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Abstract

We construct a eight-vertex lattice model which includes two different types of free-
fermionic Boltzmann weights. We show our model admits a solution to the Yang-Baxter
equation. Moreover we prove that the partition function of our model is equal to a sum
of products of Schur functions which appears in the statement of the Cauchy identity by a
partitioning the states of the model a special way. We conjecture that once it is understood
how to use the Yang-Baxter equation to evaluate the partition function of our model this
will yield a lattice model proof of the Cauchy identity for Schur polynomials.

1 Introduction

In statistical mechanics one attempts to recover global properties of a system by considering
local interactions. In order to achieve this goal one defines the partition function of a system to
be a sum of locally defined Boltzmann weights over all states of the system. Baxter realized that
the existence of a star-triangle identity, now known as the Yang-Baxter equation, allowed one to
deduce certain symmetry properties of the partition function which in many situations allowed for
the explicit evaluation of the partition functions [1, 2]. As it turns out these tools from statistical
mechanics are intimately connected to many areas of mathematics. Most importantly for us, since
many symmetric polynomials my be represented as partition functions of solvable lattice models,
these methods are useful for studying symmetric function theory and its generalizations

For example Brubaker, Bump, and Friedberg [3] showed that the six-vertex model in the
free-fermionic regime satisfies a parametrized Yang-Baxter equation with non-abelian parameter
group GL(2,C)× C× and as consequence they were able to construct a six-vertex lattice model
with partition function given by a Schur polynomial times a deformation of the Weyl character
formula. A whole host of other symmetric functions have been studied fruitfully using lattice
models [4–9].

There are three classical multiplicative identities for Schur functions: The Littlewood-
Richardson rule, the dual Cauchy identity, and the Cauchy identity [10]. A lattice model proof of
the Littlewood-Richardson rule was given by Zinn-Justin in [11] and later more refined identities
were proven by Zinn-Justin and Wheeler [6] agian using lattice models. Also a lattice model proof
of the dual Cauchy identity for factorial Schur functions, a specialization gives Schur functions,
was given in [8].

For us a lattice model proof consists of evaluating the partition function of a lattice model in
two different ways. Usually one way is by partitioning the states of the model under consideration
in a clever way allowing for evaluation of the partition function and the other is by using the
existence of a Yang-Baxter equation to evaluate the partition function. The power of this
technique is that any lattice model proof should be generalizable to any polynomial which may
be represented by a lattice model. So producing a lattice model proof of any Schur function
identity should give proofs of analogous identities for the wide range of polynomials which may
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be represented using lattice models.

The aim of the present report is to show how lattice models and the Yang-Baxter equation
may be used to give proofs of Schur function identities. We focus on the Cauchy identity for
Schur polynomials:

Theorem 1.1 (Cauchy Identity). For two finite alphabets of variables x = (x1, . . . , xn) and
y = (y1, . . . , ym), we have ∑

λ

sλ(x)sλ(y) =
n∏
i=1

m∏
j=1

1

1− xiyj
. (1.1)

Where sλ is a Schur polynomial [10] and the sum is over all partitions λ with at most min(n,m)
parts.

Our main result is the construction of a new lattice model, which lies in the eight-vertex
free-fermionic regime, and a proof that its partition function realizes the left hand side of the
Cauchy identity up to a simple monomial factor. We were not quite able to achieve a lattice
model proof of the Cauchy identity as we have been unable to use the Yang-Baxter equation
to evaluate the partition function in a second way and thus realize the Cauchy identity. We
fully expect that it should be possible to use the Yang-Baxter equation evaluate the partition
function. The main difficulty has been finding a way to make the computation tractable.

The structure of this report is as follows: First in Section 2 we review the Yang-Baxter
equation in the context of the free-fermionic eight vertex model. Then after reviewing the
Gamma ice model of [3] we make a review of Bump, McNamara, and Nakasuji’s [8] lattice model
proof of the dual Cauchy identity as it served as the main inspiration for our work on the Cauchy
identity. We then proceed to define new Boltzmann weights in Section 5 and derive additional
Yang-Baxter equations in Section 6 we use later. We then define a new half-infinite lattice model
in Section 7. In Section 8 we prove that our half infinite partition function realizes one side of
the Cauchy identity up to a simple monomial factor. We then explain the techniques we tried
to evaluate the partition function of our model in a second way, which uses the Yang-Baxter
equation, and the difficulties it presents.

