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Abstract. We explore the relationship between the multi-graded regularity of resolutions
and resolution regularity of virtual resolutions of square-free monomial ideals in P1×P1 and
P1 × P2.

1. Introduction

Virtual resolutions are a generalization of free graded resolutions of products of projective
spaces introduced in [BES17]. The minimal graded free resolution of an ideal of product
of projective spaces contains unimportant algebraic structure coming from the irrelevant
ideal, so we instead consider it’s free graded virtual resolution which is shorter, thinner, and
contains all the geometrically relevant information. The geometric notion of removing the
irrelevant part is known as saturation.

We recall two notions of regularity. The first is multi-graded regularity introduced in
[MS04] which generalizes Castelnuovo-Mumford regularity. The second is resolution regular-
ity introduced in [Sid04] also generalizes Castelnuovo-Mumford regularity but is not the same
as multi-graded regularity. In [Mac03] the authors show that the multigraded regularity of a
minimal graded free resolution is bounded below by it’s resolution regularity. If we were to
instead consider the virtual resolution of the same module, it’s muttigraded regularity would
strictly non-increase, thus it is natural to ask the following question.

Question 1.1. What’s the relationship between multigraded regularity of a B-saturated
module and resolution-regularity of it’s virtual resolutions?

Let n = (n1, . . . , nd) ∈ Nd and Pn = Pn1 × · · · × Pnd . Define S as

S := R[x1,0, x1,1, . . . , x1,n1 . . . xi,0 . . . xi,ni
, . . . , xd,0, . . . , xd,nd

]

so that S is the coordinate ring of Pn. For a toric varity I, let NC denote the semigroup
such that S \ I = k[NC]. Let (c1, . . . , cl) denote the unique Hilbert basis of NC. We discuss
several gradings on Pn.

Definition 1.2. The standard grading on S is the Z-grading so that deg xi,j = 1. The
toric grading on S is the Zd-grading so that deg xi,j is the i-th unit vector in Zd. The fine
grading on S is the Z(

∑
(ni+1))-grading where deg xi,j is the

∑
k<i(nk + 1) + j + 1-unit vector

in Z(
∑

(ni+1))

We now discuss saturation.

Definition 1.3. The irrelevant ideal B of Pn is the following.
1
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B :=
d⋂
i=1

〈xi,0, . . . , xi,im〉

Notice that the ideals 〈xi,0, . . . , xi,im〉 correspond nothing in their respective projective
space.

Definition 1.4. The saturation I : J∞ of I by another S-ideal J is

{r ∈ S|rJk ⊂ I for k � 0}

We will define the two notions of regularity.

Definition 1.5. For m ∈ Nd, a standard graded S-module M is said to be m-regular if

(1) H i
B(M)p = 0 for all p ∈

⋃
(m−λ1c1− · · · −λlcl +NC) where the union indexes over

all (λ1, . . . , λl) where λi ∈ N such that λ1 + · · ·+ λl = i− 1
(2) H0

B(M))p = 0 for all p ∈
⋃

1≤j<l(m + cj + NC)
The multi-graded regularity reg(M) is {m|M is p− regular}

Definition 1.6. The resolution-regularity rregM of M is (r1, . . . , rd) where

rj = max{al|TorSj (M,k)(a1,...,aj+i,...,ad 6= 0}

We restate Question 1.1 in the following question.

Question 1.7. What can we say about reg(I : B∞) and rreg(I) where I is a square-free
monomial ideal?

In section 2 we outline some of the code we used in Macaulay2 to fuel our results in the
following sections. In sections 3 we present our findings for ideals in P1 × P1. In section 5
we suggest directions to explore.

2. Code

In our project, we tested examples in Maculay2. To calculate resolution regularity, we
used the code in Figure 2. To come up with random examples, we used the code in Figure
2.

To approach this question we utilize combinatorial tools for resolution-regularity.. The
following is stated in [Fra14].

Lemma 2.1. Let I be generated by the non-faces of a simplicial complex ∆. Then the Betti
numbers βi,j of the minimal graded free resolution of I is given by the following formula.

βi,j = (S \ I∆) =
∑
|α|=j

dim H̃i−j−1(∆α)

Using Lemma 2.1, we coded a function to calculate resolution-regularity as found in Figure
2.

Due to the difficult nature of enumerating simplicial complexes beyond P1×P1, we coded
a function to test random square-free monomial ideals in Pn × Pm as found in Figure 2.
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resRegularityHelper = (r,l) -> (

max for k in keys betti r list (

k#1#l - k#0

)

)

resRegularity = (r) -> (

d := degreeLength ring r;

for l from 0 to (d-1) list (

resRegularityHelper(r,l)

)

)

Figure 2.1.1. Code for calculating resolution-regularity.

X = toricProjectiveSpace(n)**toricProjectiveSpace(m)

R = ring X

P=newRing(R,DegreeRank=>1)

phi=map(R,P)

L={...}--degrees of minimial generators of ideal.

