Lattice Models, Differential Forms, and the Yang-Baxter Equation

Kedar Karhadkar

University of Minnesota REU 2020

August 6, 2020

What is a Lattice Model?

What is a Lattice Model?

- Origins in statistical mechanics, studied by Baxter [1].

What is a Lattice Model?

- Origins in statistical mechanics, studied by Baxter [1].
- Grid with labeled edges.

What is a Lattice Model?

- Origins in statistical mechanics, studied by Baxter [1].
- Grid with labeled edges.
- Labelings around a vertex locally satisfy some property.

Six-Vertex Model

Six-Vertex Model

- Observation: A state

is admissible eff

$$
f_{i, j+1}-f_{i, j} \equiv g_{i+1, j}-g_{i, j} \quad(\bmod 3) .
$$

Differential Forms

$$
\begin{aligned}
& f_{i, j+1}-f_{i, j} \equiv g_{i+1, j}-g_{i, j} \quad(\bmod 3) \\
& \Leftrightarrow D_{y} f=D_{x} g \\
& \Leftrightarrow f d x+g d y \text { is closed. }
\end{aligned}
$$

- f and g are functions on a rectangular grid, take values in \mathbb{F}_{3}.

Differential Forms

$$
\begin{aligned}
& f_{i, j+1}-f_{i, j} \equiv g_{i+1, j}-g_{i, j} \quad(\bmod 3) \\
& \Leftrightarrow D_{y} f=D_{x} g \\
& \Leftrightarrow f d x+g d y \text { is closed. }
\end{aligned}
$$

- f and g are functions on a rectangular grid, take values in \mathbb{F}_{3}.
- Admissible 1-form $f d x+g d y$: f and g only equal 0 and 1 .

Differential Forms

$$
\begin{aligned}
& f_{i, j+1}-f_{i, j} \equiv g_{i+1, j}-g_{i, j} \quad(\bmod 3) \\
& \Leftrightarrow D_{y} f=D_{x} g \\
& \Leftrightarrow f d x+g d y \text { is closed. }
\end{aligned}
$$

- f and g are functions on a rectangular grid, take values in \mathbb{F}_{3}.
- Admissible 1-form $f d x+g d y$: f and g only equal 0 and 1 .
- So admissible states \leftrightarrow closed admissible 1 -forms.

Differential Forms

- Exterior derivative: for $h: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}_{3}$,

$$
d h:=\left(D_{x} h\right) d x+\left(D_{y} h\right) d y
$$

Differential Forms

- Exterior derivative: for $h: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}_{3}$,

$$
d h:=\left(D_{x} h\right) d x+\left(D_{y} h\right) d y
$$

- A 1-form α is exact if $\alpha=d h$ for some function $h: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}_{3}$.

Differential Forms

- Exterior derivative: for $h: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}_{3}$,

$$
d h:=\left(D_{x} h\right) d x+\left(D_{y} h\right) d y
$$

- A 1-form α is exact if $\alpha=d h$ for some function $h: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}_{3}$.
- Idea: Every closed 1-form on an open ball is exact, so same should be true for a discrete grid.

Differential Forms

- Exterior derivative: for $h: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}_{3}$,

$$
d h:=\left(D_{x} h\right) d x+\left(D_{y} h\right) d y
$$

- A 1-form α is exact if $\alpha=d h$ for some function $h: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}_{3}$.
- Idea: Every closed 1-form on an open ball is exact, so same should be true for a discrete grid.

Lemma
Every closed 1-form on $\{1,2, \cdots, m\} \times\{1,2, \cdots, n\}$ is exact.

3-Colorings

- We have a correspondence

$$
\{\text { Closed 1-forms }\} \leftrightarrow\{\text { Functions }\} \times\{\text { Initial condition }\}
$$

given by

$$
h \leftrightarrow\left(d h, h_{0}\right) .
$$

3-Colorings

- We have a correspondence

$$
\{\text { Closed 1-forms }\} \leftrightarrow\{\text { Functions }\} \times\{\text { Initial condition }\}
$$

given by

$$
h \leftrightarrow\left(d h, h_{0}\right) .
$$

- Using this correspondence, we can prove

Theorem

We have a one-to-one correspondence
$\{$ Admissible states $\} \leftrightarrow\{3$-colorings of a rectangular grid $\} \times \mathbb{F}_{3}$.

Toroidal Boundary Conditions

17 / 44

Toroidal Boundary Conditions

- Same treatment as before - discrete differential forms.