2 The Yang-Baxter Equation

We review the eight-vertex model from statistical mechanics. We will consider two dimensional
lattices, i.e. a planar graph where it is assumed that each vertex has four adjacent edges. Edges
that join two vertices are refered to as interior edges while edges adjoined to only a single vertex
are called boundary edges. Each edge is assigned a spin, ± signs. Depending on the configuration
of spins at each vertex, and possibly the vertices’ location in the overall lattice each vertex will
be assigned a Boltzmann weight. Write β(v) for the Boltzmann weight of the vertex v. The
Boltzmann weight at a vertex will be zero unless the number of adjacent edges labeled − is even.
So each vertex v has eight numbers associated to it. Let us denoted these possibly non-zero
Boltzmann weights at v as follows:

a1(v) a2(v) b1(v) b2(v) c1(v) c2(v) d1(v) d2(v)
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A lattice model, or statistical ensemble, S is the data of a graph, a choice of the possible
Boltzmann weights at each vertex, and the boundary spins. A state s of the systemS is defined to
be an assignment of spins to the interior edges such that the Boltzmann weight of every vertex is
non-zero. The Boltzmann weight of a state β(s) is the product

∏
v∈s β(v). The partition function

of a lattice model Z(S) is the sum
∑

s∈S β(s).

If at a vertex v the Boltzmann weights obey a1a2 + b1b2 6= 0, d1 = d2 = 0 and

a1a2 + b1b2 − c1c2 = 0

then v is said to be free-fermionic of type C. If the Boltzmann weights at v obey a1a2 + b1b2,
c1 = c2 = 0 and

a1a2 + b1b2 − d1d2 = 0

then the vertex is said to be free-fermionic of type D. In this report we are only concerned
with lattice models where each vertex is free-fermionic of type C or type D. Brubaker, Bump
and Friedberg [3] previously described a non-abelian parametrized Yang-Baxter equation for
the eight-vertex model, when all vertices are type C or type D, which has GL(2,C) × C× as a
subgroup of index two. Explicitly we have:

Theorem 2.1. [3, Theorem 8] If u and v are vertices of type C then define a new rotated vertex
w by

a1(w) = a1(u)a2(v) + b2(u)b1(v),

a2(w) = b1(u)b2(v) + a2(u)a1(v),

b1(w) = b1(u)a2(v)− a2(u)b1(v),

b2(w) = −a1(u)b2(v) + b2(u)a1(v),

c1(w) = c1(u)c2(v),

c2(w) = c2(u)c1(v)

If u is a vertex of type C and v is a vertex of type D then define a new rotated vertex w by

a1(w) = a2(u)a1(v) + b1(u)b1(v),

a2(w) = a1(u)a2(v) + b2(u)b2(v),

b1(w) = −b2(u)a1(v) + a1(u)b1(v),

b2(w) = −b1(u)a2(v) + a2(u)b2(v),

d1(w) = c1(u)d1(v),

d2(w) = c2(u)d1(v)

If u is of type D and v is of type C then define a new rotated vertex w by

a1(w) = a1(u)a2(v) + b2(u)b2(v),

a2(w) = a2(u)a1(v) + b1(u)b1(v),

b1(w) = b1(u)a1(v) + a2(u)b2(v),

b2(w) = b2(u)a1(v) + a1(u)b1(v),

d1(w) = d1(u)c2(v),

d2(w) = d2(u)c1(v)
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Finally, if u and v are both of type D then define a new rotated vertex w by

a1(w) = −a2(u)a2(v) + b1(u)b2(v),

a2(w) = −a1(u)a1(v) + b2(u)b1(v),

b1(w) = b2(u)a2(v) + a1(u)b2(v),

b2(w) = b1(u)a1(v) + a2(u)b1(v),

c1(w) = d1(u)d2(v),

c2(w) = d2(u)d1(v)

For any assignment of edge spins a, b, c, d, e, f ∈ {±} the following two configurations have the
same partition function:

a

b
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e

f

u

v

w

a

b

c

d

e

f

v

u

w .

Meaning when we fix a, b, c, d, e, f and sum the product of the Boltzmann weights of each vertices
over all possible spins appearing in the blank circles on either side we have equality.

