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1. Introduction

Fomin and Zelevinsky introduced cluster algebras in 2001 [FZ01] and F-polynomials in 2006 [FZ06].
Cluster algebras are commutative algebras that can be defined by a quiver. We avoid going into the
definition of cluster algebras, but briefly review how to get an F-polynomial from a quiver and a mutation
sequence.

Definition 1.1 ((Framed) Quiver). A quiver is a directed graph with no 2-cycles, where multiple edges
are allowed. Given a quiver Q with n vertices labelled {1, 2, . . . , n}, the corresponding framed quiver

Q̃ = Q∪{1′, 2′, . . . , n′} is the original quiver Q with n additional vertices {1′, 2′, . . . , n′} and one directed
edge from i′ to i for each 1 ≤ i ≤ n.

Example 1.2 (r-Kronecker Quiver). For r ≥ 2, the r-Kronecker quiver is the quiver with two vertices
and r arrows pointing from 1 to 2. The r The following diagram shows the r-Kronecker quiver and the
corresponding framed quiver when r = 3:

1 2 1 2

1′ 2′

The 2-Kronecker quiver is also called the Kronecker quiver.

A cluster seed is an assignment of Laurent polynomials to the vertices of Q̃. These Laurent polynomials

are called cluster variables. Starting with Q̃ and a cluster seed, we may mutate the quiver at a vertex.

Definition 1.3 (Mutation at vertex i). Given a framed quiver Q̃ with vertices {1, . . . , n, 1′, . . . , n′} and
associated cluster variables x1, . . . xn, x1′ , . . . , xn′ , mutation at vertex i consists of the following steps:

(1) For every path j → i→ k, draw an edge j → k;
(2) Reverse the direction of all edges incident to i;
(3) Delete all 2-cycles;
(4) Update the cluster variable at vertex i to be

x′i =

∏
j→i xj +

∏
i→k xk

xi
.

By the Laurent phenomenon, the cluster variables we obtain will still be Laurent polynomials. So after
a mutation, we obtain a different quiver and cluster seed that we can perform another mutation on.

A mutation sequence is denoted µi1µi2µi3 . . . where i1, i2, i3, . . . is a (potentially infinite) sequence
of vertices of a quiver Q. Note in particular that the primed vertices are not allowed in a mutation
sequence. A mutation sequence µi1µi2µi3 . . . is applied to an initial framed quiver and cluster seed by
mutating at i1, then i2, i3, . . . .

Definition 1.4 (F-polynomial). Given a mutation sequence µi1µi2µi3 . . . and a framed quiver Q̃, the
`-th F-polynomial is the cluster variable at the vertex i` after applying the mutations µi1 . . . µi` to the
framed quiver with initial cluster seed xi = 1, xi′ = yi.

Example 1.5. We show the first few steps of mutations of the 3-Kronecker quiver. Since the number of
edges gets large, we collect edges of the same direction and label them with their multiplicity whenever
the multiplicity is greater than one.
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Figure 1. 3-Kronecker quiver under mutations µ1µ2µ1

If we set our initial cluster seed to be x1, x2 = 1 and x1′ = y1, x2′ = y2, then at the last step, we would
obtain the third F-polynomial, which is the updated cluster variable at 1. By definition and inspecting
the last quiver shown, we get

F3 =
F 3
2 + y81y

3
2

F1
,

where F2 is the cluster variable at 2, F1 is the previous cluster variable at 1. This pattern holds in
general, which implies the following recurrence relation for the F-polynomials of the r-Kronecker quiver:

F`+1F`−1 = F r
` + y

a`+1

1 ya`
2 .

In this report, we investigate the F-polynomials of the r-Kronecker quiver associated to an alternating
sequence of mutations, which to our knowledge have two closed-form formulas for general r ≥ 2, one by
[Gup18] and one by [Lee12]. In [Gup18], Gupta gives a formula for the F-polynomial of a generalized
framed quiver and an arbitrary sequence of mutations, which we specialize to the r-Kronecker below. In
[Lee12], Lee gives a formula for the Laurent expansion of cluster variables for rank-2 cluster algebras,
which can be modified and specialized to get an expression for the F-polynomials of r-Kronecker quivers.
The two formulas look strikingly similar. To state their formulas, we must first define some notation.

We use two kinds of binomial coefficients and use parentheses and brackets to distinguish them.

Definition 1.6. For N, s ∈ Z,

(
N

s

)
:=


∏s

i=1
N−i+1

i , if s > 0,

1, if s = 0,

0, if s < 0.

