Filtering Grasmannian Cohomology via k-Schur Functions

Ajmain Yamin ${ }^{1}$ Matthew Fritz Yu ${ }^{2}$ Yuanning (Andy) Zhang ${ }^{3}$

${ }^{1}$ Stony Brook University $\quad{ }^{23}$ University of California, Berkeley

Abstract

This project concerns the cohomology rings of complex GrassmanniThis project concerns the cohomology rings of complex Grassmanni- ans. In 2003, Reiner and Tudose conjectured the form of the Hilbert ans. In 2003 , Reiner and Tudose conjectured the form of the Hilbert series for certain subalgebras of these cohomology rings. We build on their work in two ways. First, we conjecture two natural bases for these subalgebras that would imply their conjecture using notions from the theory of k-Schur functions. Second, we formulate an anal ogous conjecture for Lagrangian Grassmannians.

Preliminaries

- The cohomology ring of the complex Grassmannian $\operatorname{Gr}\left(\ell, \mathbb{C}^{\ell+k}\right)$ with coefficients in \mathbb{Q} can be interpreted as the graded vector space:
$R^{\ell, k} \cong \mathbb{Q}\left[h_{1}, h_{2}, \ldots, h_{k}\right] /\left(e_{\ell+1}, \cdots, e_{\ell+k}\right)=\Lambda^{(k)} /\left(e_{\ell+1}, \cdots, e_{\ell+k}\right)$ where $\operatorname{deg}\left(e_{i}\right)=\operatorname{deg}\left(h_{i}\right)=i$, and the e_{i} 's are the i 'th Jacobi-Trudi determinants

$$
\operatorname{det}\left(\begin{array}{cccc}
h_{1} & h_{2} & \cdots & \\
1 & h_{1} & \cdots \\
\vdots & \cdots & \ddots & \\
0 & \cdots & 1 & h_{1} \\
0 & h_{2} & 0 & 1
\end{array}\right) .
$$

$R^{l, k, m}$ is the subalgebra of $R^{l, k}$ generated by h_{1}, \ldots, h_{m}. See that

$$
\mathbb{Q}=R^{\ell, k, 0} \subset R^{\ell, k, 1} \subset R^{\ell, k, 2} \subset \cdots \subset R^{\ell, k, m} \subset \cdots \subset R^{\ell, k}
$$

- A partition is a weakly decreasing sequence
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}\right)$. It can be represented by its Ferrers diagram:

$\square \square$

Figure 1:The Ferrer's diagram of the partition $\lambda=(4,3,1)$,
The q-binomial coefficient is $\left[\begin{array}{c}k+\ell \\ k\end{array}\right]_{q}=\sum_{\lambda \subset\left(k^{\ell}\right)} q^{|\lambda|}$
Given any graded vector space $R=\bigoplus_{d=0}^{\infty} R_{d}$ over \mathbb{Q}, the Hilbert series of R is $\operatorname{Hilb}(R, q)=\sum_{d=0}^{\infty} \operatorname{dim}_{\mathbb{Q}}\left(R_{d}\right) q^{d}$.

The Problem (R-T Conjecture)[3]

$$
\begin{align*}
& \text { For each } m=0,1,2, \ldots, \min (k, \ell) \text {, one has } \\
& \qquad \operatorname{Hilb}\left(R^{\ell, k, m}, q\right)=1+\sum_{i=1}^{m} q^{i}\left[\begin{array}{c}
k \\
i
\end{array}\right]_{q}^{\ell-i} \sum_{j=0}^{\ell\left(q^{j(k-i+1)}\right.}\left[\begin{array}{c}
i+j-1 \\
j
\end{array}\right]_{q} \tag{1}
\end{align*}
$$

$\frac{\text { Visualization and Boundary Cases }}{\frac{1}{2}}$

Figure 2:An illustration of the R-T Conjecture for $k=30, l=35$.

- One can check that for $m=1$, this conjecture reduces to $\operatorname{Hilb}\left(R^{\ell, k, 1}, q\right)=1+q+\ldots+q^{k \ell}$, which can be deduced from either Schubert calculus or the hard Lefschetz theorem.
For $m=\min (k, \rho)$ this conjecture must be cosistent $\operatorname{Hilb}\left(R^{\ell, k}, q\right)=\left[\begin{array}{c}\ell+k \\ \ell\end{array}\right]$. We can verify that the RHS of the R-T Conjecture reduces to this q-binomial coefficient via a combinatorial interpretation of the R-T conjecture involving the notion of i-vacant partitions.

$$
i \text {-vacant Partitions }
$$

A k-bounded partition λ is i-vacant if i is the largest integer for which the complementary skew diagram $\left(k^{\ell(\lambda)}\right) / \lambda$ contains an $i \times(i-1)$ ectangle in its southeast corner. We will call $\left(k^{\ell(\lambda)}\right)$ the ambient k-rectangle of λ.

