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Abstract. This paper is concerned with studying the Hilbert Series of the
subalgebras of the cohomology rings of the complex Grassmannians and La-

grangian Grassmannians. We build upon a previous conjecture by Reiner and
Tudose for the complex Grassmannian and present an analogous conjecture

for the Lagrangian Grassmannian. Additionally, we summarize several poten-

tial approaches involving Gröbner bases, homological algebra, and algebraic
topology. Then we give a new interpretation to the conjectural expression

for the complex Grassmannian by utilizing k-conjugation. This leads to two

conjectural bases that would imply the original conjecture for the Grassman-
nian. Finally, we comment on how this new approach foreshadows the possible

existence of analogous k-Schur functions in other Lie types.
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1. Introduction

Complex Grassmannians Gr(k,Ck+`) and their cohomology rings, denoted as
Rk,` := H∗(Gr(k,Ck+`);Q), are some of the most well-studied objects in algebra
and topology. Their rich structure gives rise to the study of Schubert calculus,
a subject that strongly overlaps with algebraic combinatorics, intersection theory
and representation theory. Despite being a salient object in algebraic geometry and
algebraic combinatorics, there still remains basic yet unsolved problems involving
these cohomology rings.

In 1953, Borel published a detailed account of the generators and relations of
Rk,`. In Borel’s picture, Rk,` = Q[e1, . . . , ek]/(h`+1, . . . , h`+k) is generated by the
Chern classes ei’s of the canonical bundle of Gr(k,Ck+`) subject to polynomial
relations hi’s. These relations are known as the first Jacobi-Trudi relations as
in this Wikipedia page. Naturally, Rk,` can be equipped with a graded algebra
structure by assigning to ei the degree i. Subsequently, we are able to pose questions
about the Hilbert series of Rk,`. The Hilbert Series is a power series that encodes
information about the dimensions of each graded component of Rk,`. It turns out

that Hilb(Rk,`, q) is the q-binomial coefficient

[
k + `
k

]
q

. The q-binomial coefficient

is the q-analogue of the binomial coefficients

(
k + `

k

)
.

Now let 0 ≤ m ≤ k ≤ ` and consider the graded subalgebra Rk,`,m of Rk,`

generated by the first m Chern classes e1, . . . , em. The filtration

Q = Rk,`,0 ⊂ Rk,`,1 ⊂ · · · ⊂ Rk,`,k−1 ⊂ Rk,`,k = Rk,`

induces a sequence of degree-wise inequalities of their respective Hilbert series

1 = Hilb(Rk,`,0, q) ≤ Hilb(Rk,`,1, q) ≤ · · · ≤ Hilb(Rk,`,k−1, q) ≤ Hilb(Rk,`,k, q) =

[
k + `
k

]
q

.

At first glance, it seems that these objects are mysterious since there are no known
geometric interpretation of the subalgebras. However, by observation of data,
Reiner and Tudose conjectured in [5] the form of Hilb(Rk,`,m, q) in terms of a
complicated yet intriguing expression.

Hilb(Rk,`,m, q) = 1 +

m∑
i=1

qi
[
`
i

]
q

k−i∑
j=0

qj(`−i+1)

[
i+ j − 1

j

]
q

 .(1.1)

From now on we refer to (1.1) as the Riener-Tudose Conjecture (or the R-T
Conjecture). By applying the Hard Lefschetz Theorem from complex geometry,
Reiner and Tudose were able to prove their conjecture for the edge case m = 1 [5].

https://en.wikipedia.org/wiki/Schur_polynomial
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This can also be proved by invoking results from Schubert calculus known as Pieri’s
rule. On the other end, the edge case m = k was also proved by a combinatorial
argument counting Ferrers’ diagrams with certain properties. Beyond that, there
was no clue which directions one should probe nor how to naturally interpret the
conjectured expression. Thus, we started the REU program with two initial goals:

• Proving the Riener-Tudose Conjecture formulated in [5, Conj. 1], and
• Finding its analogue for the cohomology of Lagrangian Grassmannians.

In reaching the first goal, we found a surprising connection between the R-T
conjecture and the theory of k-Schur functions; this led us to make conjectures
about the existence of certain filtered bases, which will be explained in Section 5.
On the other hand, we were very fortunate to achieve the second goal at a very
early stage in our research. We conjectured that

Hilb(Rn,mLG , q) = 1 +
∑

1≤k≤m, k odd

qk

n−k∑
j=0

q(
j+1
2 )
[
k + j
j

]
q


and proved the edge cases m = 1 and m = n.

Sections 3 and 4 summarize our initial approaches to proving these conjectures.
Although those approaches have not been very successful, they nonetheless afford
us a deeper understanding of the nature of these conjectures.

In Section 5, we apply a powerful technique called k-Schur conjugation to give
a simple interpretation of the complicated expression in the R-T Conjecture and
make two conjectures on the existence of certain filtered bases. Finally, Section 6
discusses two important implications of our results and future research directions.

2. Conjectures

In this section, we introduce the main conjectures for the Grassmannian and
Lagrangian Grassmannian. We also present some of their important properties
that we will rely on in our subsequent exposition.

2.1. The Grassmannian. The conjecture is about the cohomology ring of the
Grassmannian of all k-linear subspaces of Ck+`. This is a commutative graded
Q-algebra, with several natural descriptions1, among them this one:

(2.1) Rk,` ∼= Q[e1, e2, . . . , ek, h1, h2, . . . , h`]/J
k,`

where Jk,` is the ideal generated by these elements: ∑
i+j=d

(−1)ieihj


d=1,2,...,k+`

Here the grading is defined by letting deg(ei) = deg(hi) = i, and by convention,
e0 = h0 = 1, while ei = 0 = hj if i 6∈ [0, k] or j 6∈ [0, `]. Its Hilbert series is

Hilb(Rk,`, q) :=
∑
d≥0

dimQR
k,`
d · q

d =

[
k + `
k

]
q

=
[k + `]!q
[k]!q[`]!q

=
(1− q)(1− q2) · · · (1− qk+`)

(1− q)(1− q2) · · · (1− qk) · (1− q)(1− q2) · · · (1− q`)

1More background and descriptions can be found in Fulton [1, §9.4]
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where [n]!q := [n]q[n− 1]q · · · [2]q[1]q and [n]q := 1−qn
1−q = 1 + q + q2 + · · ·+ qn−1.

Let Rk,`,m denote the Q-subalgebra of Rk,` generated by e1, e2, . . . , em.

Conjecture 2.1 (Reiner-Tudose Conjecture). For m ≥ 0,

Hilb(Rk,`,m, q) = 1 +

m∑
i=1

qi
[
`
i

]
q

k−i∑
j=0

qj(`−i+1)

[
i+ j − 1

j

]
q

 .