3 Gamma ice

a1 a2 b1 b2 c1 c2

Gamma Ice

+

+

+

+

zi −

−

−

−

zi +

−

+

−

zi −

+

−

+

zi −

+

+

−

zi +

−

−

+

zi

Boltzmann weight 1 zi ti zi zi(ti + 1) 1

Gamma-Gamma R-ice +

+ +

++

Rzi,zj

−

− −

−

Rzi,zj

+

− +

−

Rzi,zj

−

+ −

+

Rzi,zj

−

+ +

−

Rzi,zj

+

− −

+

Rzi,zj

Boltzmann weight tjzi + zj tizj + zi tizj − tjzi zi − zj (ti + 1)zi (tj + 1)zj

Figure 1: The Boltzmann weights for Gamma ice and Gamma-Gamma R-ice.

Here we review the six-vertex Gamma ice model and how it may be used to represent Schur
polynomials [3]. Let z = (z1, . . . , zn) be a finite alphabet of variables. We will refer to the zi as
spectral parameters. Let λ = (λ1, . . . , λn) be a partition. Let ρ = (n−1, n−2, . . . , 0). The model
is then a rectangular grid with with n rows and λ1 + n columns. Number the columns starting
at 0 and increasing to the left. Number the rows starting with z1 at the top and increasing the
index as you move down. The boundary conditions are + spins along the left and bottom edges,
− spins along the right edges. On the top edges we put − at every column labeled λi + n − i
(1 ≤ i ≤ n), i.e. in the columns labeled with values in λ + ρ. The Boltzmann weights at each
vertex depend only on the row the vertex lies in and are given by the Gamma weights appearing
in Figure 1. Denote the Gamma ice model indexed by λ by SΓ

λ.
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Figure 2: A state for the SΓ
λ system with λ = (2, 1, 0).

Theorem 3.1. [3, Theorem 4] For any assignment of edge spins a, b, c, d, e, f ∈ {±} the following
two configurations have the same partition function:

a

b

c

d

e

f

Γ(i)

Γ(j)

ΓΓ(i, j)

a

b

c

d

e

f

Γ(j)

Γ(i)

ΓΓ(i, j) .

Where Γ(i) represents the Gamma weights in the ith row and ΓΓ(i, j) represents the Gamma-
Gamma weights in the i, j rows from Figure 1.

Proof. Since the Gamma weights are free-fermionic of type C the conclusion is a consequence of
Theorem 2.1.

Theorem 3.2. [3, Theorem 5] Let λ = (λ1, . . . , λn) be a partition. Then

Z(SΓ
λ) =

∏
i<j

(tizj + zi)sλ(z).

Note that in the special case of five-vertex Gamma ice, i.e. when we take t = 0 in Figure 1, then
we have

Z(SΓ,t=0
λ ) = zρsλ(z).

4 The Dual Cauchy Identity

A lattice model proof of the dual Cauchy identity for factorial Schur functions was given in [8].
As this provided the inspiration for our work on the Cauchy identity we review their argument,
but in the simpler case of Schur polynomials, in this section before moving on to discuss the
Cauchy identity.
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Definition 4.1. Let m and n be positive integers. For a partition λ = (λ1, . . . , λn) with λ1 ≤ m
define the complement partition by

λ̂i = |{λj : λj ≤ m− i}|.

Theorem 4.2 (Dual Cauchy Identity). [8, Theorem 7] For two finite alphabets of variables
x = (x1, . . . , xn) and y = (y1, . . . , ym), we have∑

λ

sλ(x)sλ̂(y) =

n∏
i=1

m∏
j=1

(xi + yj). (4.1)

Proof. The proof consists of evaluating a partition function of a certain lattice model in two
different ways. The model we consider is defined as follows: The model is a (n+m)× (n+m)
lattice with + spins along the left and bottom boundary, and − spins along the right and top
boundary. The spectral parameters are the given by the sequence (ym, . . . y1, x1, . . . , xn) starting
from the top row. We use the Gamma weights with t = 1, defined in Figure 1, at each vertex
with t = 1. Then by Theorem 3.2 the partition function of this model is given by∏

i<j

(yi + yi)
∏
i,j

(yi + xj)
∏
i<j

(xi + yj).

