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The q-Integers

De�nition
For each n ∈ N, de�ne the polynomial [n]q ∈ Z[q]:

[n]q = 1 + q + q2 + · · ·+ qn−1

Remark: Substituting q = 1 gives n.
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Rational Numbers

Question: What about [x]q for x ∈ Q? Can we make sense of this?

There are conceivably many de�nitions that “work”. The question is what
properties do we want it to satisfy?

Here are two properties that might be desirable:

Order: De�ne a partial order on rational functions by a(q)
b(q) >

c(q)
d(q) if

a(q)d(q)− b(q)c(q) has all positive coe�cients.
If a

b >
c
d , we might expect

[ a
b

]
q >

[ c
d

]
q.

Convergence: If an
bn
→ λ ∈ R irrational, we might expect

[
an
bn

]
q

to “converge”

in some sense, and moreover be independent of the sequence.
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First Naive Attempt

A �rst natural guess might be to de�ne[a
b

]
q
:=

[a]q
[b]q

=
1 + q + · · ·+ qa−1

1 + q + · · ·+ qb−1

But . . . it does not satisfy our two desirable properties.

Exercise 9.1: Find an example where this de�nition does not satisfy the order
property. That is, �nd two fractions a

b >
c
d where [a]q[d]q − [b]q[c]q has some

negative coe�cient.
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Continued Fractions

A continued fraction is an expression consisting of nested fractions, like this:

a1 +
1

a2 +
1

a3+
1

···+ 1
an−1+

1
an

We use the notation [a1, a2, . . . , an] to denote the expression above.

Example: 7
4 = 1 + 1

1+ 1
3
. So we’d write 7

4 = [1, 1, 3].

Remark: These are not unique. For example, 7
4 is also equal to [1, 1, 2, 1]. Requiring

an even number of coe�cients makes it unique.
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De�nition of q-Rationals

De�nition
If r

s = [a1, a2, . . . , a2n], then de�ne[ r
s

]
q
:= [a1]q +

qa1

[a2]q−1 + q−a2

···+ qa2n−1
[a2n]q−1

Example: 7
3 = [2, 3].[

7
3

]
q
= 1 + q +

q2

1 + q−1 + q−2 =
1 + 2q + 2q2 + q3 + q4

1 + q + q2

Fact: The only time this agrees with the “naive guess” is for
[ n+1

n

]
q =

[n+1]q
[n]q

.
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The Desirable Properties

Theorem
This de�nition of

[ a
b

]
q does satisfy the order and convergence properties.
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A Combinatorial Method of Computation

Given r
s = [a1, a2, . . . , an], we construct a triangulated polygon Tr/s:

· · ·

a1

a2

a3

Example: 7
3 = [2, 3]

T7/3 =
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A Combinatorial Method of Computation

De�nition
The Farey sum of two rational numbers is

a
b
⊕ c

d
=

a+ c
b + d

Label the left two vertices of Tr/s by 0
1 and 1

0 .
Going left to right, for each triangle, label the third vertex as the Farey sum of the
previous two.
Example: 7

3

T7/3 =

0
1

1
0

1
1

2
1

3
1

5
2 7

3
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The q-Version

For each top vertex in Tr/s , label the diagonals with increasing powers of q going
counter-clockwise:

1 q q2

q3

Example: 7
3

1 q

q2

1

q

1

q
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The q-Version

As before, start by labeling the left two vertices by 0
1 and 1

0 .
In each triangle, the two edges incident to the third vertex will be labelled by 1 and
qk for some k. Label the third vertex by the weighted Farey sum:

1

qk

a
b

c
d

a+qkc
b+qkd

Example:
[ 7

3

]
q

1
q 1 1

q2 q

q1
0

0
1

1
1

1+q
1

1+q+q2

1
1+2q+q2+q3

1+q

1+2q+2q2+q3+q4

1+q+q2
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Exercise 9.2

Exercise 9.2:

(a) What does Tr/s look like for [1, 1, . . . , 1]?
(b) Prove that [1, 1, · · · , 1] is always a ratio of Fibonacci numbers.
(c) Use the triangulation method to compute

[ 5
3

]
q and

[ 8
5

]
q.
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From Triangulations to Binary Words

From the triangulation Tr/s , we construct a binary word in the alphabet {R,U} as
follows.