Toroidal Boundary Conditions

- Same treatment as before - discrete differential forms.
- Nontrivial 1-dimensional cohomology - expect it to be 2-dimensional with intuition from $S^{1} \times S^{1}$.

Toroidal Boundary Conditions

- Same treatment as before - discrete differential forms.
- Nontrivial 1-dimensional cohomology - expect it to be 2-dimensional with intuition from $S^{1} \times S^{1}$.

Lemma

Every closed 1-form on the discrete torus can be written uniquely in the form

$$
r d x+s d y+\omega
$$

where $r, s \in \mathbb{F}_{3}$ and ω is exact.

Toroidal Boundary Conditions

- 3-colorings of a rectangular grid \leftrightarrow functions h such that $D_{x} h, D_{y} h \neq 0$, and $h_{1,1}=0$.

Toroidal Boundary Conditions

- 3-colorings of a rectangular grid \leftrightarrow functions h such that $D_{x} h, D_{y} h \neq 0$, and $h_{1,1}=0$.
- Call h sparse if neither $D_{x} h$ nor $D_{y} h$ are surjective, and $h_{1,1}=0$.

Toroidal Boundary Conditions

- 3-colorings of a rectangular grid \leftrightarrow functions h such that $D_{x} h, D_{y} h \neq 0$, and $h_{1,1}=0$.
- Call h sparse if neither $D_{x} h$ nor $D_{y} h$ are surjective, and $h_{1,1}=0$.
- No nice correspondence with 3-colorings in toroidal case, but we have

Theorem

There is a one-to-one correspondence between sparse functions and admissible states of the six-vertex model with toroidal boundary conditions.

Eight-Vertex Model

$\begin{gathered} \text { (0) } \\ \text { (0)--(0) } \\ 0 \\ 0 \end{gathered}$			$\stackrel{(0}{?}$ (1)--(1) (0) 0
(0)	(1)	(1)	0
$\underset{(1)}{(1)-\text { - }}$	$\begin{gathered} \text { (0)- }-1) \\ (0) \end{gathered}$	$\begin{gathered} (1)-\text { - (0) } \\ 0 \end{gathered}$	$\text { - - } 1$

Eight-Vertex Model

- Observation: A state

is admissible iff

$$
f_{i, j+1}-f_{i, j} \equiv g_{i+1, j}-g_{i, j} \quad(\bmod 2)
$$

Eight-Vertex Model

- We could use differential calculus again, but there is an easier approach.

Eight-Vertex Model

- We could use differential calculus again, but there is an easier approach.
- Set of admissible states is a vector space over \mathbb{F}_{2}.

Eight-Vertex Model

- We could use differential calculus again, but there is an easier approach.
- Set of admissible states is a vector space over \mathbb{F}_{2}.
- Everything is a linear condition.

Eight-Vertex Model

- We could use differential calculus again, but there is an easier approach.
- Set of admissible states is a vector space over \mathbb{F}_{2}.
- Everything is a linear condition.
- Easy to count the number of admissible states.

Theorem

The number of admissible states of the eight-vertex model is $2^{m+n+m n}$.

Eight-Vertex Boundary Conditions

- Question: Given a set of boundary conditions, how many admissible states do they have?

Eight-Vertex Boundary Conditions

- Question: Given a set of boundary conditions, how many admissible states do they have?
- By linear algebra, this essentially does not depend on what the boundary conditions are.

Eight-Vertex Boundary Conditions

- Question: Given a set of boundary conditions, how many admissible states do they have?
- By linear algebra, this essentially does not depend on what the boundary conditions are.
- Admissible states of "homogeneous lattice" \leftrightarrow Admissible states of lattice with given boundary conditions.

$$
L_{0} \mapsto L_{B}+L_{0}
$$

Eight-Vertex Boundary Conditions

- New question: when does a set of boundary conditions have an admissible state?

Eight-Vertex Boundary Conditions

- New question: when does a set of boundary conditions have an admissible state?
- Answer: when the boundary values sum to 0 .

Theorem

Let B be a set of boundary values that sum to 0 . Then the number of admissible states with boundary conditions B is $2^{(m-1)(n-1)}$.

Adding Weights

a_{1}	${ }^{-1}$	b_{1}	b_{-1}
c_{1}	c_{-1}	d_{1}	${ }^{\text {d }}$-1

Adding Weights

a_{1}	a_{-1}	b_{1}	b_{-1}
c_{1}	C_{-1}	d_{1}	d_{-1}

Yang-Baxter Equation

Yang-Baxter Equation

- Question: Given S and T, when does there exist (nontrivial) R such that YBE holds?