Now we evaluate the partition function in a different way by partitioning the states according to
the set of spins that appear between the y1 and x1 rows. These spins correspond to a partition in
the usual way, i.e. the negative spins are in columns with index λi+n− i. Note that since we use
Gamma ice the minus spins on vertical edges of our model interleave [3, Lemma 2]. Hence, in any
state of our model there are exactly n negative spins appearing in on the vertical edges between
the y1 and x1 rows. Since any configuration of spins which fit within our (n + m) × (n + m)
model may appear between the y1 and x1 rows the possible configurations of spins between the
y1 and x1 row are in bijection with the set of all partitions with at most n non-zero parts with
λ1 ≤ m. So we may write the partition function as∑

λ

Ztop
λ Zbottom

λ .

For a pictorial description of of this partitioning see Figure 3

x1 x1 x1

y1 y1 y1

y2 y2 y2

− − −

+ + +

+ −

+ −

+ −

2 1 0

x1

y1

y2

Figure 3: The model with n = 1,m = 2. We partition the states of the model by the spins
appearing in the red circles.
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where the sum is over all partitions λ with at most n non-zero parts and with λ1 ≤ m.
Here Zbottom

λ is the partition function of the model with n rows and n+m columns, parameters
x1, . . . , xn and boundary conditions of + spins along the left and bottom, − spins along the
right, and λ boundary conditions along the top. Furthermore, Ztop

λ is the partition function of
the model with + spins along the left, − spins along the top and right, and λ boundary conditions
along the bottom edge. Since all vertices carry Gamma weights by Theorem 3.2 we have

Zbottom
λ =

∏
i<j

(xi + xj)sλ(x).

To evaluate Ztop
λ we will transform the top part of our system into a more familiar lattice model.

First flip all spins along each vertical strand, then reflect the model over a horizontal axis. It is
not hard to check that this defines a weight preserving bijection (in fact the weight of each type
of vertex remains unchanged) between the top part of our model and the m by n+m model with
boundary conditions of + spins along the left and bottom, − spins along the right and spins
determined by λ̂ along the top boundary, i.e. negative spins in the columns labeled by λ̂i+m− i.
Hence, we may again apply Theorem 3.2 to conclude

Ztop
λ =

∏
i,j

(yi + yj)sλ̂(y).

The dual Cauchy identity then follows from comparing the two evaluations of the partition
function.

5 Omega ice

In this section we define Omega ice which is a five-vertex lattice model closely related to the
five-vertex (t = 0) Gamma ice of [3]. Let z = (z1, . . . , zn) be a finite alphabet of variables.

a1 a2 b1 b2 d1 d2

Omega Ice

+

+

+

+

zi −

−

−

−

zi +

−

+

−

zi −

+

−

+

zi −

−

+

+

zi +

+

−

−

zi

Boltzmann weight 1 zi 0 zi zi 1

Omega-Omega R-ice +

+ +

++

Rzi,zj

−

− −

−

Rzi,zj

+

− +

−

Rzi,zj

−

+ −

+

Rzi,zj

−

+ +

−

Rzi,zj

+

− −

+

Rzi,zj

Boltzmann weight zi zj zj − zi 0 zi zj

Figure 4: The Boltzmann weights for Omega ice and Omega-Omega ice.

Theorem 5.1. For any assignment of edge spins a, b, c, d, e, f ∈ {±} the following two
configurations have the same partition function:
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a
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Ω(i)

ΩΩ(i, j) .

Where Ω(i) represents the Omega weights in the ith row and ΩΩ(i, j) dentoed the Omega-Omega
weights in the i, j rows from Figure 4.

Proof. Since the Omega weights are free-fermionic of type D the conclusion is a consequence of
Theorem 2.1.

We will use Omega ice to represent Schur polynomials. Let us now define a lattice model
denoted SΩ

λ . Let λ = (λ1, . . . , λn) be a fixed partition. We consider a rectangular grid with n
rows and λ1 +n columns. We will label the columns of the lattice from left to right in descending
order from λ1 +n−1 to 0. The boundary conditions are as follows: On the left and top boundary
we put +; on the right we put −. On the bottom, we put − at every column labeled λi + n− i
(1 ≤ i ≤ n), i.e. in the columns labeled with values in λ + ρ. Bottom edges not labeled by
λi + n− i for any i are given + spin.

z3 z3 z3 z3 z3

z2 z2 z2 z2 z2

z1 z1 z1 z1 z1

+ + + + +

− + + − −

− + − − −

− + − + −

+ − − − + −

+ + + − − −

+ + + + − −

4 3 2 1 0
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1

Figure 5: A state for the SΩ
λ system with λ = (2, 1, 0).