Proposition 2.2. Hilb(Rk,`,m, q)−Hilb(Rk,`,m−1, q) = Hilb(Rk,`,m/Rk,`,m−1, q)

Proof. Let V =
⊕∞

d=0 Vd be a graded vector space, and let U be a subspace U ⊂ V
which is homogeneous in the sense that U =

⊕∞
d=0 Ud, where Ud := Vd ∩ U . Then

the quotient vector space V/U is also graded, with

V/U =

∞⊕
d=0

Vd/Ud

and has the following Hilbert series

Hilb(V/U, q) :=

∞∑
d=0

dimk Vd/Ud · qd

=

∞∑
d=0

(dimk Vd − dimk Ud) · qd

= Hilb(V, q)−Hilb(U, q)

Since both Rk,`,m and Rk,`,m−1 are graded algebras, and Rk,`,m−1 is a subalgebra
of Rk,`,m, we can apply the above argument with V = Rk,`,m and U = Rk,`,m−1,
giving us what we wanted. �

Thus, equivalently, by Proposition 2.2 one could phrase the Riener-Tudose Con-
jecture as conjecturing that, for m ≥ 1, one has

(2.2)

Hilb(Rk,`,m, q)−Hilb(Rk,`,m−1, q)
(
= Hilb(Rk,`,m/Rk,`,m−1, q)

)
= qm

[
`
m

]
q

k−m∑
j=0

qj(`−m+1)

[
m+ j − 1

j

]
q

 .

2.2. The Lagrangian Grassmannian. The Lagrangian Grassmannian denoted
LG(n,C2n) is the space of all maximal isotropic (n-dimensional) subspaces of C2n

endowed with a symplectic bilinear form. Its cohomology ring has the following
description as a Q-algebra as in [7, p. 2]:

RnLG
∼= Q[e1, e2, . . . , en]

/(
e2
i + 2

n−i∑
k=1

(−1)kei+kei−k : i = 1, 2, . . . , n

)
with deg(ei) = i, setting e0 = 1, and ei = 0 if i 6∈ [0, n]. Its Hilbert series is

Hilb(RnLG, q) = [2]q[2]q2 [2]q3 · · · [2]qn = (1 + q)(1 + q2)(1 + q3) · · · (1 + qn).

Let Rn,mLG denote the Q-subalgebra of RnLG generated by e1, e2, . . . , em.
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Conjecture 2.3. For the Lagrangian Grassmannian, we have

Hilb(Rn,mLG /Rn,m−1
LG , q) =


qm

n−m∑
j=0

q(
j+1
2 )

[
m+ j

j

]
q

 , if m is odd

0 , if m is even

The assertion in the even case is not hard.

Proposition 2.4. Rn,mLG = Rn,m+1
LG whenever 1 ≤ m ≤ n− 1 and m is odd.

Proof. Let m ∈ N be an odd number 1 ≤ m ≤ n− 1 and let

I =

(
e2
d + 2

n−d∑
k=1

(−1)ked−ked+k : d ∈ {1, . . . , n}

)
be an ideal in Q[e1, . . . , en], where e0 = 1 and ei = 0 for all i > n or i < 0. Since
m is odd, there exists an ` < n ∈ N ∪ {0} such that m = 2` + 1. Consider the
polynomial generator of I given by d = `+ 1. We know that it is of the form

e2
`+1 + 2 ·

n−(`+1)∑
k=1

(−1)ke`+1−ke`+1+k


which we can rewrite as

e2
`+1 + 2 ·

n−(`+1)∑
k=1
k 6=`+1

(−1)ke`+1−ke`+1+k

+ 2(−1)`+1em+1.(2.3)

However, since e`+1−k = 0 for all k > `+ 1 we can actually write (2.3) as

2(−1)`+1em+1 + e2
`+1 + 2 ·

(∑̀
k=1

(−1)ke`+1−ke`+1+k

)
∈ I.(2.4)

Equation (2.4) shows that, within the quotient ring RnLG, the image of the element
em+1 lies in the subalgebra Rn,mLG generated by the images of e1, e2, . . . , em. Hence

Rn,m+1
LG also lies inside Rn,mLG , so these two subalgebras are equal. �

Since one has

Hilb(RnLG, q) = 1 +

n∑
m=1

Hilb(Rn,mLG /Rn,m−1
LG , q),

Conjecture 2.3 implies the following combinatorial q-identity.

Theorem 2.5 (Lagrangian filtration q-identity).

(1 + q)(1 + q2)(1 + q3) · · · (1 + qn) = 1 +
∑
m odd

1≤m≤n

qm

n−m∑
j=0

q(
j+1
2 )
[
m+ j
j

]
q


But before proving this theorem, we need a way to interpret the left hand side

of this identity.
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Definition 2.6. For a strictly decreasing partition λ = (λ1 > · · · > λ`), we define
its shifted Young diagram, also denoted as λ, to be a diagram with λi boxes
in row i with each row shifted one unit right of the previous one. An ambient
triangle of size n, denoted as ∆n, is a shifted Young diagram λ = (n > n− 1 >
· · · > 1).2

Example 2.7. An ambient triangle ∆5 and a shifted Young diagram λ = (5, 2, 1)
colored gray are illustrated below.

Lemma 2.8. We can interpret [2]q[2]q2 [2]q3 · · · [2]qn as a generating function count-
ing shifted Young diagrams in ∆n, namely

(1 + q)(1 + q2)(1 + q3) · · · (1 + qn) =
∑
λ⊆∆n

q|λ|

Proof. Any partition λ ⊆ ∆n is completely determined by its row sizes, which are
an arbitrary subset {λ1, . . . , λ`} of [n]. Hence we have∑

λ⊂∆n

q|λ| =
∑

{λ1,...,λ`}⊂[n]

qλ1+···+λ` = (1 + q)(1 + q2) · · · (1 + qn). �

Proof of Theorem 2.5. The lemma above allows us to interpret the left hand side as
the generating function counting shifted Young diagrams that fit inside an ambient
n-triangle according to their weights. To prove the q-identity, whenever λ is non-
empty, we will uniquely define a triple (m, j, µ) where m is odd, j is an integer,
and µ is a Ferrers diagram fitting inside a (mj) ambient rectangle. In terms of
diagrams, this decomposes the shifted Young diagram λ into three parts:

(1) a triangle ∆j .
(2) a row of odd length m.
(3) a Ferrers diagram µ fitting inside a (mj) ambient rectangle.

A few examples of this decomposition are illustrated below, where the colors corre-
spond to the three portions described previously: part 1 is colored gray, part 2
black, and part 3 white. For example, in figure (1) and (2), the diagrams both
have m = 3 and j = 4, but they have different part 3 (white) fitting inside a (43)
ambient rectangle; In figure (3), m = 1 and j = 5, and the part 3 (white) is fitting
inside a (51) ambient rectangle.

