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What is a Lattice Model?
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What is a Lattice Model?

Origins in statistical mechanics, studied by Baxter [1].

Grid with labeled edges.

Labelings around a vertex locally satisfy some property.
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Six-Vertex Model
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Six-Vertex Model

Observation: A state

gi ,j

fi ,j+1

gi+1,j

fi ,j

•

is admissible iff

fi ,j+1 − fi ,j ≡ gi+1,j − gi ,j (mod 3).
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Differential Forms

fi ,j+1 − fi ,j ≡ gi+1,j − gi ,j (mod 3)

⇔ Dy f = Dxg

⇔ fdx + gdy is closed.

f and g are functions on a rectangular grid, take values in F3.

Admissible 1-form fdx + gdy : f and g only equal 0 and 1.

So admissible states ↔ closed admissible 1-forms.
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Differential Forms

Exterior derivative: for h : Z× Z→ F3,

dh := (Dxh)dx + (Dyh)dy .

A 1-form α is exact if α = dh for some function h : Z× Z→ F3.

Idea: Every closed 1-form on an open ball is exact, so same should be
true for a discrete grid.

Lemma

Every closed 1-form on {1, 2, · · · ,m} × {1, 2, · · · , n} is exact.
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3-Colorings

We have a correspondence

{Closed 1-forms} ↔ {Functions} × {Initial condition}

given by
h↔ (dh, h0).

Using this correspondence, we can prove

Theorem

We have a one-to-one correspondence

{Admissible states} ↔ {3-colorings of a rectangular grid} × F3.
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Toroidal Boundary Conditions
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Toroidal Boundary Conditions

Same treatment as before - discrete differential forms.

Nontrivial 1-dimensional cohomology - expect it to be 2-dimensional
with intuition from S1 × S1.

Lemma

Every closed 1-form on the discrete torus can be written uniquely in the
form

rdx + sdy + ω,

where r , s ∈ F3 and ω is exact.
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Toroidal Boundary Conditions

3-colorings of a rectangular grid ↔ functions h such that
Dxh,Dyh 6= 0, and h1,1 = 0.

Call h sparse if neither Dxh nor Dyh are surjective, and h1,1 = 0.

No nice correspondence with 3-colorings in toroidal case, but we have

Theorem

There is a one-to-one correspondence between sparse functions and
admissible states of the six-vertex model with toroidal boundary conditions.
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Eight-Vertex Model
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Eight-Vertex Model

Observation: A state

gi ,j

fi ,j+1

gi+1,j

fi ,j

•

is admissible iff

fi ,j+1 − fi ,j ≡ gi+1,j − gi ,j (mod 2).
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Eight-Vertex Model

We could use differential calculus again, but there is an easier
approach.

Set of admissible states is a vector space over F2.

Everything is a linear condition.

Easy to count the number of admissible states.

Theorem

The number of admissible states of the eight-vertex model is 2m+n+mn.
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Eight-Vertex Boundary Conditions

Question: Given a set of boundary conditions, how many admissible
states do they have?

By linear algebra, this essentially does not depend on what the
boundary conditions are.

Admissible states of “homogeneous lattice” ↔ Admissible states of
lattice with given boundary conditions.

L0 7→ LB + L0
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Eight-Vertex Boundary Conditions

New question: when does a set of boundary conditions have an
admissible state?

Answer: when the boundary values sum to 0.

Theorem

Let B be a set of boundary values that sum to 0. Then the number of
admissible states with boundary conditions B is 2(m−1)(n−1).
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Adding Weights
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Yang-Baxter Equation

∑
γ,µ,ν
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Yang-Baxter Equation

Question: Given S and T , when does there exist (nontrivial) R such
that YBE holds?

Galleas and Martins [2] answered this question in the case c1 = c−1

and d1 = d−1.

YBE can be expressed as a matrix equation

R12S13T23 − T23S13R12 = 0.
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Explicit Computations

aj(T )aj(S)di (R) + di (T )ci (S)a−j(R) = ci (T )di (S)aj(R) + b−j(T )b−j(S)di (R)

di (T )bj(S)ci (R) + aj(T )di (S)b−j(R) = bj(T )di (S)aj(R) + c−i (T )b−j(S)di (R)

di (T )bj(S)bj(R) + aj(T )di (S)c−i (R) = di (T )aj(S)aj(R) + a−j(T )c−i (S)di (R)

ci (T )aj(S)ci (R) + bj(T )ci (S)b−j(R) = aj(T )ci (S)aj(R) + d−i (T )a−j(S)di (R)

ci (T )aj(S)bj(R) + bj(T )ci (S)c−i (R) = ci (T )bj(S)aj(R) + b−j(T )d−i (S)di (R)

b−j(T )aj(S)ci (R) + c−i (T )ci (S)b−j(R) = d−i (T )di (S)bj(R) + aj(T )b−j(S)ci (R)

c1(T )c−1(S)c1(R) = c−1(T )c1(S)c−1(R)

d1(T )c1(S)d−1(R) = d−1(T )c−1(S)d1(R)

c1(T )d1(S)d−1(R) = c−1(T )d−1(S)d1(R)

d1(T )d−1(S)c1(R) = d−1(T )d1(S)c−1(R)
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Necessary Conditions

Theorem

Necessary conditions for a solution with c−1(R), c1(R), d−1(R), d1(R)
nonzero include

a1(T )b1(T )F (S) = a−1(T )b−1(T )F (S)

a1(S)b1(S)F (T ) = a−1(S)b−1(S)F (T )

ci (T )d−i (T )

c−i (T )di (T )
Gi (S ,T )2 = [a1(T )b1(T )F (S)− a1(S)b1(S)F (T )]2

c1(T )c−1(S)

c−1(T )c1(S)
=

d1(T )d−1(S)

d−1(T )d1(S)
.
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