Proposition 5.2. Let λ = (λ1, . . . , λn) be a partition. Then

Z(SΩ
λ ) = zρsλ(z).

Proof. Consider the following operation on a state of the Omega ice model: reflect the state over
a horizontal axis. It is not hard to see that this operation defines a weight preserving bijection,
in fact it preserves the weight of each vertex, between the states of our Omega ice model and
the Gamma ice model with t = 0 appearing in [3, Section 3]. The conclusion is then the result
of Theorem 3.2.
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Lemma 5.3. If s ∈ SΩ
λ then − spins appearing on vertical edges of s anti-interleave. More

specifically if β1, . . . , βl are the column indices of the − spins on the vertical edges above the zi
row and α1, . . . , αl′ are the − spins on the vertical edges below the zi row then we have l′ = l+ 1
and β1 ≥ α1 ≥ β2 ≥ α2 ≥ · · · .

Proof. In light of the bijection between Omega ice and five-vertex Gamma ice, discussed in
Proposition 5.2, the result is equivalent to [3, Lemma 2] .

6 The Mixed Yang-Baxter Equation for Omega-Gamma and Gamma-Omega
R-ice

Since the model we are ultimately interested uses vertices with a mixture of Omega and five-
vertex Gamma weights (i.e. t = 0) we will need further mixed Yang-Baxter equations.
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Figure 6: The Boltzmann weights for Omega-Gamma and Gamma-Omega R-ice.

Theorem 6.1. For any assignment of edge spins a, b, c, d, e, f ∈ {±} the following two
configurations have the same partition function:

a

b

c

d

e

f

Ω(i)

Γ(j)

ΩΓ(i, j)

a

b

c

d

e

f

Γ(j)

Ω(i)

ΩΓ(i, j) .

The Boltzmann weights are specified in Figures 1, 4 and 6.

Proof. Since the Omega weights are free-fermionic of type D and the Gamma weights are free-
fermionic of type C the conclusion is a consequence of Theorem 2.1.

Theorem 6.2. For any assignment of edge spins a, b, c, d, e, f ∈ {±} the following two
configurations have the same partition function:
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a
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The Boltzmann weights are specified in Figures 1, 4 and 6.

Proof. Since the Omega weights are free-fermionic of type D and the Gamma weights are free-
fermionic of type C the conclusion is a consequence of Theorem 2.1.

7 A Half Infinite Lattice Model

We will now define a new half infinite lattice model which has partition function equal to one side
of the Cauchy identity (cf. Section 8). Let x1, . . . , xn and y1, . . . , ym be two sets of variables and
assume further without loss that m > n. We now define the model denoted SΩΓ

∞ . For the size of
the model we take infinitely many columns and n + m rows. The columns are labeled starting
from 0 and increasing to the left. The spectral parameters are taken to be (xn, . . . , x1, y1, . . . , ym)
starting from the top of the model. For the weights the vertices with row label equal to xi for
any i are given the Ω weights while the remaining vertices (those with row label yj for some j)
are given the Γ weights. The boundary conditions are set as follows: let k = m − n then the
top boundary conditions are set as + spins for each column with index greater than or equal to
k and with − spins the remaining edges. The spins along the right boundary are all set as −
spins. The spins along the bottom boundary are set to be all + spins.

A state of our model SΩΓ
∞ is, as usual, an assignment of spins to the internal edges of

the boundary value problem described such that each vertex has non-zero Boltzmann weight.
Furthermore, since we are dealing with an infinite model, we also require that a state has a finite
number of − spins appearing in each row on horizontal edges. In other words for each state there
exits a r ∈ N such that in each row all horizontal edges which lie to the left of the rth column
carry a + spin. The last condition is a finitness condition which guarantees that each state has
weight equal to a polynomial in the spectral parameters (cf. Proposition 7.2).

Definition 7.1. Let SΩΓ
r denote the truncation of the half-infinite model SΩΓ

∞ to a model with
r columns with boundary edges on the new left boundary set as all + spins.

Proposition 7.2. In any state s ∈ SΩΓ
∞ there exists some r ∈ N such that for all columns with

index greater than r all vertices appearing in the column are of type a1 hence the weight of any
s ∈ SΩΓ

∞ is a polynomial in the spectral parameters.