Ignore the �rst and last triangles. For the others, label their boundary edges U if
they are on the bottom, and R if they are on the top.

Example: T7/3

U

R R
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From Binary Words to Snake Graphs

From a binary word, we construct a graph Gr/s , called a snake graph, as follows.

Start with a square. For each letter in the binary word, add another square either
above (for U ) or to the right (for R) of the previous.

Example: 7
3 has binary word URR. So the snake graph looks like

G7/3 =

Caution: In the literature, “snake graph” refers to a slightly di�erent, but related,
construction. The construction above is called the “dual snake graph” corresponding
to a triangulation.
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Lattice Paths

If G is a snake graph, let L(G) be the set of all paths in G from the south-west corner
to the north-east corner using only right and up steps.

Theorem [Schi�er, Çanakçi]∣∣L(Gr/s)
∣∣ = r and

∣∣∣L(Ĝr/s)
∣∣∣ = s

The notation Ĝr/s means the snake graph from the continued fraction
[a2, a3, . . . , an].

Example: The 7 lattice paths in G7/3 are
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The notation Ĝr/s means the snake graph from the continued fraction
[a2, a3, . . . , an].

Example: The 7 lattice paths in G7/3 are

N.O. (UMN) q-rationals June, 2020 Minnesota REU 19 / 36



Lattice Paths
If G is a snake graph, let L(G) be the set of all paths in G from the south-west corner
to the north-east corner using only right and up steps.

Theorem [Schi�er, Çanakçi]∣∣L(Gr/s)
∣∣ = r and

∣∣∣L(Ĝr/s)
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A Partial Order on Paths

There is a partial order on the lattice paths in Gr/s so that locally

<

Example: L(G7/3)
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What Do q-Rationals Count?

De�ne the height or rank of a lattice path as how many steps it takes to get to it
from the minimal path.

Theorem
Let
[ r
s

]
q =

R(q)
S(q) . Then:

1 The coe�cient of qk in R(q) is the number of lattice paths in Gr/s of height k.
2 The coe�cient of qk in S(q) is the number of lattice paths in Ĝr/s of height k.

REU Exercise 9.3: Write down all the lattice paths in G8/5 and draw the Hasse
diagram.

(It should agree with Exercise 9.2(d)!)
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What Else Do They Count?

Some Suggested Presentations:

T -paths:
Schi�er, R. “A cluster expansion formula (An case)”. The Electronic Journal of
Combinatorics 15.1 (2008) R64
Perfect matchings:
Çanakçi, I., Schi�er, R., “Cluster algebras and continued fractions”. Compositio
Mathematica 154.3 (2018): 565-593
Angle matchings:
Yurikusa, T., “Cluster expapansion formulas in type A”. Algebras and
Representation Theory 22.1 (2019): 1-19
All of the above:
Claussen, A., “Expansion Posets for Polygon Cluster Algebras”. arxiv:2005.02083
(2020)
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The Cluster Algebra of a Polygon

Consider an n-gon
Choose a triangulation
Label the edges e1, . . . , en
Label the diagonals x1, . . . , xn−3

e1

e2

e3e4

e5

x1 x2

The cluster algebra is a subring of F = Q(x1, . . . , xn−3, e1, . . . , en).
The boundary labels e1, . . . , en are the “frozen” variables
The quiver is . . .
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Mutations are “Flips”

e1

e2

e3e4

e5

x1 x2
mutate x1

e1

e2

e3e4

e5

x′1
x2

x′1 =
e1e4+e5x2

x1
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Snake Graphs

Construct the snake graph from a triangulation as we described before.

e1 e2

e6 e5 e4

e3
e7 x1

x2 x3 x4

e1

e7

e2

x2

x1

x3

e6 e5

x2

x4

x3

e4

e3

wt(p) = e1e4x2
2x3

Each lattice path p corresponds to a monomial, called the weight of the path,
denoted wt(p).