(1) (2)

2See section 6 of Maria Gillespie’s “Variations on a Theme of Schubert Calculus”
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(3)

It is easy to see that for any such triple (m, j, µ), we can construct a shifted
Young diagram that fits into the ambient n-triangle. Conversely, given a shifted
Young diagram λ = (λ1 > · · · > λ`) ⊆ ∆n, we shall show that there is a unique
decomposition. Let j be the maximum value such that ∆j ⊆ λ and m := λ1 − j is
odd. So

j =

{
` , if λ1 − ` is odd

`− 1 , if λ1 − ` is even

where ` = `(λ) is the number of parts of λ.3 Finally, it is clear that removing ∆j

and the top row of length m would result in a Ferrers diagram fitting inside a (mj)
ambient rectangle.

Therefore, the set of such triples (m, j, µ) are in bijection with the set of shifted
Young diagrams λ fitting in the ambient triangle of size n. In particular, for any
fixed m, j, the triples (m, j, µ) ranging over µ are in 1-to-1 correspondence with

the terms in the expansion of qmq(
j+1
2 )
[
m+ j
j

]
q

. The q-identity then easily follows

from this bijection and the fact that |λ| = m+ |µ|+
(
j+1

2

)
. �

The following is the analoque of [5, Thm. 6, Rem. 7] for the Grassmannian.

Proposition 2.9. The m = 1 case of Conjecture 2.3 is correct.

Proof. We claim the m = 1 case of Conjecture 2.3 can be rephrased as asserting

(2.5) Hilb(Rn,1LG, q) = [N ]q,

where N :=
(
n+1

2

)
. To see this, note that it asserts

Hilb(Rn,1LG/R
n,0
LG, q) = q1

n−1∑
j=0

q(
j+1
2 )
[
1 + j
j

]
q

= q

n−1∑
j=0

q(
j+1
2 )[j + 1]q

= q(1 + q1(1 + q) + · · ·+ q(
n
2)[n]q)

= q[N − 1]q.

As Rn,0LG = Q, this is equivalent to

Hilb(Rn,1LG, q) = 1 + q[N − 1]q = [N ]q

as in (2.5).

3This condition exactly separates whether the bottom row of part 3 (white) is the last row in

the (jm) ambient rectangle or not. As compared in figure (1) and (2), although λ1 = 7 in both
cases, the values of ` are different. However, we set m = 3 and j = 4 in both cases, and part 3

(white) should both be viewed as Ferrers diagrams in a (34) ambient rectangle.
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Note that (2.5) is equivalent to saying that inside the ring RnLG, the subalgebra

Rn,1LG
∼= Q[e1]/(eN+1

1 ). Since RnLG is the cohomology of the Lagrangian Grassman-
nian, a smooth complex projective variety of dimension N , the fact that eN1 6= 0 (but

eN+1
1 = 0) follows by appealing to the Hard Lefschetz Theorem4 [2, p. 122]. �

Remark 2.10. Closely related to the Lagrangian Grassmannian is the Orthogonal
Grassmannian, discussed in [7] and [3]. It has a cohomology ring RnOG with a
presentation (see, e.g., [3, Thm. 1] with q = 0) extremely similar to that of RnLG,
and in fact it has the same Hilbert series. For example,

R4
OG = Q[e1, e2, e3, e4]/(e2

1 − e2, e
2
2 − 2e1e3 + e4, e

2
3 − 2e2e4, e

2
4),

R4
LG = Q[e1, e2, e3, e4]/(e2

1 − 2e2, e
2
2 − 2e1e3 + 2e4, e

2
3 − 2e2e4, e

2
4).

Proposition 2.11. The subalgebras Rn,mOG , R
n,m
LG have the same Hilbert series.

Proof. We claim that there should be an isomorphism of graded rings

(2.6) RnOG
∼= RnLG,

meaning a ring isomorphism that preserves degrees. If we knew this, then this
isomorphism would restrict to an isomorphism of their subalgebras

Rn,mOG
∼= Rn,mLG ,

since each of Rn,mOG , R
n,m
LG , is defined as the subalgebra of RnOG, R

n
LG, respectively,

generated by its elements of degree at most m.
The isomorphism (2.6) comes from Borel’s picture5 of the cohomology of the

Lagrangian Grasmmannian X and the Orthogonal Grassmannian X ′. One can
think of both X,X ′ as homogeneous spaces, that is, quotient spaces G/PJ where G
is a complex semisimple algebra group, and PJ is a parabolic subgroup generated by
the Borel subgroup of G together with a certain subset J of generators for the Weyl
group W of G. Borel showed that the cohomology of G/P has this description:

H∗(G/P,Q) ∼= H∗(G/B,Q)WJ ,

that is, the subring of WJ -invariant elements inside H∗(G/B,Q), where WJ is the
subgoup of W generated by J . He also showed that the cohomology H∗(G/B,Q)
is isomorphic to the quotient

Q[x1, . . . , xn]/(Q[x1, . . . , xn]W+ )

of the polynomial ring Q[x1, . . . , xn] by the ideal generated by the W -invariant
polynomials Q[x1, . . . , xn]W+ of positive degree.

One has X = Sp2n/P and X ′ = SO(2n+1)/P ′, and the groups Sp2n, SO(2n+1)
share the same Weyl group W , isomorphic to the hyperoctahedral group Bn of all
n×n signed permutation matrices. One also has that P, P ′ both correspond to the
same subset of generators for W (generating the symmetric group WJ = Sn inside
the hyperoctahedral group W = Bn). Thus we should have both rings RnOG, R

n
LG

isomorphic to this graded ring:(
Q[x1, . . . , xn]/(Q[x1, . . . , xn]Bn+ )

)Sn
.

4Alternatively, one can use a Pieri formula [4, eqn. (52)] for Rn
LG to compute that eN1 is a

certain nonzero scalar multiple of the orientation class of the Lagrangian Grassmannian, given by

an explicit power of 2 times the number of standard tableaux of shifted staircase shape.
5See [6] for some references, and its Section 3 for some of the assertions.
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�

Remark 2.12. Let us explain here how this Borel picture fits with our presentation
of the cohomology of the Grassmannian Gr(k, k+ `) as the ring Rk,`. Let us freely
use the notation n := k + ` here, so that ` = n− k.