Proof. The number of − spins on horizontal edges in each row is finite by assumption, so if you
go far enough (some finite number of steps) to the left in any state eventually all spins appearing
on horizontal edges are + spins. Starting from the top row since the top boundary is all +
considering that each vertex must have an even number of + spins surrounding it this implies
that to the left of some finite column index all spins appearing on vertical edges are + spins.
Continuing down inductively gives the result.

Proposition 7.3. Let k = m− n then in every state s ∈ SΩΓ
∞ the top right k × n block consists

of only type a2 vertices.

10



Γ Γ Γ Γ Γ
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−

−

−

+ + + + +

4 3 2 1 0

y2

y1

x1

Figure 7: A diagram of SΩΓ
∞ with n = 1,m = 2. The dotted lines indicate that the picture

continues infinitely to the left.

Proof. The only non-zero Ω vertex with − spin on the north and east edge is the type a1 vertex.
It is easy to see that each vertex in the top right k × n block of any s ∈ SΩΓ

∞ must have − spin
on the north and east edges so the claim follows.

Proposition 7.4. In every state s ∈ SΩΓ
∞ we have the following properties: The − spins

appearing in the top half of the model on horizontal edges anti-interleave. More specifically if
β1, . . . , βl are the column indices of the − spins on the vertical edges above the xi row and
α1, . . . , αl′ are the − spins on the vertical edges below the xi row then we have l′ = l + 1 and
β1 ≥ α1 ≥ β2 ≥ α2 ≥ · · · . Furthermore, the − spins appearing in the bottom half of the model on
horizontal edges interleave. More specifically if β1, . . . , βl are the column indices of the − spins
on the vertical edges above the yi row and α1, . . . , αl′ are the − spins on the vertical edges below
the yi row then we have l′ + 1 = l and α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · ·

Proof. From Proposition 7.2 there exits a r ∈ N such that each s ∈ SΩΓ
∞ may be identified with

a state of SΩΓ
r in a way that is weight preserving and that preserves the assignment of spins at

each comparable vertex. Hence, these properties are immediately deduced from Lemma 5.3 and
[3, Lemma 2].

Corollary 7.5. The number of − spins appearing between rows xi+1 and xi is given by m − i.
The number of − spins appearing between the x1 and y1 rows is given by n+k = n+m−n = m.
The number of − spins appearing between rows yi, yi−1 is given by m− i. Moreover, the number
of − spins appearing left of the (k− 1)th column between the xi+1 and xi rows is given by n− i,
between the x1 and y1 rows there are exactly n, and finally between rows yi and yi−1 there are
n− i.

8 The Cauchy Identity

In this section we prove that Z(SΩΓ
∞ ) realizes one side of the Cauchy identity up to a simple

monomial factor. We then discuss the difficulties in applying the Yang-Baxter equation to SΩΓ
∞

to evaluate the partition function in a different way.
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Theorem 8.1. For two finite alphabets of variables x = (x1, . . . , xn) and y = (y1, . . . , ym) with
m ≥ n we have

Z(SΩΓ
∞ ) = xρ+κyρ

∑
λ

sλ(x)sλ(y). (8.1)

With κ = (k, k, . . . , k︸ ︷︷ ︸
n

) with k = m− n. The sum is over all partitions λ with at most min(n,m)

parts.

Proof. The proof will consists of evaluating the partition function of SΩΓ
∞ in two different ways.

The first way is by partitioning the set of all states according to the set of spins that occur
between the rows with parameters x1 and y1. Such an arrangement of spins corresponds to a
partition in the usual way, i.e. the negative spins are in the columns labeled by λi +m− i. Note
that all spins appearing to the left of the column labeled by λ1 + m− 1 are positive and hence
must be type a1 which has weight 1 in both Gamma and Omega weight systems. So we may
write the partition function as a sum of partition functions of finite lattice models

Z(SΩΓ
∞ ) =

∑
λ

Ztop
λ Zbottom

λ .

Here we have Ztop
λ is the partition function of the system with n rows and λ1 +m columns with

parameters xn, . . . , x1 and boundary conditions of negative spins on the right, the first k = m−n
spins on top negative. The remaining spins on the top boundary are positive and we have λ
boundary conditions for the spins on the bottom. Likewise, Zbottom

λ is the partition function
of the model with m rows and λ1 + m − 1 columns with parameters y1, . . . , ym and boundary
conditions of λ on top, positive spins along the bottom and negative spins along the right.