I = randomSquareFreeMonomialIdeal(L,P)

print resolutionInformation phi(I);

Figure 2.1.2. Code for testing a random square-free monomial ideal in Pn × Pm

3. Ideals on P1 × P1

We consider P1 × P1 ⊂ S := K[x0, x1, y0, y1]. The square-free monomial ideals of P1 ×
P1 are of the form I∆ where ∆ is a simplicial complex on the vertices {x0, x1, y0, y1}. In
Figure 3, we enumerate the simplicial complexes on {x0, x1, y0, y1} up to permutation of the
indeterminants of each individual projective space as well as the sets of indeterminants per
projective space. We list the simplicial complexes associated to each ideal I, the closure of
the saturation’s of the simplicial complexes, the generators for the multi-graded regularities
of I, and the resolution-regularities of I.
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∆I ∆I \∆B gens(reg I : B∞) rreg I
{x0} {∅} {{0,0}} {0,0}
{x0x1} {∅} {{0,0}} {0,0}
{x0y0} {x0y0} {{0,0}} {0,0}

{x0x1,x0y0} {x0y0} {{0,0}} {0,0}
{x0y0,x0y1} {x0y0,x0y1} {{0,1}} {0,1}
{x0y0,y0y1} {∅} {{0,0}} {0,0}
{x0y0,x1y1} {x0y0,x1y1} {{0,1},{1,0}} {1,1}

{x0x1,x0y0,x0y1} {x0y0,x0y1} {{0,1}} {0,1}
{x0x1,x0y0,x1y0} {x0y0,x1y0} {{1,0}} {1,0}
{x0x1,x0y0,x1y1} {x0y0,x0y0} {{0,1},{1,0}} {0,1}
{x0x1,x0y0,y0y1} {x0y0} {{0,0}} {0,0}

{x0x1,x0y0,x0y1,x1y0,} {x0y0,x0y1,x1y0,} {1, 1} {1, 1}
{x0x1,x0y0,x1y1,y0y1} {x0y0,x1y1} {{0,1},{1,0}} {0,0}
{x0x1,x0y0,x1y0,,y0y1} {x0y0,x1y0,} {{1,0}} {1,0}
{x0y0,x0y1,x1y0,x1y1} {x0y0, x0y1, x1y0,, x1y1} {{1,1}} {1,1}
{x0y0,x1y0,x1y1, y0y1} {x0y0,x1y0,x1y1} {{1,1}} {1,1}
{x0x1,x0y0,x0y1,x1y0,x1y1} {x0y0,x0y1,x1y0,,x1y1} {{1,1}} {1,1}
{x0x1,x0y0,x0y1,x1y0,y0y1} {x0y0,x0y1,x1y0,} {{1,1}} {1,1}

{x0x1,x0y0,x0y1,x1y0,x1y1,y0y1} {x0y0,x0y1,x1y0,x1y1} {{1,1}} {1,1}
{x0x1y0} {x0x1y0} {{0,0}} {0,0}

{x0x1y0,x0y1} {x0x1y0,x0y1} {{0,1}} {0,1}
{x0x1y0,y0y1} {x0x1y0} {{0,0}} {0,0}

{x0x1y0,x0y1,y0y1} {x0x1y0, x0y1} {{0,1}} {0,1}
{x0x1y0,x0y1,x1y1} {x0x1y0, x0y1, x1y1} {{1,1}} {1,1}
{x0x1y0,x0x1y1} {x0x1y0, x0x1y1} {{0,1}} {0,1}

{x0x1y0,x0x1y1,y0y1} {x0x1y0, x0x1y1} {{0,1}} {0,1}
{x0x1y0,x0y0y1} {x0x1y0, x0y0y1} {{0,0}} {0,0}

{x0x1y0,x0y0y1,x1y1} {x0x1y0, x0x1y1, x1y1} {{0,1}} {0,1}
{x0x1y0,x0x1y1,x0y0y1} {x0x1y0, x0x1y1, x0y0y1} {{0,0}} {0,1}

{x0x1y0,x0x1y1,x0y0y1,x1y0y1} {x0x1y0,x0x1y1,x0y0y1,x1y0y1} {{1,1}} {1,1}
{x0x1y0y1} {x0x1y0y1} {{0,0}} {0,0}

Figure 3.0.3. Ideals of P1 × P1 enumerated

Let’s look at an example from the table.

Example 3.1. Let’s consider the following simplicial complex whose ideal I is B-saturated.

1

2

3

4
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It’s resolution-regularity is generated by (1, 0) and (0, 1). The following simplicial complexes
B-saturate to I.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

The resolution-regularities of these ideals are (1, 1), (0, 1), (1, 0), and (0, 0) respectively.
Notice that the multi-graded regularity of I is a strict subset of the span of the resolution-
regularities of the ideals that saturate to I. �

Let’s look at another example.

Example 3.2. The ideal I associated to the complex {x0x1y0,x0x1y1,x0y0y1} saturated to
itself, has a multi-graded regularity generated by (0, 0), and has a resolution-regularity of
(0, 1). This means the span of it’s resolution-regularity is a strict subset of it’s multi-graded
regularity. �

4. Further Directions

We know that resolution-regularity has a combinatorial approach in the case of square-free
monomial ideals. It is given by Hotcher’s Formula.

Proposition 4.1. Let I be generated by the non-faces of a simplicial complex ∆. Then
the Betti numbers βi,j of the minimal graded free resolution of I is given by the following
formula.

βi,j = (S \ I∆) =
∑
|α|=j

dim H̃i−j−1(∆α)

It is possible that a combinatorial approach for multi-graded regularity would lead to
something interesting. One may consider the following proposition to figure this out. The
following in stated in [Rei01].

Proposition 4.2. Let Σ ⊂ ∆ be simplicial complexes, and let a ∈ Z, F+ = supp+(a) and
F− = supp−(a) Then

H i
J(k[∆]] ∼= H̃ i−1(||star∆(F+)− ||Σ|, ||delstar∆(F+)(F−))|| − ||Σ|)

where ||∆|| denotes the geometric realization of ∆.
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