xi)(yi/yj − yj/yi)

det
i,j=1...n

(
q − q−1

(xj/yi − yi/xj)(qxj/yi − q−1yi/yj)

)
Kuperberg pointed out that given particular parameters the partition function
enumerates states of the ice model. Evaluating Korepin and Izergin’s formula
with Kuperberg’s parameters was tricky, but Okada and Stroganoff developed
a simpler method that involved identifying the partition function with a Schur
polynomial. Remarkably, the number of nxn alternating sign matrices is equal
to a certain Schur polynomial evaluated at (1, . . . , 1) multiplied by a simple
factor.

2.3 Bijections with ASMs

[You can probably largely look at the Propp paper for this, although you should
mention if your exposition is going to closely follow his exposition and should
reference the original papers for each bijection]

2.4 The ASM polytope

The nth Birkhoff Polytope, Bn, is defined as the convex hull of all n × n per-
mutation matrices in Rn2

. This polytope is has been very well studied. A
major result about the Birkhoff Polytope is the Birkhoff-Von Neumann The-
orem, which states that Bn is the set of all n × n doubly stochastic matrices,
matrices with entries in [0, 1] and all of whose rows and columns sum to 1.

Another result is that for any n-vector v, Bn · v = Pv, where Pv is the permu-
tohedron of v: the convex hull of all permutations of v.

Striker [insert citation here] defined the nth ASM polytope, denoted ASMn,

as the convex hull of all n × n alternating sign matrices in Rn2

. Since per-
mutation matrices are special cases of ASMs, Bn ⊆ ASMn. Striker was able
to extend many of the results about the Birkhoff polytope to the ASM polytope.

6



The inequality representation of the ASM polytope is

0 ≤
i′∑
i=1

xij ≤ 1 ∀ 1 ≤ i′ ≤ n, 1 ≤ j ≤ n.

0 ≤
j′∑
j=1

xij ≤ 1 ∀ 1 ≤ j′ ≤ n, 1 ≤ i ≤ n.

n∑
i=1

xij = 1 ∀ 1 ≤ j ≤ n.

n∑
j=1

xij = 1 ∀ 1 ≤ i ≤ n.

That is to say, ASMn contains the matrix (xij) if it satisfies the above con-
ditions. This is a loosening of the conditions for doubly stochastic matrices;
negative entries are allowed, but partial row and column sums must be non-
negative.
Striker also proved that if v is a strictly decreasing n vector, ASMn · v = Pv.
We extend these results to λ-ASMs in section 6 of the paper.

3 Generalized alternating sign matrices

[This section should contain basic definitions, etc, to set up the following sec-
tions.]

4 Lattice model for λ-ASMs

A λ-ASM is an row × column matrix such that:

1. row ≤ column

2. The sum of entries in any row equals 1 and the sum of entries in any
column equals 0 or 1.

3. The non zero entries alternate signs.

Similarly, λ-lattice model is a six-vertex state model such that

1. The leftmost edge points ¿ and the rightmost edge points ¡.

2. The top edge of every column points either ∧ or ∨.

3. The bottom edge of every column points ∨.

To form a lattice model with r rows, we first define λ=(λ1,...,λr)such that it is a
set of weakly decreasing integers. Now, if we let, ρ=(r-1,r-2,...,2,1,0) such that
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we compute λ+ρ. Now, a lattice model can be made with r rows and at least
λ1+r columns. The convention is that if the column’s index is the same as one
of the values in the set defined by λ then it is going to point ∧, else it is going
to point ∨. After this convention is set up, the remaining arrows are chosen
using the general rule: at each vertex, two arrows point towards the vertex and
two arrows point away from the vertex. The idea is that even after using the
convention that the column edges corresponding to our λ set, the general rule
of two sets of inward/outward arrows still holds.
H O H