By Theorem 3.2 (we apply it with with t = 0) we have

Zbottom
λ = yρsλ(y),

To evaluate Ztop
λ we partition the model further. By Proposition 7.3 the right k×n block of Ztop

λ

consists of vertices of type a2 only. Hence, it is easy to see that Ztop
λ = xκZ(SΩ

λ ). Note that
with the given setup the last k entries of λ are all zero, so although it is a abuse of notation, it
make sense to identify λ and the partition obtained from λ by removing the last k parts. Hence,
by Proposition 5.2 we conclude that

Ztop
λ = xρ+κsλ(x).

So in total we have
Z(SΩΓ

∞ ) = xρ+κyρ
∑
λ

sλ(x)sλ(y).

To evaluate the partition function of SΩΓ
∞ in a second way and realize a lattice model proof

of the Cauchy identity we would like to be able to apply the Yang-Baxter equation through the
usual train argument (cf. [3, Theorem 5]) to our half-infinite model SΩΓ

∞ . The difficulty is that
SΩΓ
∞ is half infinite so we cannot simply apply the train argument because there is no boundary

on the left. To get around this issue we show that the partition function of SΩΓ
∞ may be written

as an infinite sum of partition functions of finite rectangular models.

Proposition 8.2. We have

Z(SΩΓ
∞ ) =

∑
r≥m

Z(SΩΓ
r )− Z(SΩΓ

r−1).

Note that Z(SΩΓ
m−1) = 0.
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Proof. Let s ∈ SΩΓ
∞ . Then by Proposition 7.2 there exits some minimal r ∈ N with the property

that for all columns with index greater than r all vertices appearing are of type a1 and hence
contribute weight 1 to the weight of s. So s may be uniquely identified, in a weight preserving
way, with a state of SΩΓ

r . Moreover since r is chosen to be minimal then s is identified with
a state of SΩΓ

r which has no trivial columns on the left, i.e. no columns with only type a1

vertices. By Proposition 7.4 the number of − spins appearing in the row between the x1 and
y1 spectral parameters is exactly m. Hence, the minimal r which may be associated to a state
s ∈ SΩΓ

∞ as described before is r = m and moreover every state of SΩΓ
m has no trivial columns

on the left. Identifying states of two finite models if one may be obtained from the other
by adding trivial columns we have fashioned a weight preserving bijection between SΩΓ

∞ and
SΩΓ
m ∪

(⋃
r>mSΩΓ

r \SΩΓ
r−1

)
. The claim then follows from taking partition functions of both

sides.

So evaluating the partition function of SΩΓ
∞ reduces to evaluating the partition function of

SΩΓ
r and computing the relevant summation. We may apply the Yang-Baxter equation to SΩΓ

r in
order to evaluate the partition function via the usual train argument. While we fully expect that
it should be possible to evaluate the partition function of SΩΓ

r using the Yang-Baxter equation we
have not yet been able to so in full generality. Since our model involves two-types of Boltzmann
weights, Omega and Gamma ice, we have four different Yang-Baxter equations Figures 1, 4
and 6. Via the train argument the first two give a recurrence on the partition function for when
we interchange a row of Omega ice with a row of Omega ice (i.e. permuting xi and xj), and a
recurrence on the partition function for when we interchange a row of Gamma ice with a row of
Gamma ice (i.e. permuting yi and yj). The last two mixed Yang-Baxter equations Figure 6 give
recursions for when we interchange or row of Omega ice with a row of Gamma ice and vice verca
(i.e. permuting xi and yj). We anticipate that these mixed Yang-Baxter equations are the key
tool one needs to show that Z(SΩΓ

∞ ) agrees with the right hand side of (1.1) and realize a lattice
model proof of the Cauchy identity.

The main issue we have encountered in our attempts to apply the Yang-Baxter equation
to SΩΓ

∞ is finding a tractable way to organize the computation. Since the right hand side of
(1.1) involves a product of geometric series the complexity arises because essentially using the
Yang-Baxter equation allows one to compute Z(SΩΓ

∞ ) as a sum of all the monomials which come
about when you expand a product of geometric series. It is not yet clear how to organize the
computation so one can easily recognize this fact. To demonstrate how this argument works in
simplest terms we take up the rank one case of the Cauchy identity, i.e. when n = m = 1.