In this case, the complex semisimple6 algebraic group G = GLn(C), the group
of all invertible n× n complex matrices. One starts by thinking about how G acts
on the (complete) flag manifold

Fln := {(V1, V2, . . . , Vn−1) : {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Cn and dimC(Vi) = i}

where each Vi is a C-linear subspace of Cn. Here G acts transitively on Fln (that
is, with only one orbit), and if we choose the particular base flag having Vi =
spanC{e1, e2, . . . , ei}, it is stabilized by the Borel subgroup B consisting of all upper
triangular matrices. Hence one can identity Fln = G/B, a homogeneous space for
G. In this case, the Weyl group W is the symmetric group Sn of permutation
matrices, and the first part of Borel’s picture tells us that

H∗(FLn,Q) = H∗(G/B,Q) ∼= Q[x1, . . . , xn]/(Q[x1, . . . , xn]Sn+ )

= Q[x1, . . . , xn]/(e1, e2, . . . , en)

where we have used (Newton’s) fundamental theorem of symmetric functions that
says the subalgebra Q[x1, . . . , xn]Sn of symmetric polynomials within Q[x1, . . . , xn]
is itself again a polynomial algebra generated by the elementary symmetric func-
tions e1, . . . , en.

So how do we think of the Grassmannian Gr(k,Ck+`) = Gr(k,Cn)? It is the
homogeneous space G/P where P is the subgroup of block upper triangular invert-
ible matrices [A B

0 C ] where A lies in GLk(C), C lies in GLn−k(C), and B lies in

Ck×(n−k); this is exactly the subgroup that stabilizes the particular k-dimensional
subspace spanC{e1, e2, . . . , ek} from the base flag. To use the rest of Borel’s picture
to understand its cohomology, we note that P = PJ is the parabolic subgroup G
generated by the Borel subgroup B together with the subset J inside W = Sn that
generates WJ = Sk × S`, where Sk permutes only {1, 2, . . . , k} among themselves
and S` permutes only {k + 1, k + 2, . . . , k + `(= n)} among themselves. Conse-
quently, Borel tells us the following, to be explained line-by-line below, using the
abbreviation

ei(x[a,b]) := ei(xa, xa+1, . . . , xb)

for elementary symmetric functions in a variable set xa, xa+1, . . . , xb:

Proposition 2.13. H∗(Gr(k, n))= : Rk,`

6Actually, to be really semisimple, we should take G = SLn(C), but this will have no material
effect on the discussion.



10 THE 2020 POLYMATH JR. “Q-B-AND-G” GROUP†

Proof.

H∗(Gr(k, n))
(1)
= H∗(G/PJ)

(2)∼=
(
Q[x1, . . . , xn]/(Q[x1, . . . , xn]W+ )

)WJ

(3)∼= Q[x1, . . . , xn]WJ/(Q[x1, . . . , xn]W+ )

(4)
= Q[x1, . . . , xn]Sk×S`/(Q[x1, . . . , xn]Sn+ )

(5)
= Q[e1(x[1,k]), e2(x[1,k]), . . . , ek(x[1,k]),

e1(x[k+1,k+`]), e2(x[k+1,k+`]), . . . , ek(x[k+1,k+`]]

/(e1(x[1,n]), e2(x[1,n]), . . . , en)(x[1,n])

(6)∼= Q[e1, . . . , ek, h1, . . . , h`]/

(
d∑
i=0

(−1)ieihd−i

)
d=0,1,...,k+`

(7)
=: Rk,`.

�

The equality (1) is simply because Gr(k, n) is the homogeneous space G/PJ , as
explained above.

The isomorphism (2) is Borel’s picture for the cohomology of G/PJ in general.
The isomorphism (3) is actually trickier than it looks. It uses the fact that we

are working with coefficients in Q that have characteristic zero. There is a general
averageing argument that one can use to show that, in characteristic zero, if W
is a finite group acting on a graded ring S, and W ′ a subgroup of W , then the
composite map

SW
′
↪→ S � S/(SW+ ).

surjects onto the W ′-invariants in the quotient
(
S/(SW+ )

)W ′
, and has kernel equal

to the ideal (SW+ ) inside SW , so it induces an isomorphism

SW
′
/(SW+ ) ∼=

(
S/(SW+ )

)W ′
.

This isomorphism is what gets used in (3), with S = Q[x1, . . . , xn] and W ′ = WJ .
The equality (4) is just reminding us who W and WJ are in this instance.
The equality (5) uses a variant on Newton’s fundamental theorem of symmetric

functions, saying that the Sk × S`-invariant polynomials inside Q[x1, . . . , xn] are
generated by elementary symmetric polynomials in the first k-variables and in the
last ` variables.

The isomorphism (6) is induced by sending

ei 7→ (−1)iei(x[1,k]) for i = 1, 2, . . . , k

hj 7→ ej(x[k+1,k+`]) for j = 1, 2, . . . , `
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and noting the easy identity

ed(x[1,n]) = ed(x1, . . . , xn) =

d∑
i=0

ei(x1, x2, . . . , xk)ed−i(xk+1, xk+2, . . . , xn)

=

d∑
i=0

ei(x[1,k])ed−i(x[k+1,k+`]).

The equality (7) was our definition of Rk,`.

Lemma 2.14. Gr(k,Ck+`) is homeomorphic to Gr(`,Ck+`).

Proof. Points in Gr(k,Ck+`) are the k-dimensional C-linear subspaces of Ck+`. Let
V be a (k+`)-dimensional complex vector space, and let W be a k-plane of V (i.e. a
k-dimensional linear subspace of V ), then (V/W )∗ is an `-plane of V ∗. This allows
us to say that every k-dimensional subspace W of V determines an `-dimensional
subspace (V/W )∗ of V ∗. More precisely, from the short exact sequence (or SES)7:

(2.7) 0 −→W
f−→ V

g−→ V/W −→ 0

we can take the dual to get another SES

(2.8) 0 −→ (V/W )∗
g∗−→ V ∗

f∗−→W ∗ −→ 0.

Since the double dual V ∗∗ is naturally isomorphic to V. Taking the dual of
the SES in (2) again yields the SES in (1). The above procedure describes a 1-to-1
correspondence between k-dimensional subspaces of V, and `-dimensional subspaces
of V ∗. In terms of the Grassmannian this means:

(2.9) Gr(k, V ) ∼= Gr(`, V ∗).

Because V is a finite dimensional vector space, V and V ∗ are isomorphic. Choos-
ing an isomorphism form V to V ∗ determines an isomorphism from Gr(`, V ) to
Gr(`, V ∗). This in turn yields an isomorphism between Gr(`, V ) and Gr(k, V ), i.e.
Gr(k,Ck+`) ∼= Gr(`,Ck+`).8 �

Proposition 2.15. The map of polynomial rings

ω : Q[e1, . . . , ek, h1, . . . , h`] −→ Q[e1, . . . , e`, h1, . . . , hk]

that sends ei 7→ hi for i = 1, 2, . . . , k and hj 7→ ej for j = 1, 2, . . . , ` induces a
graded ring isomorphism Rk,` ∼= R`,k.

Proof. This follows from examination of the ring presentation (2.1). �

Remark 2.16. There are at least two other ways to think of this graded ring iso-
morphism ω : Rk,` → R`,k.