4.1 Evaluating partition functions

5 Other Bijections with λ-ASMs

5.1 Monotone Triangles

When we consider the ice model lattice from a λASM , we see that the latter
row must have exactly one fewer up-arrow than the previous one does, and there
must be exactly one up-arrow in the latter row between the columns that have
two consecutive up-arrows in the previous row. Therefore we would have these
number, where ai,j ’s are the position to put the up-arrows in row ith:

λn λn−1 . . . λ1 0
a1,n a1,n−1 . . . a1,0

a2,n−1 a2,n−2 . . .
. . . . . .

an,0

This exactly satisfies the conditions for an upside-down monotone triangle with
prescribed bottom row λ = (λn, λn−1, . . . , λ0). The number of those monotone
triangle was presented by a recursion in Fischer 2005. We have attempted to
count those number of monotone triangles or Gelfand-Tsetlin patterns by some
techniques in the hope of finding such beautiful formula as the original ASMs
problem, but it has not been done yet. It seems like it is too complicated to
conjecture such formula.

5.2 Monotone Trapezoids

Let λ = (λ1, ..., λn−1, 0), λ̄ is the strictly decreasing tuple consisting of all
positive integers from 0 to λ1 that does not appear in λ and λ̄′ is the vector
reversing the order of elements and then plus 1 for each entry in λ̄. For example,
if λ = (4, 2, 0), then λ̄ = (3, 1) λ̄′ = (2, 4).

Theorem (5.2). λ-Alternating Sign Matrix is in bijection to Monotone Trape-
zoid with prescribed top row λ̄′.
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Proof. We divide our proofs into several steps. If r = λr, then the claim reduces
to the famous bijection between ASM and Monotone Triangle. We now assume
r < λr

• Adding an auxiliary row R0 on the top of λ-ASM to get a new (r+1)-by-λr
matrix A.

We fix R0 = 1λ̄ such that R0 is a row vector of length λr where entries
equal to 1 if the column index is the same as the entries of λ̄, otherwise
0. In λ-ASM we have row sums to 1 and column sums to the indicator
function of λ. After adding the auxiliary row on the top, matrix A row
sums to 1 and column sums to 1.

• Transforming A to its corresponding HFM A′.

Denote the (r + 1) rows and λr columns of A′ as (R0, R1, ..., Rr)
T or

(C1, C2, ..., Cλr ) respectively. That is, Ri refers to the i-th row and Cj
refers to the j-th column. Then

– For 1 ≤ i ≤ r + 1, (#1’s in Ri)− (#1′s in Ri−1) = 1.

This is because every row in matrix A sums to 1 and the alternating
nature of A.

– The entries of last row Rr are all 1’s.

Let |λ̄| denote the number of parts of λ̄. Then the number of 1’s in
R0 equals to λr − r. From the relation of neighboring rows, we have
the (#1’s in Rr) = λr which is the same as the number of columns.

• Transforming A′ to λ-Monotone Trapezoid.

We transform A′ to λ-Monotone Trapezoid by recording the position of
1’s. aij , 1 ≤ j ≤ i, denotes the jth entry in row i, counted from the top.
We have:

– aij < ai,j+1, 1 ≤ j < i. This is clear.

– aij ≤ ai−1,j ≤ ai,j+1, 1 ≤ j < i. This is essentially the same argu-
ment of why ASM is in bijection to Monotone Triangle.

The converse transformation from λ-Monotone Trapezoid to λ-Alternating Sign
Matrix is then easy to see. The proof is now complete. For a detailed example,
please check the file below called ”Complete examples of λ-ASMs”. �

6 Results on λ-ASM polytopes

For a given λ, we define the λ-ASM polytope as the convex hull of all λ-ASMs.
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6.1 H-representation

Let λ = (λ1, λ2, . . . , λn−1, 0) be a strict partition, and letm = λ1+1. Recall that
a λ-ASM is an n by m matrix. The following theorem gives the H-representation
of the λ polytope.