Proposition 8.3. If n = m = 1 then the partition function of the two row half-infinite lattice
model SΩΓ

∞ , with spectral parameters (x, y), is given by

Z(SΩΓ
∞ ) =

1

1− xy
.

Proof. From Proposition 8.2 to evaluate Z(SΩΓ
∞ ) we may evaluate the partition function of a

finite truncation and then compute the necessary infinite sum. We modify the SΩΓ
r model by

attaching a Gamma-Omega R-vertex (i.e. a vertex from the top row of Figure 6) to the right of
the x and y rows obtaining the new lattice model
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−

−

+ +

a

b

+

+

ΩΩ

ΓΓ

ΓΩ

y

x

Figure 8: A diagram of our modified SΩΓ
r model when n = m = 1. For illustrative purposes we

have taken r = 2.

Consulting Figure 6 we see that the possibilities for a, b are that either both a and b carry
+ or that both carry −. It is not difficult to see that all remaining vertices in the model when
a and b are both + spins must be of type a1. Hence, the partition function of our augmented
model is given by

1 + (xy − 1)Z(SΩΓ
r ).

Remark 8.4. We remark that the fact that there are two possible completions of the attached
R-vertex is in contrast to usual applications of the train argument in the literature. Usually
there is only one valid completion (cf. [3, 8]). While this behavior is exactly what we expect as
we are essentially expanding the a product of geometric series, this is exactly what causes the
complexity in the computation for higher rank examples.

Applying Theorem 6.2 r times we conclude that the partition function of the model appearing
in Figure 9 is equal to the partition function of our original augments SΩΓ

r model.

++

+

+

+ +

−

−

c

d

ΓΓ

ΩΩ

ΓΩ

y

x

Figure 9: A diagram of our modified SΩΓ
r model when n = m = 1 after applying Theorem 6.2 r

times. For illustrative purposes we have taken r = 2.

Again consulting Figure 6 we see that the possibilities for c, d are that either both c and d
carry + or that both carry −. If both c and d carry + spin consulting Figures 1 and 4 it is not
hard to see that there is no filling of the remaining edges which has non-zero Boltzmann weight.
If both c and d carry − spin consulting Figures 1 and 4 it is not hard to see that all vertices must
be type b2. Hence, the partition function of the model appearing in Figure 9 is given by (xy)r.
Since this is equal to the partition function of the model appearing in Figure 8 we conclude that

Z(SΩΓ
r ) =

(xy)r − 1

xy − 1
=

r−1∑
j=0

(xy)j .
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So then by Proposition 8.2 we have

Z(SΩΓ
∞ ) = 1 +

∑
r>1

r−1∑
j=0

(xy)j −
r−2∑
j=0

(xy)j


=
∑
r≥0

(xy)r

=
1

1− xy
.

As a consequence of Proposition 8.3 since ρ = (0) and κ = (0) in the case n = m = 1 by
Theorem 8.1 we deduce the rank one Cauchy identity:∑

λ

sλ(x)sλ(y) =
1

1− xy
.

where the sum is over all partitions λ with at most one non-zero part. To extend this argument
to higher rank examples and eventually to a general case we anticipate that one should be able to
augment the model by increasingly complicated configurations of Gamma-Omega vertices. For
example in the rank 2 consider Figure 10.

Γ

Γ

Ω

Ω

Γ

Γ

Ω

Ω

Γ

Γ

Ω

Ω

ΓΩ

ΓΩ

ΓΩ ΓΩ

+ + +

+ + +

−

−

−

−

x1

y1

y2

x2

Figure 10: A diagram of the proposed augmented model in the rank 2 case, i.e. n = m = 2.

The picture for arbitrary n,m is analogous although not symmetric with n 6= m. One can
quickly see why the computation becomes unwieldy in higher rank examples.

Remark 8.5. In our attempts to organize the computation it seemed that it might be easier to
understand these augmented models in the case when n = m because the augmented model is
symmetric. In fact to prove the Cauchy identity it is enough to prove it in the case when n = m.
One may then specialize the necessary variables to zero to recover the case n 6= m. So while our
model seems to be able to handle the n 6= m case explicitly it may be easier to understand how
to organize the computation when n = m which would be sufficient.
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Conjecture 8.6. Using the Yang-Baxter equation one may prove that

Z(SΩΓ
∞ ) = xρ+κyρ

n∏
i=1

m∏
j=1

1

1− xiyj
.
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