Lattice Models, Differential Forms, and the Yang-Baxter Equation

Kedar Karhadkar

University of Minnesota REU 2020

August 6, 2020

What is a Lattice Model?

• Origins in statistical mechanics, studied by Baxter [1].

- Origins in statistical mechanics, studied by Baxter [1].
- Grid with labeled edges.

- Origins in statistical mechanics, studied by Baxter [1].
- Grid with labeled edges.
- Labelings around a vertex locally satisfy some property.

Six-Vertex Model

• Observation: A state

is admissible iff

$$f_{i,j+1} - f_{i,j} \equiv g_{i+1,j} - g_{i,j} \pmod{3}.$$

$$\begin{split} f_{i,j+1} - f_{i,j} &\equiv g_{i+1,j} - g_{i,j} \pmod{3} \\ \Leftrightarrow D_y f &= D_x g \\ \Leftrightarrow fdx + gdy \text{ is closed.} \end{split}$$

• f and g are functions on a rectangular grid, take values in \mathbb{F}_3 .

$$\begin{split} f_{i,j+1} - f_{i,j} &\equiv g_{i+1,j} - g_{i,j} \pmod{3} \\ \Leftrightarrow D_y f &= D_x g \\ \Leftrightarrow fdx + gdy \text{ is closed.} \end{split}$$

f and *g* are functions on a rectangular grid, take values in 𝔽₃.
Admissible 1-form *fdx* + *gdy*: *f* and *g* only equal 0 and 1.

$$\begin{split} f_{i,j+1} - f_{i,j} &\equiv g_{i+1,j} - g_{i,j} \pmod{3} \\ \Leftrightarrow D_y f &= D_x g \\ \Leftrightarrow f dx + g dy \text{ is closed.} \end{split}$$

- f and g are functions on a rectangular grid, take values in \mathbb{F}_3 .
- Admissible 1-form fdx + gdy: f and g only equal 0 and 1.
- So admissible states \leftrightarrow closed admissible 1-forms.

 $dh := (D_x h) dx + (D_y h) dy.$

$$dh := (D_x h) dx + (D_y h) dy.$$

• A 1-form α is exact if $\alpha = dh$ for some function $h : \mathbb{Z} \times \mathbb{Z} \to \mathbb{F}_3$.

$$dh := (D_x h) dx + (D_y h) dy.$$

- A 1-form α is *exact* if $\alpha = dh$ for some function $h : \mathbb{Z} \times \mathbb{Z} \to \mathbb{F}_3$.
- Idea: Every closed 1-form on an open ball is exact, so same should be true for a discrete grid.

$$dh := (D_x h) dx + (D_y h) dy.$$

• A 1-form α is *exact* if $\alpha = dh$ for some function $h : \mathbb{Z} \times \mathbb{Z} \to \mathbb{F}_3$.

• Idea: Every closed 1-form on an open ball is exact, so same should be true for a discrete grid.

Lemma

Every closed 1-form on $\{1, 2, \cdots, m\} \times \{1, 2, \cdots, n\}$ is exact.

• We have a correspondence

```
\{\mathsf{Closed}\ 1\text{-}\mathsf{forms}\}\leftrightarrow\{\mathsf{Functions}\}\times\{\mathsf{Initial}\ \mathsf{condition}\} given by h\leftrightarrow(dh,h_0).
```

15/44

• We have a correspondence

```
\{\mathsf{Closed}\ 1\text{-}\mathsf{forms}\}\leftrightarrow\{\mathsf{Functions}\}\times\{\mathsf{Initial}\ \mathsf{condition}\} given by
```

 $h \leftrightarrow (dh, h_0).$

• Using this correspondence, we can prove

Theorem

We have a one-to-one correspondence

 $\{Admissible \ states\} \leftrightarrow \{3\text{-colorings of a rectangular grid}\} \times \mathbb{F}_3.$

Toroidal Boundary Conditions

• Same treatment as before - discrete differential forms.

- Same treatment as before discrete differential forms.
- Nontrivial 1-dimensional cohomology expect it to be 2-dimensional with intuition from $S^1 \times S^1$.

- Same treatment as before discrete differential forms.
- Nontrivial 1-dimensional cohomology expect it to be 2-dimensional with intuition from $S^1 \times S^1$.

Lemma

Every closed 1-form on the discrete torus can be written uniquely in the form

 $rdx + sdy + \omega$,

where $r, s \in \mathbb{F}_3$ and ω is exact.

• 3-colorings of a rectangular grid \leftrightarrow functions h such that $D_x h, D_y h \neq 0$, and $h_{1,1} = 0$.

- 3-colorings of a rectangular grid \leftrightarrow functions h such that $D_x h, D_y h \neq 0$, and $h_{1,1} = 0$.
- Call *h* sparse if neither $D_x h$ nor $D_y h$ are surjective, and $h_{1,1} = 0$.

- 3-colorings of a rectangular grid \leftrightarrow functions h such that $D_x h, D_y h \neq 0$, and $h_{1,1} = 0$.
- Call *h* sparse if neither $D_x h$ nor $D_y h$ are surjective, and $h_{1,1} = 0$.
- No nice correspondence with 3-colorings in toroidal case, but we have

Theorem

There is a one-to-one correspondence between sparse functions and admissible states of the six-vertex model with toroidal boundary conditions.