Yang-Baxter Equation

- Question: Given S and T, when does there exist (nontrivial) R such that YBE holds?
- Galleas and Martins [2] answered this question in the case $c_{1}=c_{-1}$ and $d_{1}=d_{-1}$.

Yang-Baxter Equation

- Question: Given S and T, when does there exist (nontrivial) R such that YBE holds?
- Galleas and Martins [2] answered this question in the case $c_{1}=c_{-1}$ and $d_{1}=d_{-1}$.
- YBE can be expressed as a matrix equation

$$
R_{12} S_{13} T_{23}-T_{23} S_{13} R_{12}=0
$$

Explicit Computations

$$
\begin{aligned}
a_{j}(T) a_{j}(S) d_{i}(R)+d_{i}(T) c_{i}(S) a_{-j}(R) & =c_{i}(T) d_{i}(S) a_{j}(R)+b_{-j}(T) b_{-j}(S) d_{i}(R) \\
d_{i}(T) b_{j}(S) c_{i}(R)+a_{j}(T) d_{i}(S) b_{-j}(R) & =b_{j}(T) d_{i}(S) a_{j}(R)+c_{-i}(T) b_{-j}(S) d_{i}(R) \\
d_{i}(T) b_{j}(S) b_{j}(R)+a_{j}(T) d_{i}(S) c_{-i}(R) & =d_{i}(T) a_{j}(S) a_{j}(R)+a_{-j}(T) c_{-i}(S) d_{i}(R) \\
c_{i}(T) a_{j}(S) c_{i}(R)+b_{j}(T) c_{i}(S) b_{-j}(R) & =a_{j}(T) c_{i}(S) a_{j}(R)+d_{-i}(T) a_{-j}(S) d_{i}(R) \\
c_{i}(T) a_{j}(S) b_{j}(R)+b_{j}(T) c_{i}(S) c_{-i}(R) & =c_{i}(T) b_{j}(S) a_{j}(R)+b_{-j}(T) d_{-i}(S) d_{i}(R) \\
b_{-j}(T) a_{j}(S) c_{i}(R)+c_{-i}(T) c_{i}(S) b_{-j}(R) & =d_{-i}(T) d_{i}(S) b_{j}(R)+a_{j}(T) b_{-j}(S) c_{i}(R) \\
c_{1}(T) c_{-1}(S) c_{1}(R) & =c_{-1}(T) c_{1}(S) c_{-1}(R) \\
d_{1}(T) c_{1}(S) d_{-1}(R) & =d_{-1}(T) c_{-1}(S) d_{1}(R) \\
c_{1}(T) d_{1}(S) d_{-1}(R) & =c_{-1}(T) d_{-1}(S) d_{1}(R) \\
d_{1}(T) d_{-1}(S) c_{1}(R) & =d_{-1}(T) d_{1}(S) c_{-1}(R)
\end{aligned}
$$

Necessary Conditions

Theorem

Necessary conditions for a solution with $c_{-1}(R), c_{1}(R), d_{-1}(R), d_{1}(R)$ nonzero include

$$
\begin{aligned}
a_{1}(T) b_{1}(T) F(S) & =a_{-1}(T) b_{-1}(T) F(S) \\
a_{1}(S) b_{1}(S) F(T) & =a_{-1}(S) b_{-1}(S) F(T) \\
\frac{c_{i}(T) d_{-i}(T)}{c_{-i}(T) d_{i}(T)} G_{i}(S, T)^{2} & =\left[a_{1}(T) b_{1}(T) F(S)-a_{1}(S) b_{1}(S) F(T)\right]^{2} \\
\frac{c_{1}(T) c_{-1}(S)}{c_{-1}(T) c_{1}(S)} & =\frac{d_{1}(T) d_{-1}(S)}{d_{-1}(T) d_{1}(S)} .
\end{aligned}
$$

Acknowledgements

- This research was conducted at the 2020 University of Minnesota Twin Cities REU with the support of the NSF grant DMS-1745638.

References

E
Rodney Baxter. (1982)
Exactly Solved Models in Statistical Mechanics.
通
W. Galleas and M. Martins. (2002)

Yang-Baxter equation for the asymmetric eight-vertex model.
Physical review E, 11.