Theorem (6.1). For a given λ, the n by m matrix X = {xij} is in the λ-ASM
polytope if and only if

0 ≤
i′∑
i=1

xij ≤ 1 ∀ j ∈ λ, 1 ≤ i′ ≤ n. (1)

−1 ≤
i′∑
i=1

xij ≤ 0 ∀ j /∈ λ, 1 ≤ i′ ≤ n. (2)

0 ≤
j′∑
j=1

xij ≤ 1 ∀ 1 ≤ j′ ≤ m, 1 ≤ i ≤ n (3)

n∑
i=1

xij = 1 ∀ j ∈ λ. (4)

n∑
i=1

xij = 0 ∀ j /∈ λ. (5)

n∑
j=1

xij = 1 ∀ 1 ≤ i ≤ n. (6)

It is relatively quick to see that every matrix in the λ-ASM polytope satisfies
these inequalities.

Let P (λ) denote the polytope defined by (1)-(6). P (λ) is convex since it is
an intersection of half-planes. Further, note that any λ-ASM satisfies these
inequalities1.

By definition, the λ-ASM polytope is the smallest convex polytope containing
each λ-ASM. Therefore, the λ-ASM polytope is contained within P (λ). The
following proof shows the other direction of containment.

Proof of Theorem 6.1. This follows the proof by Striker with small modifi-
cations. Let λ be any partition and let X be any matrix in P (λ). Define the

1This comes from the fact that, since nonzero terms in a row alternate between 1 and −1,
partial row sums bounce between 0 and 1. The same holds for columns that are in λ. For
columns not in λ, the first nonzero element (if there is one) will be a −1, meaning partial
sums bounce between −1 and 0.
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modified partial sums of X (which we will refer to simply as partial sums) as
follows

rij =

j∑
j′=1

xij′ ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m

cij =

i∑
i′=1

xi′j ∀ j ∈ λ, 1 ≤ i ≤ n

cij = 1 +

i∑
i′=1

xi′j ∀ j /∈ λ, 1 ≤ i ≤ n

With this definition, the conditions that define P (λ) are equivalent to

0 ≤ cij ≤ 1, 0 ≤ rij ≤ 1, rim = cnj = 1 ∀1 ≤ i ≤ n, 1 ≤ j ≤ m

For consistency, we will define ri0 = 0, c0j = 0 if j ∈ λ and c0j = 1 if j /∈ λ.
As Striker does, we will construct a matrix by interleaving these partial sums
between the elements of x as shown.

c01 c02 c0m
r10 x11 r11 x12 r13 · · · x1m r1m

c11 c12 c1m
r20 x21 r21 x22 r23 · · · x2m r2m

...
...

. . .
...

cn−1,1 cn−1,2 cn−1,m

rn0 xn1 rn1 xn2 rn3 · · · xnm rnm
cn1 cn2 cnm


For example if λ = (1, 1, 0, 0), this process could look like


.5 .2 −.5 .5 .3
0 .8 −.3 0 .5
.3 0 .1 .4 .2
.2 0 .7 .1 0

 =⇒



0 0 1 0 0
0 .5 .5 .2 .7 −.5 .2 .5 .7 .3 1

.5 .2 .5 .5 .3
0 0 0 .8 .8 −.3 .5 0 .5 .5 1

.5 1 .2 .5 .8
0 .3 .3 0 .3 .1 .4 .4 .8 .2 1

.8 1 .3 .9 1
0 .2 .2 0 .2 .7 .9 .1 1 0 1

1 1 1 1 1


Call a partial sum α inner if 0 < α < 1. If a matrix X has no inner partial
sums, then it is a λ-ASM. Otherwise, notice that xij = rij−ri,j−1 = cij−ci−1,j ,
so

rij + ci−1,j = cij + ri,j−1

This equation guarantees that if an entry of X has an adjacent inner partial
sum, it has at least one other adjacent partial sum that is also inner. This
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means we can construct a path in X by moving between entries with an inner
partial sum between them. Since none of the partial sums along the edge of
the matrix are inner, this path will stay inside the matrix. Further, because the
matrix has a finite number of entries, this path must eventually reach an entry
it has already passed, creating a circuit in X of inner partial sums. An example
is shown in Figure 12.