[
N
s

]
:=


∏N−s−1

i=0
N−i

N−s−i , if N > s,

1, if N = s,

0, if N < s.

The
(
N
s

)
coefficients are the standard generalized binomial coefficients, whereas the

[
N
s

]
coefficients

are not standard. In general, (
N

s

)
=

[
N

N − s

]
.

In [Lee12], the formula for F-polynomials is stated in terms of the bracketed binomial coefficients to
simplify notation. We opt to retain this simplication and keep two kinds of binomial coefficients in our
report.

Definition 1.7. Given r ≥ 2, let an,r be the sequence defined by the following recurrence:

a0 = 0, a1 = 1, an+2 = ran+1 − an for all n ∈ Z.

Because the parameter r is generally clear from context, we typically omit it and simply write an.

Note that we allow negative n in the above definition, though negative indices appear only once in
this report in the proof of a lemma in Section 2.

We are now ready to state Lee’s and Gupta’s formulas.

Theorem 1.8 (Theorem 3.1, [Gup18]). For the r-Kronecker quiver and the mutation sequence µ1µ2µ1µ2 . . . ,
the F-polynomial has the following formula:

(1) F`(y1, y2) =
∑

(m1,...,m`)∈Z`
≥0

∏̀
i=1

(
a`−i+1 − r

∑`
j=i+1 aj−imj

mi

)
yM1 yN2 .
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where

M = a1m1 + a2m2 + · · ·+ a`m`,

N = a1m2 + a2m3 + · · ·+ a`−1m`.

Theorem 1.9 (Theorem 2.1, [Lee12]). For the r-Kronecker quiver and the mutation sequence µ1µ2µ1µ2 . . . ,
the F-polynomial has the following formula:

(2) F`(y1, y2) =
∑

(m1,...,m`)∈Z`

∏̀
i=1

[
a`−i+1 − r

∑`
j=i+1 aj−imj

mi

]
yM1 yN2

where the summation is taken over tuples (m1, . . . ,m`) ∈ Z` such that

a1m1 + a2m2 + · · ·+ a`m` = M

a1m2 + a2m3 + · · ·+ a`−1m` = N

a`N ≤ a`−1M

for 2 ≤ i ≤ `, 0 ≤ mi ≤ a`−i+1 − r
∑̀

j=i+1

aj−imj

Notably, while Gupta’s formula requires that all mi ≥ 0, Lee’s formula potentially allows m1 < 0.
Lee’s formula sums over a finite number of tuples, implying in a straightforward manner that one recovers
a polynomial from his formula. However, in the case of Gupta’s formula, polynomiality is a consequence
of nontrivial cancellations (discussed in more detail in Section 5). Both formulas leave the positivity of
some of the coefficients as mysterious consequences.

Outline. We focus mainly on Gupta’s formula because her expression for the F-polynomial coefficients
satisfies a nice recurrence. We state a conjecture that makes clear exactly when the coefficients are
positive, which we prove partially using this recurrence. We then focus on the r = 2 case. There is
a well-known formula (Theorem 4.1 of [CZ06], Theorem 2.2 of [Zel06]) for the F-polynomials of the
Kronecker quiver. We show that the coefficients given by the well-known formula satisfy the recurrence
implied by Gupta’s result, which then recovers this formula from Gupta’s. We do so in two ways:
an algebraic method that uses an identity of hypergeometric series, and a combinatorial method by
interpreting the coefficients as counting certain subsets of integers (Theorem 2 and 3 of [MP06]).

2. r-Kronecker Quiver

Let

C
(`,r)
M,N :=

∑
(m1,...,m`)∈Z`

≥0

a1m1+a2m2+···+a`m`=M
a1m2+a2m3+···+a`−1m`=N

∏̀
i=1

(
a`−i+1 − r

∑`
j=i+1 aj−imj

mi

)
,

which is the coefficient of yM1 yN2 in the F-polynomial. By pulling out the first binomial and reindexing
the mi’s, we can show that these coefficients satisfy the following recurrence:

(3) C
(`,r)
M,N =

∑
k≥0

(
a` − rN

k

)
C

(`−1,r)
N,rN−M+k.

We have two conjectures regarding these coefficients.

Conjecture 1 (Polynomiality). C
(`,r)
M,N 6= 0 if and only if 0 ≤M ≤ a`, 0 ≤ N ≤ a`−1

a`
M .

Conjecture 2 (Positivity). When 0 ≤M ≤ a`, 0 ≤ N ≤ a`−1

a`
M , C

(`,r)
M,N > 0.