On one hand, one can view Rk,` as the quotient of the ring of symmmetric
functions ΛQ in infinitely many variables, in which one quotients by the Q-linear
span of the Schur functions sλ for which λ does not lie inside a k×` rectangle. Then

7f is injective because it is the inclusion map; g is clearly surjective; moreover, Im(f) = W =

Ker(g). Satisfying these properties makes the sequence in (1) to be a so-called short exact
sequence.

8Remark: The term “isomorphism” is being utilised in the context of the category of topological
spaces, the Grassmannian being an object in this category. And, in this category, isomorphisms

are homeomorphisms.
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it is not hard to see that ω : Rk,` → Rk,` above is induced from the fundamental
involution ω on ΛQ, which swaps ei ↔ hi for i = 1, 2, . . ., and sλ ↔ sλ′ , where λ′ is
the transpose or conjugate partition of λ.

On the other hand, it can also be shown that ω : Rk,` → Rk,` is the ring
isomorphism induced by the homeomorphism in Proposition 2.13.

Proposition 2.17. The set {hλ : λ ⊂ (`k)} is a basis for Rk,`.

Proof. By [11, Thm. 7.4.4], {eλ : λ ⊂ (`k)} is a basis of Rk,`. Now apply ω from
Proposition 2.15, which sends eλ 7→ hλ. �

3. A Gröbner Basis Approach

Perhaps the most brute force approach to proving the Reiner-Tudose Conjecture
is by appealing to Gröbner bases. While this approach ultimately failed to prove
the conjecture it is still worthwhile to examine what went wrong. Recall that

Rk,` ∼= Q[e1, e2, . . . , ek, h1, h2, . . . , h`]/I
k,`

where we have

Ik,` =

 ∑
i+j=d

(−1)ieihj : d = 1, 2, . . . , k + `

 .

Throughout section 3, we will fix the monomial ordering to be lexicographic with
e1 < e2 < · · · < em. There are two main ways to go about using Gröbner Bases,
each of which focus on one side of the Reiner-Tudose Conjecture. The first, as done
in section 3.1, is to find a Q-basis for Rk,` via Gröbner Basis calculations of Ik,`

and trying to understand in general what form the standard monomials take. The
second, as done in section 3.2, is to examine the conjectured Hilbert series and from
it, try and derive what the standard monomials must be. The latter relies on an
algorithmic way to go from the conjectured Hilbert series to a set of monomials.

3.1. Patterns, Patterns and more Patterns. For this approach we would need
the general structure of the leading terms of a Gröbner Basis of Ik,`. Using a
computer algebra system, e.g., Macaulay2 we were able to conjecture the structure
of the leading terms of the Gröbner Basis for Ik,` for k = 2, 3.

Conjecture 3.1. For an ideal I we will let G(I) denote a Gröbner basis of I. We
have that

LT (G(I2,`)) =


e2`+1−4i

1 ei2 for 0 ≤ i ≤ b `2c,

e
b `2c+1

2
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LT (G(I3,`)) =



e3`+1
1 ,

e
3(`−i)
1 ei2 for 1 ≤ i ≤ `− 1,

e`−3i
1 ei3 for 1 ≤ i ≤

⌊
`−1

3

⌋
,

e3i
1 e

`−(4+3j)−(i−1)
2 ej+1

3 for 1 ≤ i ≤ `− (4 + 3j), for j ∈ N and if ` > 4 + 3j,

e`−3i
2 ei3 for 1 ≤ i ≤

⌊
`
3

⌋
and ` 6= 3,

e2e
b `3c
3 if ` ≡ 0 (mod 3),

e`2,

e
b `3c+1

3



We will first focus on LT (G(I2,`)). Recall,

R2,` = Q[e1, e2]/(h`+1, h`+2)

where hr is defined as a polynomial in e1, e2 via an r× r Jacobi-Trudi determinant.

Lemma 3.2. Let Jd be the d-th Jacobi-Trudi Matrix. Then we have that

d∑
i=1

(−1)i−1ei det(Jd−i) = det(Jd)

Proof. Let Jd,i be the (d − 1) × (d − 1) matrix obtained from Jd by omitting the
first row and i-th column. By definition of determinant, we have

det(Jd) =

d∑
i=1

(−1)i+1ei det(Jd,i).

To complete the proof, it suffices to show

det(Jd,i) = det(Jd−i),

for arbitrary d and 1 ≤ i ≤ d. Indeed, when d = i = 1, both Jd,i and Jd−i are the
empty 0 × 0 matrix, which has determinant 1. When d is arbitrary and i = 1, we
see that Jd,1 = Jd−1.

Now suppose det(Jn,i) = det(Jn−i) for all n < d and 1 ≤ i ≤ n. We can notice
that

det(Jd,i) = det(Jd−1,i−1),

if 1 < i ≤ d. This is seen by expanding along the first column of Jd,i which contains
a single entry with the value 1 and the rest 0’s. Finally,

det(Jd−1,i−1) = det(Jd−i)
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by the induction hypothesis. Therefore,

det(Jd,i) = det(Jd−i),

as required. �

Proposition 3.3. For Rk,` we have that e
b `kc+1

k is the lead monomial of one of
h`+1, . . . , h`+k with respect to lexicographical ordering.

Proof. We will first choose α ∈ {`+ 1, . . . , `+k} such that α = c ·k for some c ∈ N.
Let Jα denote the α-th Jacobi-Trudi Matrix. Then from Lemma 3.2 we have that

hα = det(Jα)

=

α∑
i=1

(−1)i−1ei det(Jα−i)

= (−1)k−1ek det(Jα−k) +

α∑
i=1
i 6=k

(−1)i−1ei det(Jα−i)

where

(−1)k−1ek det(Jα−k) >lex

α∑
i=1
i 6=k

(−1)i−1ei det(Jα−i)

since ek+1, . . . , eα = 0. Thus, we can see that

LM(hα) = ek · LM(hα−k).(3.1)

It directly follows from Lemma 3.2 that LM(hk) = ek. Thus, using the recurrence
given in equation 3.1, we see that

LM(hα) = e
α−k
k

k · LM(hα−(α−k))

= e
α
k−1

k · ek

= e
α
k

k .

However, since ` < α and α = c · k we have that

α

k
=

⌊
`

k

⌋
+ 1

and we can conclude that

LM(hα) = e
α
k

k = e
b `kc+1

k

as desired. �

We can see that Proposition 3.3 implies that e
b `2c+1

2 ∈ LT (I2,`). We now want
an inductive scheme that produces the rest of the elements

e2`+1−4i
1 ei2 for 1 ≤ i ≤ b `

2
c

as leading terms LT (f) for some f ∈ I2,` = (h`+1, h`+2).
The following is an attempt to find such an inductive scheme using a two step

recursive formula defined in Proposition 3.4. The proof of Proposition 3.4 relies
heavily on Lemmas 3.5, 3.6 and 3.7. While two of these lemmas have been proven
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we have so far failed to prove Lemma 3.6. As described below in some sense what
one would need to prove this lemma illuminates the extremely hands on nature
of a Gröbner basis approach as even for the case k = 2 it is extremely hands on.
While, we are optimistic someone could modify Proposition 3.4 to allow one to prove
Lemma 3.6, it seems that any hope of doing this for higher k would be fruitless.
It is for this reason that we don’t attempt to prove the conjectured structure of
LT (G(I3,`). However, we will carry out the following attempt to illustrate it’s
difficulty and hands on nature.