0 0 1 0 0

0 .5 .5 .2 .7 -.5 .2 .5 .7 .3 1

.5 .2 .5 .5 .3

0 0 0 .8 .8 -.3 .5 0 .5 .5 1

.5 1 .2 .5 .8

0 .3 .3 0 .3 .1 .4 .4 .8 .2 1

.8 1 .3 .9 1

0 .2 .2 0 .2 .7 .9 .1 1 0 1

1 1 1 1 1




Figure 12: Each of the partial sums (shown in blue) in the circuit are inner.

Next, we will label the corners of the circuit alternately with + and −. Let
R+ denote the set of all row partial sums in the circuit to the right of a corner
labeled +, R− denote the set of all row partial in the circuit sums to the right of
a −. Similarly, define C+ and C− be the sets of all column sums in the circuit
below a corner labeled + and −, respectively.

0 0 1 0 0

0 .5 .5 + .7 -.5 .2 − .7 .3 1

.5 .2 .5 .5 .3

0 0 0 − .8 + .5 0 .5 .5 1

.5 1 .2 .5 .8

0 .3 .3 0 .3 − .4 + .8 .2 1

.8 1 .3 .9 1

0 .2 .2 0 .2 .7 .9 .1 1 0 1

1 1 1 1 1




Figure 13: In this example, R+ = {.7, .2}, R− = {.8, .4}, C+ = {.5} and C+ =
{.2}
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Define
k′ = min{R−, 1−R+, C−, 1− C+}

Notice that k′ ≥ 0. We will construct a new matrix X ′ by adding k′ to all
entries labeled + and subtracting k′ from all entries labeled −. In our example,
k′ = .3, so

X ′ =


.5 .5 −.5 .2 .3
0 .5 0 0 .5
.3 0 −.2 .7 .2
.2 0 .7 .1 0


We claim that X ′ is an element of P (λ) with at least one fewer inner partial
sum.

Let r′ij and c′ij denote the partial sums of X ′. First, notice that each row and
column of X has the same number of entries labeled + and −. This implies
that the row and column sums of X ′ are the same as the row and column sums
of X, meaning r′im = c′nj = 1 as desired. Also, k′ ≤ min{R−} implies rij ≥ 0
and k′ ≤ min{1−R+} implies rij ≤ 1 for all i and j. Similarly, k′ ≤ min{C−}
implies cij ≥ 0 and k′ ≤ min{1 − C+} implies cij ≤ 1. Therefore, X ′ ∈ P (λ).
Finally, notice that if k′ = rij ∈ R−, then r′ij = 0, so r′ij is not inner. Similar
results hold if k′ takes its value from 1−R+, C−, or 1− C+.

Hence, X ′ is an element of P (λ) with at least one fewer inner partial sum than
X. We could redo the exact same process reversing the + and − labels to obtain
a new positive constant k′′ and matrix X ′′ in P (λ) that also has at least one
fewer inner partial sum than X. Furthermore, our construction guarantees

X =
k′′

k′ + k′′
X ′ +

k′

k′ + k′′
X ′′

That is to say, X is a convex combination of X ′ and X ′′.

In our example, we get k′′ = .2, and this decomposition is

X =
2

5


.5 .5 −.5 .2 .3
0 .5 0 0 .5
.3 0 −.2 .7 .2
.2 0 .7 .1 0

+
3

5


.5 0 −.5 .7 .3
0 1 −.5 0 .5
.3 0 .3 .2 .2
.2 0 .7 .1 0


Notice that X ′ and X ′′ each have fewer inner partial sums than X. By iterating
this process, we could write X as a convex combination of matrices with no
inner partial sums, which are precisely the λ-ASMs. Therefore, X is in the
λ-ASM polytope. �

6.2 Projections

For a vector v ∈ Rn, the permutohedron, Pv, is defined as the convex hull of all
permutations of the components of v in Rn. Striker proved that if v is an n-long
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decreasing vector with distinct components, then

ASMn · v = Pv

We extend this result to λ-ASMs.