We know a lot about only-if direction of Conjecture 1 by appealing to properties of F-polynomials.
Based on the F-polynomial recurrence for the r-Kronecker quiver discussed in Example 1.5, by induction
we can show that the highest degree in y1 is indeed a`. We also know that in general F-polynomials have

positive coefficients, which would imply the nonnegativity of the C
(`,r)
M,N ’s. However, we have not been

able to completely recover these results from the formula for the coefficients C
(`,r)
M,N given above, which

would be an interesting result that leads to deeper understanding of these coefficients. In addition, we
don’t know much about the if direction of Conjecture 1.

We prove the only-if direction of Conjecture 1 partially.
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Theorem 2.1. For all M ≥ 0, C
(`,r)
M,N 6= 0 only if 0 ≤ N ≤ a`−1

a`
M .

Proof. We have N ≥ 0 by definition. To show that N ≤ a`−1

a`
M is needed to ensure C

(`,r)
M,N 6= 0, we

proceed by induction on `. Suppose that the claim is true for `. We want to show that for any M ≥ 0,

if N > a`

a`+1
M , then C

(`+1,r)
M,N = 0. Using the recurrence (3),

C
(`+1,r)
M,N =

∑
k≥0

(
a`+1 − rN

k

)
C

(`,r)
N,rN−M+k.

But

rN −M > (r − a`+1

a`
)N =

a`−1
a`

N.

By the inductive hypothesis, since rN −M + k ≥ rN −M > a`−1

a`
N , C

(`,r)
N,rN−M+k = 0 for all k ≥ 0. So

C
(`+1,r)
M,N = 0 as desired. �

Given the bounds on N above, we may rewrite the recurrence (3) as the following factorization of
generating functions.

Lemma 2.2. For ` ≥ 2,

∞∑
M=d a`

a`−1
Ne

C
(`,r)
M,Nx

M−d a`
a`−1

Ne
= (1 + x)a`−rN

b
a`−2
a`−1

Nc∑
L=0

C
(`−1,r)
N,L x

b
a`−2
a`−1

Nc−L
.

If we further assume Conjecture 1, then we could replace the upper bound on M in the summation
on the left hand side with a`.

Proof. It suffices to show that the coefficient of x
M−d a`

a`−1
Ne

on both sides are the same. We may write

the coefficient of x
M−d a`

a`−1
Ne

on the left hand side as

C
(`,r)
M,N =

∑
k≥0

(
a` − rN

k

)
C

(`−1,r)
N,rN−M+k,

which is the coefficient of xA on the right hand side, where

A = k + ba`−2
a`−1

Nc − (rN −M + k) = M + b(a`−2
a`−1

− r)Nc = M − d a`
a`−1

Ne

as desired. �

For example, when r = 3, ` = 5 and N = 20,

a∑̀
M=d a`

a`−1
Ne

C
(`,r)
M,Nx

M−d a`
a`−1

Ne
=

55∑
M=d 5521 20e

C
(5,3)
M,20x

M−d 5521 20e = 15 + 39x+ 20x2.

On the right hand side,

(1 + x)a`−rN

b
a`−2
a`−1

Nc∑
L=0

C
(`−1,r)
N,L x

b
a`−2
a`−1

Nc−L

= (1 + x)55−3·20
b 8
21 20c∑
L=0

C
(4,3)
20,L x

b 8
21 20c−L

= (1 + x)−5(15 + 114x+ 366x2 + 645x3 + 675x4 + 420x5 + 144x6 + 21x7).

Using the definition, we can compute the coefficients explicitly for special values of M and N .

Lemma 2.3. For 0 ≤ N < r,

C
(`,r)
M,N =

(
a` − rN
M − rN

)(
a`−1
N

)
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Proof. If for some (m1, . . . ,m`) ∈ Z`
≥0,∑̀

i=2

ai−1mi = N < r = a2,

we must have m2 = N and mi = 0 for i > 2. And if furthermore,∑̀
i=1

aimi = M,

then m1 = M − rm2 = M − rN . Therefore, there is only one possible tuple that C
(`,r)
M,N sums over and

C
(`,r)
M,N =

(
a` − rN
M − rN

)(
a`−1
N

)
.

�

Lemma 2.4. For r ≥ 2, ` ≥ 1,
C(`,r)

a`,a`−1
= 1.

Proof. Since ∑̀
i=1

aimi = a`

and ∑̀
i=1

ai−1mi = a`−1,

for all k ≥ 0, induction shows that ∑̀
i=1

ai−kmi = a`−k.