Proposition 3.4. For a polynomial q we will let LTi(q) = LCi(q) ·LMi(q) denote
the i-th leading term of q. For ` even we have

h`+1 where LM1(h`+1) = e1e
`
2
2

f1 = e2h`+1

LC1(h`+1) −
e1h`+2

LC1(h`+2)

f2 =
e21h`+1

LC1(h`+1) −
f1

LC1(f1) where LM1(f2) = e5
1e

`
2−1
2

and for ` odd we have that

f0 = h`+2

f1 = e1h`+1

LC1(h`+1) −
f0

LC1(f0) where LM1(f1) = e3
1e

`−1
2

2 .

Then for j ∈ {3, 5, . . . , `− 1} and ` even or j ∈ {2, 4, . . . , `− 1} and ` odd we have
that

fj =
e21fj−2

LC1(fj−2) −
e2fj−1

LC1(fj−1)

fj+1 =
e21fj−1

LC1(fj−1) −
fj

LC1(fj)
where LM1(fj+1) = e

2(j+1)+1
1 e

`
2−

j
2−

1
2

2

Lemma 3.5. For any ` ∈ N and k = 2, we have

h` =

b `2c∑
i=0

(−1)i
(
`− i
i

)
e`−2i

1 ei2.

Proof. We will proceed using induction. For the case of ` = 1, we have that

h1 = e1 =

b 1
2c∑
i=0

(−1)i
(

1− i
i

)
e1−2i

1 ei2.

Now assume that this proposition holds for all j such that 1 ≤ j ≤ `. We now
want to prove that it holds for `+ 1. We know that h`+1 = e1 · h` − e2 · h`−1. By
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our induction hypothesis, we then have that

h`+1 = e1 · h` − e2 · h`−1

= e1 ·

b `2c∑
i=0

(−1)i
(
`− i
i

)
e`−2i

1 ei2

− e2 ·

b
`−1
2 c∑
j=0

(−1)j
(
`− 1− j

j

)
e`−1−2j

1 ej2


=

b `2c∑
i=0

(−1)i
(
`− i
i

)
e`−2i+1

1 ei2

−
b

`−1
2 c∑
j=0

(−1)j
(
`− 1− j

j

)
e`−1−2j

1 ej+1
2


=

[(
`

0

)
e`+1

1 −
(
`− 1

1

)
e`−1

1 e2 + · · ·+ (−1)b
`
2c
(
`−

⌊
`
2

⌋⌊
`
2

⌋ )
e
`−2b `2c+1

1 e
b `2c
2

]

−

[(
`− 1

0

)
e`−1

1 e2 −
(
`− 2

1

)
e`−3

1 e2
2 + · · ·+ (−1)b

`−1
2 c
(
`− 1−

⌊
`−1

2

⌋⌊
`−1

2

⌋ )
e
`−2b `−1

2 c−1

1 e
b `−1

2 c+1

2

]
.

We have two cases depending upon the parity of `. First, assume ` = 2p + 1
where p =

⌊
`
2

⌋
. Then we have that

h`+1 =

(
`

0

)
e`+1

1 −
[(
`− 1

0

)
+

(
`− 1

1

)]
e`−1

1 e2 + · · ·+ (−1)p
[(

`− p
p− 1

)
+

(
`− p
p

)]
e`−2p+1

1 ep2

+ (−1)p+1

(
`− 1− p

p

)
e`−2p−1

1 ep+1
2 .

Within each coefficient, we have by Pascal’s binomial identity that

h`+1 =

(
`+ 1

0

)
e`+1

1 −
(
`

1

)
e`−1

1 e2 + · · ·+ (−1)p+1

(
`− 1− p

p

)
e`−2p−1

1 ep+1
2

=

(
`+ 1

0

)
e`+1

1 −
(
`

1

)
e`−1

1 e2 + · · ·+ (−1)p+1

(
`+ 1− (p+ 1)

p+ 1

)
e`−2p−1ep+1

2

=

b `+1
2 c∑
i=0

(−1)i
(
`+ 1− i

i

)
e`+1−2i

1 ei2

proving the case for ` odd.
Now, suppose that ` = 2p and p =

⌊
`
2

⌋
. Thus, we have that

h`+1 =

[(
`

0

)
e`+1

1 −
(
`− 1

1

)
e`−1

1 e2 + · · ·+ (−1)p
(
`− p
p

)
e`−2p+1ep2

]
−
[(
`− 1

0

)
e`−2

1 e2 −
(
`− 2

1

)
e`−3

1 e2
2 + · · ·+ (−1)p−1

(
`− 1− (p− 1)

p− 1

)
e
`−2(p−1)−1
1 e

(p−1)+1
2

]
=

(
`

0

)
e`+1

1 −
[(
`− 1

0

)
+

(
`− 1

1

)]
e`−1

1 e2 + · · ·+ (−1)p
[(
`− p
p

)
+

(
`− p
p− 1

)]
e`−2p+1

1 ep2.

Similarly by Pascal’s binomial identity, it follows that

h`+1 =

(
`+ 1

0

)
e`+1

1 −
(
`

1

)
e`−1

1 e2 +

(
`− 1

2

)
e`−3

1 e2
2 − · · ·+ (−1)p

(
`− p+ 1

p

)
e`−2p+1

1 ep2

=

b `2c∑
i=0

(
`+ 1− i

i

)
(−1)ie`+1−2i

1 ei2.
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Since ` was assumed to be even we have that⌊
`

2

⌋
=

⌊
`+ 1

2

⌋
and so in both cases we get that

h`+1 =

b `+1
2 c∑
i=0

(
`+ 1− i

i

)
(−1)ie`+1−2i

1 ei2.

Thus, we can conclude that

h` =

b `2c∑
i=0

(
`− i
i

)
(−1)ie`−2i

1 ei2 ,∀ ` ≥ 1.

�

Lemma 3.6. (Still Conjectural) Let fi, for i ∈ [`], be as defined in Proposition
3.4 and let |fi| be the number of monomials in fi.Then we have that

|fi| =
⌊
`

2

⌋
−
⌊
i

2

⌋
+ 1, for ` even

|fi| =
⌊
`

2

⌋
−
⌊
i− 1

2

⌋
+ 1, for ` odd

As mentioned above we have so far failed to prove Lemma 3.6. To overcome this
obstacle, one would need to reformulate Proposition 3.4 to either write explicitly
what the coefficients of the fi’s are, or write fi in terms of h`+1 and h`+2 instead of
fi−1 and fi−2. While the latter seems easier, finding such expressions have proven
to be very difficult.