$\square \square=\square$

igure 3 :The 5 -hounded partition $\lambda=(3,3,1)$ is 3 -vacant.
Combinatorial Interpretation of the R-T Conjecture For each $m=0,1,2, \ldots, \min (k, \ell)$,

$$
\sum_{\substack{i-\text { vacant, }, i \leq m \\
\lambda \subseteq\left(k^{\ell}\right)}} q^{|\lambda|}=1+\sum_{i=1}^{m} q^{i}\left[\begin{array}{l}
k \\
i
\end{array}\right]_{q} \sum_{j=0}^{\ell-i} q^{j(k-i+1)}\left[\begin{array}{c}
i+j-1 \\
j
\end{array}\right]_{q}
$$

Theorem: (Lapointe, Lascoux and Morse, 2003) [2]
The map $\omega(k): \mathcal{P}^{k} \rightarrow \mathcal{P}^{k}$ defined by sending a k-bounded partition λ to $\lambda^{\omega(k)}:=\mathfrak{p}\left(\mathfrak{c}(\lambda)^{\prime}\right)$ is an involution, where $(-)^{\prime}$ denotes usua conjugation. We call $\lambda^{\omega(k)}$ the k-conjugate of λ

Proposition: For any $i=1,2, \ldots, \min (\ell, k)$, one has

Conjectured Filtered Bases

Write $\left\{\mu: \mu_{1} \leq m, \mu^{\omega(k)} \subseteq\left(k^{\ell}\right)\right\}$ as $P^{k, \ell, m}$, and $P^{k, \ell, \min \{k, \ell\}}$ as $P^{k, \ell}$. onjectur
(a) The set $\left\{h_{\lambda} \mid \lambda \in P^{k, \ell}\right\}$ is a basis of $R^{\ell, k}$. moreover (b) the set $\left\{h \mid \lambda \in P^{k, \ell, m}\right\}$ is a basis of $R^{\ell, k, m}$ for

- (a) will show half of the R-T conjecture (LHS \geq RHS - (b) implies the full R-T conjecture

Lagrangian Analogue
For a strictly decreasing partition $\lambda=\left(\lambda_{1}>\cdots>\lambda_{\ell}\right)$, we define its shifted Young diagram to be a diagram with λ_{i} boxes in row i with each row shifted one unit right of the previous one. An ambient triangle of size n, denoted as Δ_{n}, is a shifted Young diagram $\lambda=(n\rangle$ $n-1>\cdots>1$).

Figure 5:An ambient triangle Δ_{4} and a shifted Young diagram $\lambda=(4,2,1)$. In Lie type C , we replace $\operatorname{Gr}\left(\ell, \mathbb{C}^{k+\ell}\right.$) by the Lagrangian Grassmannian $\mathbb{L} \mathbb{G}\left(n, \mathbb{C}^{2 n}\right)$ and define the ring $R_{\mathbb{L} \mathbb{G}}^{n}:=H^{*}(\mathbb{L} \mathbb{G}(n, 2 n) ; \mathbb{Q})$. Then,

$$
\begin{aligned}
& R_{\mathbb{L} \mathbb{G}}^{n} \cong\left[e_{1}, e_{2}, \ldots, e_{n}\right] /\left(e_{i}^{2}+2 \sum_{k=1}^{n-i}(-1)^{k} e_{i+k} e_{i-k}\right)_{i=1,2, \ldots, n} \\
& \operatorname{Hilb}\left(R_{\mathbb{L} \mathbb{G}}^{n}, q\right)=\sum_{\lambda \subset \Delta^{n}} q^{|\lambda|}=(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right) \cdots\left(1+q^{n}\right) .
\end{aligned}
$$

The R-T Conjecture (Type C Analogue) For each $m=0,1, \cdots, n$, write the subalgebra of $R_{\mathbb{T}}^{n}$ generated by e_{1}, \ldots, e_{m} as $R_{\mathbb{L} G}^{n, m}$, then

$$
\operatorname{Hilb}\left(R_{\mathbb{L G}}^{n, m}, q\right)=1+\sum_{\substack{1 \leq i \leq m \\
i \text { odd }}} q^{i} \sum_{j=0}^{n-i} q^{\left({ }_{2}^{(+1}\right)}\left[\begin{array}{c}
i+j \\
i
\end{array}\right]_{q} .
$$

References

[1] Thomas Lam, Luc Lapointe, Jenifer Morse, Anne Schilling, Mark Shimozono, Mike
Zabrockik k - Schur Functions and Affine Schubert Calculus. Fields Institute Monographs 33 ,

 H. Tamvekis, Quantum cohomology of Lagrangian and orthogonal Grasmmannians. Talk a