Eight-Vertex Model

Eight-Vertex Model

• Observation: A state

is admissible iff

$$f_{i,j+1} - f_{i,j} \equiv g_{i+1,j} - g_{i,j} \pmod{2}.$$

• We *could* use differential calculus again, but there is an easier approach.

- We *could* use differential calculus again, but there is an easier approach.
- Set of admissible states is a vector space over \mathbb{F}_2 .

- We *could* use differential calculus again, but there is an easier approach.
- Set of admissible states is a vector space over \mathbb{F}_2 .
- Everything is a linear condition.

- We *could* use differential calculus again, but there is an easier approach.
- Set of admissible states is a vector space over \mathbb{F}_2 .
- Everything is a linear condition.
- Easy to count the number of admissible states.

Theorem

The number of admissible states of the eight-vertex model is 2^{m+n+mn} .

• Question: Given a set of boundary conditions, how many admissible states do they have?

- Question: Given a set of boundary conditions, how many admissible states do they have?
- By linear algebra, this essentially does not depend on what the boundary conditions are.

- Question: Given a set of boundary conditions, how many admissible states do they have?
- By linear algebra, this essentially does not depend on what the boundary conditions are.
- Admissible states of "homogeneous lattice" ↔ Admissible states of lattice with given boundary conditions.

$$L_0 \mapsto L_B + L_0$$

• New question: when does a set of boundary conditions have an admissible state?

- New question: when does a set of boundary conditions have an admissible state?
- Answer: when the boundary values sum to 0.

Theorem

Let B be a set of boundary values that sum to 0. Then the number of admissible states with boundary conditions B is $2^{(m-1)(n-1)}$.

Yang-Baxter Equation

• Question: Given S and T, when does there exist (nontrivial) R such that YBE holds?

- Question: Given S and T, when does there exist (nontrivial) R such that YBE holds?
- Galleas and Martins [2] answered this question in the case $c_1 = c_{-1}$ and $d_1 = d_{-1}$.

- Question: Given S and T, when does there exist (nontrivial) R such that YBE holds?
- Galleas and Martins [2] answered this question in the case $c_1 = c_{-1}$ and $d_1 = d_{-1}$.
- YBE can be expressed as a matrix equation

$$R_{12}S_{13}T_{23}-T_{23}S_{13}R_{12}=0.$$

 $a_i(T)a_i(S)d_i(R) + d_i(T)c_i(S)a_{-i}(R) = c_i(T)d_i(S)a_i(R) + b_{-i}(T)b_{-i}(S)d_i(R)$ $d_i(T)b_i(S)c_i(R) + a_i(T)d_i(S)b_{-i}(R) = b_i(T)d_i(S)a_i(R) + c_{-i}(T)b_{-i}(S)d_i(R)$ $d_i(T)b_i(S)b_i(R) + a_i(T)d_i(S)c_{-i}(R) = d_i(T)a_i(S)a_i(R) + a_{-i}(T)c_{-i}(S)d_i(R)$ $c_i(T)a_i(S)c_i(R) + b_i(T)c_i(S)b_{-i}(R) = a_i(T)c_i(S)a_i(R) + d_{-i}(T)a_{-i}(S)d_i(R)$ $c_i(T)a_i(S)b_i(R) + b_i(T)c_i(S)c_{-i}(R) = c_i(T)b_i(S)a_i(R) + b_{-i}(T)d_{-i}(S)d_i(R)$ $b_{-i}(T)a_i(S)c_i(R) + c_{-i}(T)c_i(S)b_{-i}(R) = d_{-i}(T)d_i(S)b_i(R) + a_i(T)b_{-i}(S)c_i(R)$ $c_1(T)c_{-1}(S)c_1(R) = c_{-1}(T)c_1(S)c_{-1}(R)$ $d_1(T)c_1(S)d_{-1}(R) = d_{-1}(T)c_{-1}(S)d_1(R)$ $c_1(T)d_1(S)d_{-1}(R) = c_{-1}(T)d_{-1}(S)d_1(R)$ $d_1(T)d_{-1}(S)c_1(R) = d_{-1}(T)d_1(S)c_{-1}(R)$

Theorem

Necessary conditions for a solution with $c_{-1}(R)$, $c_1(R)$, $d_{-1}(R)$, $d_1(R)$ nonzero include

$$a_{1}(T)b_{1}(T)F(S) = a_{-1}(T)b_{-1}(T)F(S)$$

$$a_{1}(S)b_{1}(S)F(T) = a_{-1}(S)b_{-1}(S)F(T)$$

$$\frac{c_{i}(T)d_{-i}(T)}{c_{-i}(T)d_{i}(T)}G_{i}(S,T)^{2} = [a_{1}(T)b_{1}(T)F(S) - a_{1}(S)b_{1}(S)F(T)]^{2}$$

$$\frac{c_{1}(T)c_{-1}(S)}{c_{-1}(T)c_{1}(S)} = \frac{d_{1}(T)d_{-1}(S)}{d_{-1}(T)d_{1}(S)}.$$

• This research was conducted at the 2020 University of Minnesota Twin Cities REU with the support of the NSF grant DMS-1745638.

Rodney Baxter. (1982)

Exactly Solved Models in Statistical Mechanics.

W. Galleas and M. Martins. (2002)

Yang-Baxter equation for the asymmetric eight-vertex model.

Physical review E, 11.