Lemma 3.7. Let fj =
∑
i γi · e

ρi
2 e

µi
1 , for j ∈ [`], be as defined in Proposition 3.4.

If one ordered the monomials eρi2 e
µi
1 in >lex order from greatest to least, then the

powers on e2 would decrease by 1 as you went down the list and the powers of e1

would increase by 2.

Proof. For a polynomial q we will let LTi(q) = LCi(q) · LMi(q) denote the i-th
leading term of q. No matter the parity of ` it follows directly from Lemma 3.5
that h`+1 and h`+2 have the desired property.

For ` even Lemma 3.6 tells use that f1 has `
2 + 1 monomials where

LMi(f1) = LMi+1(e1 · h`+2)

and f2 and f3 have `
2 monomials where

LMi(f2) = LMi+1(f1) = LMi+2(e1 · h`+2)

LMi(f3) = e2
1 · LMi(f1) = LMi+1(e3

1 · h`+2).

Similary for ` odd Lemma 3.6 tells use that f1 has `−1
2 + 1 monomials where

LMi(f1) = LMi+1(h`+2)
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and f2 has `−1
2 + 1 monomials where

LMi(f2) = LMi+1(e2
1 · f0) = LMi+1(e2

1 · h`+2).

Thus, we can see that for f1, f2, f3 for ` even and f1, f2 for ` odd, that if one
ordered the monomials in >lex order from greatest to least, the powers on e2 would
decrease by 1 as you went down the list and the powers of e1 would increase by 2
since this property is also held by h`+2.

Now, for ` even assume that for all m < j, for j odd, that fm has the desired
property. We now want to show that fj and fj+1 have this desired property as
well. Lemma 3.6 tells use that

LMi(fj) = LMi(e
2
1 · fj−2)

LMi′(fj+1) = LMi′+1(e2
1 · fj−1)

for i ∈ [ `2 −
j−1

2 + 1] and i′ ∈ [ `2 −
j+1

2 + 1] and since by assumption fj−1 and fj−2

has the desired property we can conclude that fj and fj+1 do as well. Lastly, for `
odd if we replace the assumption above with, ∀m < j, for j even, we have that fm
has the desired property, then it follows in a similar manner that fj and fj+1 do
as well. �

Proof of Proposition 3.4. Using Lemmas 3.5 and 3.6 it is not hard to check that

for ` even we have that LM1(h`+1) = e1e
`
2
2 and that LM1(f2) = e5

1e
`
2−1
2 . In

the same manner for ` odd, using Lemmas 3.5 and 3.6 it is not hard to see that

LM1(f1) = e3
1e

`−1
2

2 . We will now proceed using induction on j.
For ` even, the base case is when j = 3 and we want to show that LM1(f4) =

e9
1e

`
2−2
2 . We have that

f3 =
e2

1f1

LC1(f1)
− e2f2

LC1(f2)
f4 =

e2
1f2

LC1(f2)
− f3

LC1(f3)

We know from above that LM1(f2) = e5
1e

`
2−1
2 and it is not hard to see that

LM1(f1) = e3
1e

`
2
2 . Because LM1(e2

1 · f1) = LM1(e2 · f2), Lemma 3.6 tells us that we
must have LM1(f3) = e2 · LM2(f2). Using this fact and Lemma 3.7 we have that

LM1(f2) = e5
1e

`
2−1
2

LM2(f2) = e7
1e

`
2−2
2

LM1(f3) = e7
1e

`
2−1
2

LM2(f3) = e9
1e

`
2−2
2 .

Thus,

f4 = e2
1 · LM1(f2) +

e2
1 · LT2(f2)

LC1(f2)
− LM1(f3)− LT2(f3)

LC1(f3)
+ lex smaller terms

= c · e9
1e

`
2−2
2 + lex smaller terms.
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where

c =

(
LC2(f2)

LC1(f2)
− LC2(f3)

LC1(f3)

)
6= 0

by Lemma 3.6 allowing us to conclude that LM1(f4) = e9
1e

`
2−2
2 .

For ` odd, the base case is when j = 2 and we want to show that LM1(f3) =

e7
1e

`−1
2 −1

2 . Using Lemmas 3.6 and 3.7 the same line of reasoning used above gives
us

LM1(f1) = e3
1e

`−1
2

2

LM2(f1) = e5
1e

`−1
2 −1

2

LM1(f2) = e5
1e

`−1
2

2

LM2(f2) = e7
1e

`−1
2 −1

2 .

Thus,

f3 = e2
1 · LM1(f1) +

e2
1 · LT2(f1)

LC1(f1)
− LM1(f2)− LT2(f2)

LC1(f2)
+ lex smaller terms

= c · e7
1e

`−1
2 −1

2 + lex smaller terms.

where

c =

(
LC2(f1)

LC1(f1)
− LC2(f2)

LC1(f2)

)
6= 0

by Lemma 3.6 allowing us to conclude that LM1(f3) = e7
1e

`−1
2 −1

2 .
For the inductive step there are two cases depending on the parity of `. We will

first attack the case for ` even. Pick an arbitrary j ∈ {5, . . . , ` − 1} and assume

that for all even m < j we have that LM1(fm) = e2m+1
1 e

`
2−

m
2

2 and we want to show

that LM1(fj+1) = e
2(j+1)+1
1 e

`
2−

j
2−

1
2

2 . We have that

fj−1 =
e2

1fj−3

LC1(fj−3)
− fj−2

LC1(fj−2)

fj =
e2

1fj−2

LC1(fj−2)
− e2fj−1

LC1(fj−1)

fj+1 =
e2

1fj−1

LC1(fj−1)
− fj
LC1(fj)

.

We know by assumption that LM1(fj−1) = e
2(j−1)+1
1 e

`
2−

j−1
2

2 . Additionally, Lemma
3.6 is really saying that if we look at fj then e2 multiplied by the second largest
lex order term in fj−1 survived the difference and so we know that LM1(fj) =
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e2 · LM2(fj−1). Thus, Lemma 3.7 tells us

LM1(fj−1) = e
2(j−1)+1
1 e

`
2−

j−1
2

2

LM2(fj−1) = e
2(j−1)+3
1 e

`
2−

j+1
2

2

LM1(fj) = e
2(j−1)+3
1 e

`
2−

j−1
2

2

LM2(fj) = e
2(j−1)+5
1 e

`
2−

j+1
2

2

and so we have that

fj+1 = e2
1 · LM1(fj−1) +

e2
1 · LT2(fj−1)

LC1(fj−1)
− LM1(fj)−

LT2(fj)

LC1(fj)
+ lex smaller terms

=

(
LC2(fj−1)

LC1(fj−1)
− LC2(fj)

LC1(fj)

)
· e2(j−1)+5

1 e
`
2−

j+1
2

2 + lex smaller terms.