In particular, if we let k = `− 1, then

m` = 1−
`−1∑
i=1

ai−`mi.

Since ai < 0 when i < 0, the right hand side is positive. But if m` > 0 and∑̀
i=1

aimi = a`,

we must have m` = 1 and mi = 0 for all 1 ≤ i < m`. �

Theorem 2.5. When a` − rN > 0,

C`,r
a`,N

=

(
a`−1
N

)
.

Assuming Conjecture 1, this is true for 0 ≤ N ≤ a`−1.

Proof. When a` − rN > 0, summands of

C
(`,r)
a`,N

=

∞∑
k=0

(
a` − rN

k

)
CN,rN−a`+k

is nonzero only if
rN − a` + k ≥ 0

and
k ≤ a` − rN.

So we must have k = a` − rN . Hence

C
(`,r)
a`,N

=

(
a` − rN
a` − rN

)
CN,rN−a`+a`−rN = C

(`−1,r)
N,0 =

(
a`
N

)
by Lemma 2.3. If Conjecture 1 holds, then

∞∑
M=d

a`+1
a`

a`e

C
(`+1,r)
M,a`

x
M−d

a`+1
a`

a`e =

a`+1∑
M=a`+1

C
(`+1,r)
M,a`

xM−a`+1 = C(`+1,r)
a`+1,a`

= 1.
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But by Lemma 2.2,

∞∑
M=d

a`+1
a`

a`e

C
(`+1,r)
M,a`

x
M−d

a`+1
a`

a`e = (1 + x)a`+1−ra`

b
a`−1
a`

a`c∑
L=0

C
(`,r)
a`,L

x
b
a`−1
a`

a`c−L

= (1 + x)−a`−1

a`−1∑
L=0

C
(`,r)
a`,L

xa`−1−L.

So
a`−1∑
L=0

C
(`,r)
a`,L

xa`−1−L = (1 + x)a`−1

as desired. �

For the remainder of this report, we focus on the r = 2 case.

3. Hypergeometric Series

To derive a known formula for the r = 2 Kronecker quiver, we rely primarily on Saalschütz’s The-
orem, which is an identity of hypergeometric series. In this section, we review some background on
hypergeometric series.

Geometric series are of the form
∑∞

n=0 anx
n, where an+1

an
is a fixed number. Analogously, hypergeo-

metric series allow an+1

an
to be a fixed rational function in n.

Definition 3.1 (Hypergeometric Series). Given integers p ≥ 1, q ≥ 0,

pFq

[
α1, . . . , αp

β1, . . . , βq

∣∣∣ x] =

∞∑
n=0

anx
n

where the coefficients an are defined by a0 = 1 and the recurrence

an+1

an
=

(n+ α1) · · · (n+ αp)

(n+ 1)(n+ β1) · · · (n+ βq)
.

We often care about the value of

pFq

[
α1, . . . , αp

β1, . . . , βq

∣∣∣ 1

]
=

∞∑
n=0

an.

For special values of p, q and α1, . . . , αp, β1, . . . , βq, there are various identities that evaluate the hyper-
geometric series to a much simpler expression. We state two identities here, which will be used later.
Recall that (a)n =

∏n
t=1(a− 1 + t).

Theorem 3.2 (Vandermonde’s Identity). For n ≥ 0,

2F1

[
−n, a
c

∣∣∣ 1

]
=

(c− a)n
(c)n

.

Theorem 3.3 (Saalschütz’s Theorem). For n ≥ 0 and real numbers a, b, c,

3F2

[
−n, a, b

c, 1− n+ a+ b− c

∣∣∣ 1

]
=

(c− a)n(c− b)n
(c)n(c− a− b)n

.

4. Derivation for the Kronecker Quiver

Let C`
M,N = C

(`,2)
M,N . Then by definition,

(4) C`
M,N =

∑
(m1,...,m`)∈Z`

≥0

m1+2m2+···+`m`=M
m2+2m3+···+(`−1)m`=N

l∏
i=1

(
l + 1− i− 2

∑l
j=i+1(j − i)mj

mi

)
.

We deduce the following formula for C`
M,N , which proves Conjecture 1 for r = 2.

Theorem 4.1. For ` ≥ 1 and M ≥ N ≥ 0,

C`
M,N =

(
`−N
`−M

)(
M − 1

N

)
.