Definition. For a vector z = (z1, z2, . . . , zn), let (z[1], z[2], . . . z[n]) be the vector
composed of the elements of z in decreasing order. For two n-long vectors u
and v, we say u � v if

k∑
i=1

u[i] ≤
k∑
i=1

v[i] for all 1 ≤ k ≤ n, and (7)

n∑
i=1

ui =

n∑
i=1

vi (8)

An important result proved by Rado [citation needed] is that u ∈ Pv if and only
if u � v.

Theorem (6.2). Let λ = (λ1, λ2, · · · , λn−1, 0) be an n-long partition, and let
m = n + 1. If A is the λ-ASM polytope, and v is a decreasing m-long vector
with distinct parts, then

A · v = Pv′

where v′ is the n-long sub-vector of v indexed by λ in reverse order. That is,

v′ = (vλn , vλn−1
. . . , vλ2

, vλ1
)

Note that reversing the order of µ is not strictly necessary; it is done in order
to make v′ a decreasing vector.

Proof of Theorem 6.2. Fix a decreasing n-vector with distinct parts v. We
will first show that Pv′ ⊆ φv(A).

Let w be any vertex of Pv′ . There exists a permutation σ such that w =
(v′σ(1), v

′
σ(2), . . . , v

′
σ(n)) be any vertex of Pv′ , where σ is a permutation. This

vector may be rewritten as w = (vµσ(1) , vµσ(2) , . . . , vµσ(n)
). Notice that the ma-

trix A = (aij) given by

aij =

{
1 j = µσ(i)

0 otherwise

is a λ-ASM satisfying Av = w. Therefore, w ∈ A · v. Since every vertex of Pv′

is in A · v, convexity implies Pv′ ⊆ A · v.

To prove A · v ⊆ Pv′ , we will appeal to the result by Rado. We must show that
for any λ-ASM X, Xv � v′.
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We can verify (8) by noting that

n∑
i=1

(Xv)i =

n∑
i=1

m∑
j=1

xijvj =

m∑
j=1

(
vj

n∑
i=1

xij

)

Recall that
∑n
i=1 xij = 1 if j ∈ λ and 0 if j /∈ λ. Hence, the expression above

becomes
n∑
i=1

(Xv)i =
∑
j∈µ

vj =

n∑
i=1

v′i

as desired.

We must now verify (7), which is

k∑
i=1

(Xv)[i] ≤
k∑
i=1

v′[i] for all 1 ≤ k ≤ n

Note that since v′ is a decreasing vector, v′[i] is simply v′i. We will show that for

any subset I ⊆ {1, 2, . . . , n},

∑
i∈I

(Xv)i ≤
|I|∑
i=1

vi

Inequality (7) follows from this. Notice that

∑
i∈I

m∑
j=1

xij =
∑
i∈I

1 = |I|. (9)

Additionally,

∑
i∈I

k∑
j=1

xij ≤ min{|I|, k} for all 1 ≤ k ≤ m (10)

since ∑
i∈I

k∑
j=1

xij ≤
∑
i∈I

m∑
j=1

xij = |I|

and ∑
i∈I

k∑
j=1

xij =

k∑
j=1

∑
i∈I

xij ≤
k∑
j=1

1 = k.
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Using these two facts, we see that

∑
i∈I

(Xv)i =
∑
i∈I

m∑
j=1

xijvj

=

m∑
j=1

(
vj
∑
i∈I

xij

)

=

m−1∑
k=1

(vj − vj+1)

k∑
j=1

∑
i∈I

xij

+ vm

m∑
j=1

∑
i∈I

xij

=

m−1∑
k=1

(vk − vk+1)

k∑
j=1

∑
i∈I

xij

+ vm|I| by (9)

=

|I|−1∑
k=1

(vk − vk+1)

k∑
j=1

∑
i∈I

xij

+

m−1∑
k=|I|

(vk − vk+1)

k∑
j=1

∑
i∈I

xij

+ vm|I|

≤
|I|−1∑
k=1

(vk − vk+1)k +

m−1∑
k=|I|

(vk − vk+1)|I|+ vm|I| by (10)

=

|I|−1∑
k=1

vk

− (|I| − 1)v|I| + |I|(v|I| − vm) + vm|I|

=

|I|−1∑
k=1

vk

+ v|I|

=

|I|∑
k=1

vk

Hence, (7) is verified. We have shown that for each λ-ASM X, Xv ∈ Pv′ . By
convexity, A · v ⊆ Pv′ .