Theorem
The cluster variable of the “longest edge” (crossing all diagonals) is

1
x1x2 · · · xn

∑
p

wt(p)
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e2

x2

x1

x3

e6 e5

x2

x4

x3

e4

e3

wt(p) = e1e4x2
2x3

Each lattice path p corresponds to a monomial, called the weight of the path,
denoted wt(p).

Theorem
The cluster variable of the “longest edge” (crossing all diagonals) is

1
x1x2 · · · xn

∑
p

wt(p)
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Term Count

Corollary
The cluster variable of the longest edge in Tr/s has exactly r terms.

REU Exercise 8.3: Consider the cluster variable represented by the blue arc on the
previous slide.

(a) Compute the Laurent polynomial expression for this cluster variable using the
formula in the theorem on the previous slide.

(b) Compute the same expression using a sequence of mutations (you should get
the same answer!).
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The F-Polynomial

Label the faces of the snake graph by y1, . . . , yn, and label the lattice paths by
monomials in the y’s:

1
2 3 4

1

1
2 3 4

y1

1
2 3 4

y4

1
2 3 4

y1y4

1
2 3 4

y3y4

1
2 3 4

y1y3y4

1
2 3 4
y1y2y3y4

F = 1 + y1 + y4 + y1y4 + y3y4 + y1y3y4 + y1y2y3y4
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Relation with q-Rationals

Theorem
Consider the cluster variable of the “longest edge” in Tr/s .

(a) R(q) = F(q, q, . . . , q)
(b) The coe�cient of qk in the numerator of

[ r
s

]
q counts the number of terms of

degree k in the F-polynomial of the corresponding cluster variable.
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Some REU Problems

REU Problem 9.0: (Tie-in with Gregg’s Problem) Is there a combinatorial
description of the L’s from Gregg’s talk related to the q-rationals?

REU Problem 9.1: (“Unimodality”) It is conjectured that the numerators (and
denominators) of the q-rationals are unimodal. Any progress towards proving this
would be nice, even for some non-trivial class of speci�c examples.

In light of Chris’ talk, you could also try to prove log-concavity.
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In�nite Continued Fractions

There is a notion of in�nite continued fractions. For an in�nite sequence
a1, a2, a3, . . . , de�ne a sequence of rational numbers (called convergents):

xn := [a1, a2, . . . , an]

Then the sequence xn converges to a real number, denoted by the in�nite continued
fraction [a1, a2, . . . ].

Fact: In�nite continued fractions with coe�cients that eventually repeat are exactly
the quadratic irrationals.

Examples:

√
2 = [1, 2, 2, 2, . . . ]
√

3 = [1, 1, 2, 1, 2, 1, 2, . . . ]
ϕ = 1

2 (1 +
√

5) = [1, 1, 1, 1, . . . ]
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Convergence Property
The �rst few convergents of

√
2 = [1, 2, 2, 2, . . . ] are

3
2
,

7
5
,

17
12
,

41
29
, . . .

The q-versions are[
3
2

]
q
= 1 + q2 − q3 + q4 − q5 + · · ·[

7
5

]
q
= 1 + q3 − 2q5 + q6 + 3q7 + · · ·[

17
12

]
q
= 1 + q3 − 2q5 + 2q6 − q8 + · · ·[

41
29

]
q
= 1 + q3 − 2q5 + q6 + 4q7 − 5q8 − 7q9 + · · ·

The coe�cients eventually “stabilize”. The terms in blue remain the same in all later
terms in the sequence.
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Another REU Problem

REU Problem 9.3: (Very open-ended) Almost nothing is known about the
coe�cients of these power series for “q-real numbers”, except for a few select
speci�c examples computed in the original paper. Is there a pattern to these
coe�cients that can be predicted? Is there a combinatorial interpretation? Is it
related to cluster algebras and snake graphs (see below)?

More Further Reading:
Section 7 of the paper “Cluster Algebras and Continued Fractions” (mentioned
earlier)
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Extra Reading

Here are some more papers that could be used for a presentation in weeks 3 and 4:

Morier-Genoud, S., Ovsienko, V., “q-Deformed Rationals and q-Continued
Fractions”. Forum of Mathematics, Sigma Vol. 8 (2020)
Morier-Genoud, S., Ovsienko, V., “On q-Deformed Real Numbers”. Experimental
Mathematics (2019): 1-9
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