Otherwise, C`
M,N = 0.
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Recall that the C
(`,r)
M,N coefficients satisfy a recurrence, which in the case where r = 2 specializes to

C`
M,N =

∑
k≥0

(
`− 2N

k

)
C`−1

N,2N−M+k.

To prove Theorem 4.1, we show that the product of two binomials formula satisfies the same recurrence
as C`

M,N .

Proof. We proceed by induction on `. When ` = 1, by definition,

C1
M,N =

∑
m1∈Z≥0

m1=M

(
1

m1

)

is only nonzero when N = 0, M = 0 or N = 0, M = 1. In both cases, C1
M,N is equal to 1. This agrees

with the formula, which says that

C1
M,N =

(
1−N
1−M

)(
M − 1

N

)
.

To prove the inductive step, it suffices to show that(
`−N
`−M

)(
M − 1

N

)
=
∑
k≥0

(
`− 2N

k

)(
`− 1− 2N +M − k

`− 1−N

)(
N − 1

2N −M + k

)
.

This is Theorem 4.2. �

Theorem 4.2. For M ≥ N ≥ 0,(
`−N
`−M

)(
M − 1

N

)
=
∑
k≥0

(
`− 2N

k

)(
`− 1− 2N +M − k

`− 1−N

)(
N − 1

2N −M + k

)
If M > N , we may write the right hand side as(

`−N
`−M

)(
M − 1

N

)
=

M−N−1∑
k=0

(
`− 2N

k

)(
`− 1− 2N +M − k

`− 1−N

)(
N − 1

2N −M + k

)
.

Proof. When M = N , if N > 0, then the right hand side is zero because the factor
(

N−1
2N−M+k

)
=
(
N−1
N+k

)
is zero. This agrees with the left hand side. If N = 0, then the second factor(

`− 1− 2N +M − k
`− 1−N

)
=

(
`− 1−N − k
`− 1−N

)
vanishes for k > 0 and one can check that the identity also holds.

Now we discuss the case where M > N ≥ 0. We may realize the right hand side as a hypergeometric
series. Let

ak =

(
`− 2N

k

)(
`− 1− 2N +M − k

`− 1−N

)(
N − 1

2N −M + k

)
so that the right hand side is equal to

∑∞
k=0 ak. Since

ak+1

ak
=

(k + 2N − `)(k +N −M)(k −M +N + 1)

(k + 1)(k + 2N −M − `+ 1)(k + 2N −M + 1)

vanishes when k = M −N − 1, we can rewrite the series so that it sums up to M −N − 1.

M−N−1∑
k=0

ak = a0 3F2

[
N −M, N −M + 1, 2N − `

2N −M + 1, 2N −M − `+ 1

∣∣∣ 1

]
=

(
`− 1− 2N +M

`− 1−N

)(
N − 1

2N −M

)
3F2

[
N −M, N −M + 1, 2N − `

2N −M + 1, 2N −M − `+ 1

∣∣∣ 1

]
.

Since M ≥ N , we have N −M ≤ 0, which allows us to apply Theorem 3.3 to evaluate the series:

M−N−1∑
k=0

ak =

(
`− 1− 2N +M

`− 1−N

)(
N − 1

2N −M

)
(N)M−N (`−M + 1)M−N

(2N −M + 1)M−N (`−N)M−N
,
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which is equal to zero if `−M + 1 ≤ 0, or M > `. It is also equal to zero if `− 1−N < 0, or N > `− 1.
In both of these cases, we can check that the product

(
`−N
`−M

)(
M−1
N

)
also vanishes, and the theorem holds.

If M ≤ ` and N ≤ `− 1, since we also have M > N ,

M−N−1∑
k=0

ak =

(
`− 1− 2N +M

`− 1−N

)(
N − 1

2N −M

)
(N)M−N (`−M + 1)M−N

(2N −M + 1)M−N (`−N)M−N

=
(`−N)M−N

(M −N)!

(2N −M + 1)(M−N−1)

(M −N − 1)!

(N)M−N (`−M + 1)M−N
(2N −M + 1)M−N (`−N)M−N

=
(`−M + 1)M−N

(M −N)!

(N)M−N
N(M −N − 1)!

=

(
`−N
M −N

)(
M − 1

M −N − 1

)
=

(
`−N
`−M

)(
M − 1

N

)
as desired. �

Corollary 4.1. Conjecture 1 and 2 are true when r = 2. In other words, C`
M,N 6= 0 if and only if

0 ≤M ≤ `, 0 ≤ N ≤ `−1
` M .