We have shown containment both ways, so A · v = Pv′ �

7 Enumerating λ-ASMs

7.1 Counting by cases

7.1.1 Partitions with two parts

7.1.2 Partitions with three parts

Let µ be any parition of the form (A,B, 0), where A > B ≥ 1. Partitions with
three parts will always correspond to an ASM with three rows. Since the first
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column will have exactly one +1 and two 0s, we can use this to split the λ-ASMs
into three main categories, each with their own subcategories, as shown below.

1. There is a +1 in the upper left corner of the λ-ASM

a. There are no other +1s in the top row

b. There is an additional +1 at the top of column 0

c. There is an additional +1 at the top of column B

d. There are +1s at the top of columns B and 0

2. There is a +1 in the in the left-most spot of the middle row

a. There are no +1s in the middle of column B or 0 (but maybe in the
middle row of other columns).

b. There is an additional in the middle of column 0

c. There is an additional in the middle of column B

d. There are +1s in the middle of columns B and 0

3. There is a +1 in the bottom left corner

Case 1.a With the parameters mentioned above, the top row of a lattice model
becomes fixed and the second and third rows of the lattice model become
fixed until column B. The boundary edges surrounding the incomplete
portion of the lattice model mirror those of a 2-part partition, allowing us
to conclude that the number of λ-ASMs of this form is B + 1.

Case 1.b The top row of an ice model will be fixed for each possible location of the
−1. Let C represent the column containing the −1. The second and third
rows will be fixed on both the left and right until column B or column C,
depending on which column comes first. This leaves A−B−1 possibilities
for the −1 to the left of B and B−1 possibilities for the −1 to the right of
B. We sum all of the number of possible λ-ASMs for each possible C on
either side of B, which yields the following formula for the total number
of λ-ASMs of this form:

A−B−1∑
D=1

(D+1)+

B∑
D=2

(D) =
1

2
(A−B−1)(A−B+2)+

1

2
(B+2)(B−1) =

1

2
(A2+A)+B2−AB−2.

Case 1.c There are A − B − 1 possibilities for the location of the −1. Let the
column containing the −1 be represented by C, where A > C > B. For
each possible ice model with these restrictions, the top row becomes fixed
and the second and third rows become fixed from the left up to C. The
boundary edges around the unfinished portion of the lattice model will
once again mirror those of a 2-part partition, so there are C + 1 λ-ASMs.
We sum this for all possible Cs, and get

A−1∑
C=B+1

(C + 1) =
1

2
(A2 −B2 +A− 3B − 2)
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7.2 Counting λ-ASMs with two and three parts by mono-
tone triangles or Gelfand-Tsetlin patterns

Let λ = (λ1, λ2, . . . , 0) be any ’distinct’ partition: λ1 > λ2 > . . . ≥ 1. As usual,
we consider only those λ-ASMs and skip the formalities of sliding our partition
over.

As presented in the bijection between λ-ASMs and monotone triangles or strict
Gelfand-Tsetlin patterns, we find how many ways we can choose ”between num-
bers” between the λ′is as positions in the below rows to put up-arrows in.

Belows are some notations and remarks about q− binomials and integer parti-
tions in form of Young tableaus or Ferrers’ diagrams:

a. [n]!q = (1− q) . . . (1− qn)

b.
[
n
k

]
q

=
[n]!q

[k]!q[n− k]!q

c.
[
n
k

]
1

=
(
n
k

)
d. The generating function for Young tableaus or Ferrers’ diagrams that fit

in a rectangle n× k is
[
n
k

]
q
.