Proof. C`
M,N 6= 0 only if 0 ≤ N ≤ M by Theorem 4.1. If M > `, then

(
`−N
`−M

)
= 0. If N > `−1

` M and

1 ≤ M ≤ `, then N ≥ d `−1` Me ≥ M − 1 and
(
M−1
N

)
= 0. Note that if M = 0, then N > `−1

` M cannot
happen.

In the other direction, when 0 ≤M ≤ ` and 0 ≤ N ≤ `−1
` M , the binomial

(
`−N
`−M

)
is positive. If M > 0,

then N ≤ b `−1` Mc = M − 1 and
(
M−1
N

)
is positive. If M = 0, then N = 0 and

(
M−1
N

)
= 1 > 0. �

We record in the next corollary a result that the F-polynomials for the Kronecker quiver specialize in
the following way to a q-analogue of Fibonacci numbers, defined below.

Corollary 4.2. Let

F̃n(q) =
∑
k≥1

qk−1
(
n− k
k − 1

)
.

Then

F`(q, q
−1) = q`F̃2`+1(q−1).

Proof. The left hand side is as follows:

F`(q, q
−1) =

∑
M≥N≥0

(
`−N
`−M

)(
M − 1

N

)
qM−N

=
∑
k≥1

∑
N≥0

(
`−N

`− k + 1

)(
`− k +N

N

)
q`−k+1

But if `− k + 1 ≥ 0, we have∑
N≥0

(
`−N

`− k + 1

)(
`− k +N

N

)
=

(
`

`− k + 1

)
2F1

[
1− k, `− k + 1

−`

∣∣∣ 1

]

=

(
`

`− k + 1

)
(k − 2`− 1)k−1

(−`)k−1

=
(k)`−k+1

(`− k + 1)!

(2`− 2k + 3)k−1
(`− k + 1)k−1

=
(2`− 2k + 3)k−1

(k − 1)!

=

(
2`+ 1− k
k − 1

)
.
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This also holds if `− k + 1 < 0, since both sides would vanish. So

F`(q, q
−1) =

∑
k≥0

(
2`+ 1− k
k − 1

)
q`−k+1

= q`F̃2`+1(q−1)

as desired. �

5. Reconciling Lee’s and Gupta’s Formulas for the Kronecker Quiver

We will show explicitly that when r = 2, the coefficient of yM1 yN2 according to Lee’s formula (Theorem
1.9) equals C`

M,N . Recall that Theorem 1.9 states that for the Kronecker quiver, the coefficient of yM1 yN2
in the `-th F-polynomial is

∑
(m1,...,m`)∈Z`

∏̀
i=1

[
`+ 1− i− 2

∑`
j=i+1(j − i)mj

mi

]
where the sum ranges over all tuples (m1, . . . ,m`) ∈ Z such that

M =
∑̀
i=1

imi,

N =
∑̀
i=2

(i− 1)mi,

0 ≤ mi ≤ `+ 1− i− 2
∑̀

j=i+1

(j − i)mj for all 1 ≤ i ≤ `− 1,

and (`− 1)M − `N ≥ 0.

Note that Gupta’s coefficients satisfy the last inequality by Theorem 2.1.

Lemma 5.1. If `+1− i−2
∑`

j=i+1(j− i)mj ≥ 0 for some 1 ≤ i ≤ `−1 and mk ≥ 0 for all i ≤ k ≤ `−1,

then `+ 1− k − 2
∑`

j=k+1(j − k)mj ≥ 0 for all k ≥ i.

Proof. This is clear if mk = 0 for all k ≥ i. Suppose not, then for all k ≥ i,

(`+ 1− k − 2
∑̀

j=k+1

(j − k)mj)− (`+ 1− i− 2
∑̀

j=i+1

(j − i)mj)

= 2

k∑
j=i+1

(j − i)mi + 2
∑̀

j=k+1

(k − i)mj − (k − i) ≥ 0,

and we have (`+ 1− k − 2
∑`

j=k+1(j − k)mj) ≥ 0 as desired. �

Lemma 5.2. If m1 ≤ `− 2N < 0 and M ≥ N , then `− 1− 2(2N −M +m1) ≥ 0.

Proof. Since `− 2N < 0 and M ≥ N , we have 2M > ` and 2M − `− 1 ≥ 0. So

`− 1− 2(2N −M +m1) = 2(`− 2N −m1) + (2M − `− 1) ≥ 0.

�

To show that Lee’s coefficients agree with Gupta’s, we consider two cases:

• When ` − 2N ≥ 0, each of ` + 1 − i − 2
∑`

j=i+1(j − i)mj for all 1 ≤ i ≤ ` is forced to be

nonnegative (Lemma 5.1). When N ≥ 0, both

[
N
s

]
and

(
N
s

)
are nonzero only if 0 ≤ s ≤ N .

Since in this case, the same set of tuples contributes to nontrivially to Lee’s coefficients as to the
C`

M,N
′s, Lee’s coefficients agree with Gupta’s.
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• When ` − 2N < 0, by definition,

[
`− 2N
m1

]
6= 0 only if m1 ≤ ` − 2N . Then by Lemma 5.2,

` − 1 − 2(2N −M + m1) ≥ 0. By Lemma 5.1, ` + 1 − i − 2
∑`

j=i+1(j − i)mj ≥ 0 for i ≥ 2. So
Lee’s coefficients are equal to∑

m1≤`−2N

(
`− 2N

m1

)
C`−1

N,2N−M+m1
.

It suffices to evaluate this sum and check that it is equal to C`
M,N . We do so in Theorem 5.3.

Theorem 5.3. For ` > 0, `− 2N < 0 and M ≥ N ,(
`−N
`−M

)(
M − 1

N

)
=

∑
m1≤`−2N

[
`− 2N
m1

](
`− 1− (2N −M +m1)

`− 1−N

)(
N − 1

2N −M +m1

)

=
∑
m1≥0

(
`− 2N

m1

)(
`− 1− (2N −M +m1)

`− 1−N

)(
N − 1

2N −M +m1

)
.

The equality between the first and third parts is Theorem 4.2. We include it here to make a comparison
to the second part: they only differ in the range of m1 and the convention of binomial coefficient. It’s
worth noting that this identity is a result of interesting cancellations. For example, when ` = 8,M =

7, N = 5, Lee’s coefficient is equal to

[
−2
−2

]
60 +

[
−2
−3

]
21 = 18, while Gupta’s coefficient is the sum(

3
1

)(
6
5

)
=
(−2

0

)
24 +

(−2
1

)
3 = 18.

Proof. Recall that

[
N
s

]
=
(

N
N−s

)
. So we may rewrite the identity above as(

`−N
`−M

)(
M − 1

N

)
=

∑
m1≤`−2N

(
`− 2N

`− 2N −m1

)(
`− 1− (2N −M +m1)

`− 1−N

)(
N − 1

2N −M +m1

)
.

By the change of variable `− 2N +m1 = k, the identity is equivalent to(
`−N
`−M

)(
M − 1

N

)
=
∑
k≥0

(
`− 2N

k

)(
M + k − 1

`− 1−N

)(
N − 1

`−M − k

)
.

When M ≥ `, the right hand side is zero except when M = `, k = 0. This agrees with the left hand
side. When M < `, we can evaluate the right hand side, which is a hypergeometric series, by applying
Theorem 3.3. Note that M +N − ` ≥ 2N − ` > 0. Note also that N ≤M < `, so `− 1−N ≥ 0.

RHS =

(
M − 1

`− 1−N

)(
N − 1

`−M

)
3F2

[
−`+M, M, 2N − `

M +N − `+ 1, M +N − `

∣∣∣ 1

]
=

(
M − 1

M +N − `

)(
N − 1

`−M

)
(N − `)`−M (M −N)`−M

(M +N − `)`−M (−N)`−M

=
(`−N)M+N−`

(M +N − `)!
(M +N − `)`−M

(`−M)!

(M −N + 1)`−M (M −N)`−M
(M +N − `)`−M (M +N − `+ 1)`−M

=
(M −N + 1)`−M

(`−M)!

(M −N)N
N !

=

(
`−N
`−M

)(
M − 1

N

)
as desired. �

6. Combinatorial Interpretation of the Recurrence when r = 2

The coefficients C`
M,N have a combinatorial interpretation in terms of the number of ways to choose

nonadjacent subsets of integers with a certain number of evens and odds. It also has an interpretation
in terms of perfect matchings of a straight snake graph that is in bijection with the former. We choose
to focus on the former since it is easier to state. The following theorem is written in a slightly different
form in [MP06]. Let [n] = {1, . . . , n}.
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Theorem 6.1 (Theorem 3 [MP06]). Let Ω`
M,N be the set of subsets S ⊂ [2`− 1] such that S contains

`−M odd elements, N even elements and no consecutive elements. Then

|Ω`
M,N | =

(
`−N
`−M

)(
M − 1

N

)
.