7.2.1 Two-part partition

Let λ = (λ1, 0), then we need to find α1 such that λ1 ≥ α1 ≥ 0, which is the
position to put an up-arrow on the second row. Here we count the number of
partitions with one part, size between 0 and λ1. So its Ferrers’ diagram fit in a
λ1 × 1 rectangle. Generating function:

S2(q) =

[
λ1 + 1

1

]
q

To have the total number of two part λ−ASMs, set q = 1. We have λ1 + 1.

7.2.2 Three-part partition

Let λ = (λ1, λ2, 0), then we need to find α1 > α2 and β1 such that λ1 ≥ α1 ≥
λ2 ≥ α2 ≥ 0 and α1 ≥ β1 ≥ α2. α′is are the positions to put up-arrows on
the second row. β1 is the position to put an up-arrow on the third row. Here
we count the number of partitions with three parts, (α1, β1, α2). We have two
cases:

Case 1: β1 > λ2. If we take out λ2 + 1 from each α1 and β1 then the Ferrers’
diagram of (α1−λ1− 1, β1−λ1− 1) fits in (λ1−λ2− 1)× 2 rectangle. α2

as in the two-part partition section. Generating function for this case is

q2λ2 · q2

[
λ1 − λ2 + 1

2

]
q

[
λ2 + 1

1

]
q
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Case 2: β1 < λ2. If we take out λ1 from α1 then Ferrers’ diagram of (α1−λ1) fits
in (λ1 − λ2)× 1 rectangle. Ferrers’ diagram of (β1, α2) fits in (λ2 − 1)× 2
rectangle. Generating function for this case is

qλ2

[
λ1 − λ2 + 1

1

]
q

[
λ2 + 1

2

]
q

Case 3: β1 = λ2. Then the generating function for this one is:

qλ2

[
λ1 − λ2 + 1

1

]
q

· qλ2

[
λ2 + 1

1

]
However, we cannot have the case when α1 = β1 = α2, so we need to take
out q3λ2 .

The generating function finally is:

S3(q) = q2λ2+2

[
λ1 − λ2 + 1

2

]
q

[
λ2 + 1

1

]
q

+qλ2

[
λ1 − λ2 + 1

1

]
q

[
λ2 + 1

2

]
q

+q2λ2

[
λ1 − λ2 + 1

1

]
q

[
λ2 + 1

1

]
−q3λ2

As q = 1, we have the number of three-part-λ−ASMs, which is(
λ1 − λ2 + 1

2

)(
λ2 + 1

1

)
+

(
λ1 − λ2 + 1

1

)(
λ2 + 1

2

)
+

(
λ1 − λ2 + 1

1

)(
λ2 + 1

1

)
−1

7.3 Equivalence with k-enumerations of ASMs

8 Future Directions

[Conjectures and suggestions for future investigation go here.]

9 Appendix A: Software Implementations

[Code can be included here. For now, just include it as-is, but if there is time,
it would be good to be sure it is well-documented.]

References

[Ize87] A. G. Izergin. Partition function of a six-vertex model in a finite volume.
Dokl. Akad. Nauk SSSR, 297(2):331–333, 1987.

19


	Introduction
	Historical Development
	Alternating Sign Matrices
	Lattice models for ASMs
	The Yang-Baxter Equation
	Symmetry of Z
	Evaluation

	Bijections with ASMs
	The ASM polytope

	Generalized alternating sign matrices
	Lattice model for -ASMs
	Evaluating partition functions

	Other Bijections with -ASMs
	Monotone Triangles
	Monotone Trapezoids

	Results on -ASM polytopes
	H-representation
	Projections

	Enumerating -ASMs
	Counting by cases
	Partitions with two parts
	Partitions with three parts

	Counting -ASMs with two and three parts by monotone triangles or Gelfand-Tsetlin patterns
	Two-part partition
	Three-part partition

	Equivalence with k-enumerations of ASMs

	Future Directions
	Appendix A: Software Implementations