Hence Theorem 4.2 is equivalent to the following:

Theorem 6.2 (Combinatorial Version of Theorem 4.2).

|Ω`
M,N | =

∑
k≥0

(
`− 2N

k

)
|Ω`−1

N,2N−M+k|.

This gives hope for a combinatorial proof for Theorem 4.2, which we do below. Let X be a set
consisting of even numbers between 1 and 2` − 1 such that |X| = N , where 0 ≤ N ≤ ` − 1. Let

X̃ = {n | 1 ≤ n ≤ 2`− 1, n is even, n /∈ X}. Notice that |X̃| = `− 1−N . Let

OX = |{odd numbers between 1 and 2`− 1 not adjacent to X}|

and

EX = |{odd numbers between 2 and 2`− 2 not adjacent to X̃}|

= |{even numbers between 1 and 2`− 3 not adjacent to X̃ − 1}|,

where X̃ − 1 := {n− 1 | n ∈ X̃}.

Lemma 6.3. OX − EX = `− 2N .

Proof. We use the first interpretation of EX and proceed by induction on N . If N = 0, then S = ∅.
So OX = `, EX = 0, and OX − EX = ` as desired. Suppose that OX − EX = ` − 2N for all X
with |X| = N . Now consider Y , a set of even numbers between 1 and 2` − 1 such that |Y | = N + 1.
Choose a subset X ⊂ Y such that |X| = N and write Y = X ∪ {m}. Then by the inductive hypothesis,
OX −EX = `− 2N . Now we compare OX and OY . There is one more even number that in Y that odd
numbers counted by OY need to try to avoid, so OY ≤ OX . Depending on the amount of even numbers
in X that the number m has as neighbor(s), the difference OX −OY can be 0, 1 and 2. The three cases
are as follows:
Case 1. If m− 2,m+ 2 ∈ S, then the odd numbers not adjacent to X are exactly the odd numbers not
adjacent to Y , hence OY = OX . On the flip side, removing m from Sc, which did not contain m− 2 and
m+ 2, will result in m− 1 and m+ 1 no longer being counted by EY , and EY = EX − 2.
Case 2. If exactly one of m − 2 and m + 2 is in X, then after adding m to X, one of m + 1 and m − 1
is no longer counted by OY , whereas one of m+ 1 and m− 1 is now counted by EY . So OY = OX − 1
and EY = EX + 1.
Case 3. If m is such that m− 2,m+ 2 /∈ S, then OY = OX − 2 and EY = EX .
In all three cases, OY − EY = OX − EX − 2 = `− 2N − 2 as desired. �

Lemma 6.4. Let X be a set consisting of even numbers between 1 and 2`− 1 such that |X| = N . Then(
OX

`−M

)
=
∑
k≥0

(
`− 2N

k

)(
EX

2N −M + k

)
.

Proof. Using Vandermonde’s identity, since

EX − (OX − `+M − k) = `−M − k − (`− 2N) = 2N −M − k,(
OX

`−M

)
=

(
OX

OX − `+M

)
=
∑
k≥0

(
OX − EX

k

)(
EX

OX − `+M − k

)

=
∑
k≥0

(
`− 2N

k

)(
EX

2N −M + k

)
.

�

Now we are ready to prove Theorem 6.2.
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Proof of Theorem 6.2.

|Ω`
M,N | =

∑
X

(
OX

`−M

)
=
∑
k≥0

(
`− 2N

k

)∑
X

(
EX

2N −M + k

)

=
∑
k≥0

(
`− 2N

k

)
|Ω`−1

N,2N−M+k|.

where X ranges over all possible subsets of N even elements of [2`− 1]. �

7. Other Threads

We discovered the following phenomenon when we view the product of binomials as a function in both
` and L and input L = 2` instead of L = `, as is the case in the F-polynomials.

Conjecture 3. Let L ∈ Z≥0 be even. Let

DL(`,m1) =
∑

(m1,...,mL)∈Z≥0

m2+···+(L−1)mL=L

L∏
i=1

(
`+ 1− i− 2

∑L
j=i+1(j − i)mj

mi

)
.

Then
DL(L/2, k) = (−1)kN(L/2− 1, k + 2L− 1, k + L),

where

N(m,n, k) =
m+ 1

n+ 1

(
n+ 1

k

)(
n−m− 1

k − 1

)
are the generalized Narayana numbers (https://oeis.org/A281260/a281260.pdf). Evidence

• L = 4: as k ranges from −3 to 2: -2, 15, -60, 175, -420, 882
• L = 6: as k ranges from −5 to −1: -3, 42, -280, 1260, -4410
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