=

(
LC2(fj−1)

LC1(fj−1)
− LC2(fj)

LC1(fj)

)
· e2(j+1)+1

1 e
`
2−

j+1
2

2 + lex smaller terms.

By Lemma 3.6 we only lose one term when going from fj to fj+1 and since we lost
LM1(fj) = e2

1LM1(fj−1) we have(
LC2(fj−1)

LC1(fj−1)
− LC2(fj)

LC1(fj)

)
6= 0

and so we can conclude that LM(fj+1) = e
2(j+1)+1
1 e

`
2−

j+1
2

2 as desired.

We will now go about the case for ` odd. Pick an arbitrary j ∈ {2, . . . , ` − 1}
and assume that for all odd m < j we have that LM1(fm) = e2m+1

1 e
`
2−

m
2

2 . Using
the same line of reasoning used in the case for ` even it follows that LM1(fj+1) =

e
2(j+1)+1
1 e

`
2−

j
2−

1
2

2 . �

The above failed attempt demonstrate that the first approach using Gröbner
Bases is too hands-on, and suggests that we should instead look elsewhere.

3.2. A Lex-greedy Approach. Some of the observations about the data, col-
lected using Macaulay2, on lex standard monomial bases forRk,` andRnLG prompted
the following definitions and conjectures.

Definition 3.8. Given any graded algebra R =
⊕∞

d=0Rd over a field k, with
ad := dimk Rd, so Hilb(R, q) =

∑∞
d=0 adq

d, say that a sequence of homogeneous
elements (xt;x1, x2, . . .) of R give a lex-greedy generating sequence for R if for
each degree d = 0, 1, 2, . . ., one has a k-basis for the dth homogeneous component
Rd consisting of the first ad monomials xα1

1 xα2
2 · · · with a factor of xt and with∑

j αj = d in the lexicographic ordering with x1 < x2 < · · · on the set of all

monomials of degree d. One also writes (x1, x2, · · · ) to represent (1;x1, x2, · · · ).

In particular, this condition implies that {x1, x2, . . .} generate R as an algebra
over k, since a subset of the monomials in these elements give a k-basis for R.
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Example 3.9. Start with polynomials Q[e1, e2] having deg(e1) := 1,deg(e2) := 2.
Then these two quotient rings

R := R2,2 ∼=Q[e1, e2]/(e3
1 − e1e2, e

4
1 − 2e2

1e2 + e2
2),

R′ :=Q[e1, e2]/(e3
1, e

2
2)

share the same Hilbert series

Hilb(R, q) = Hilb(R′, q) = 1 + q + 2q2 + q3 + q4 =

[
4
2

]
q

.

Then R = R2,2 has (e1, e2) as a lex-greedy generating sequence, as it has a Q-basis

degree Q-basis elements

0 {1}
1 {e1}
2 {e2

1, e2}
3 {e3

1}
4 {e4

1}
But R′ does not have (e1, e2) as lex-greedy generating sequence, since a3 = a4 = 1,
but e3

1 = 0 in (R′)3 and e4
1 = 0 in (R′)4.

Conjecture 3.10. Both Rk,`,m/Rk,`,m−1 and Rn,mLG /Rn,m−1
LG for odd m, have lex-

greedy generating sequences, specifically

(a) the sequence (em; e1, e2, e3, . . . , em) for Rk,`,m/Rk,`,m−1, and

(b) the sequence (em; e1, e3, e5, . . . , em) for Rn,mLG /Rn,m−1
LG .

Remark 3.11. Conjecture 3.10 is not equivalent to the statement that Rk,l and RnLG
have the following lex-greedy generating sequences:

(a) the sequence (e1, e2, e3, . . . , ek) for Rk,`, and
(b) the sequence (e1, e3, e5, . . . , ek) for RnLG, where k is the largest odd number

less than n.

An example that illustrates this is when we consider the degree 12 part of the
graded ring R3,6, which has dimension 7. We would expect the degree 12 elements
in the Q-basis of R3,6 to be

{1, e12
1 , e2e

10
1 , e

2
2e

8
1, e

3
2e

6
1, e

4
2e

4
1, e

5
2e

2
1, e

6
2}

according to the definition of lex-greedy. However, the degree 12 elements in the
Q-basis of R3,6 are

{1, e12
1 , e2e

10
1 , e

2
2e

8
1, e

3
2e

6
1, e

4
2e

4
1, e

5
2e

2
1, e3e

9
1}.

Despite looking promising at first, after further examination, we developed a
counterexample to Conjecture 3.10.

Proposition 3.12. Conjecture 3.10 is false.

Proof. The counterexample for Rk,`,m/Rk,`,m−1 is when k = 6, l = 7, and m = 3.
In this case when we look at the degree 31 part of the Q-basis for R6,7,3/R6,7,2, we
have e2

3e
25
1 , but if it had a lex-greedy generating sequence then we would expect to

have e3e
14
2 instead.

The counterexample for Rn,mLG /Rn,m−1
LG is when n = 11 and m = 5. In this case,

when we look at the degree 47 part of the Q-basis for R11,5
LG /R

11,4
LG , we have e2

5e
37
1 ,
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but if it had a lex-greedy generating sequence then we would expect to have e2
5e

37
1

instead. �

Before we knew that Conjecture 3.10 was false, the reason it seemed helpful was
due to the following purely combinatorial conjecture, which felt very approachable.

Conjecture 3.13. Conjectures 3.10(a),(b) imply the Reiner-Tudose Conjecture,
and Conjecture 2.3, respectively.

Despite Conjecture 3.10 being false, Lex-greedy generating sequences starting
with a degree one element interact well with the ideas in the Hard Lefschetz The-
orem [2, p. 122], as we now explain.

Definition 3.14. Recall that one says the graded ring R has symmetric Hilbert
series

Hilb(R, q) = a0 + a1q + a2q
2 + · · ·+ aN−1q

N−1 + aNq
N

if ad = aN−d for d = 0, 1, 2, . . . , bN2 c.
One furthermore says that an element x in R is a Lefschetz element if for every

d = 0, 1, . . . , bN2 c, the map Rd −→ RN−d which multiplies by xN−2d gives a k-vector
space isomorphism Rd ∼= RN−d.

Note that having a Lefschetz element x in R will imply that its Hilbert series is
symmetric unimodal, meaning not only that ad = aN−d, but also

a0 ≤ a1 ≤ . . . abN2 c = adN2 e
≥ · · · ≥ aN−1 ≥ aN .

This is because the map Rd −→ Rd+1 which multiplies by x has to be injective for
d < N

2 , since multiplying by xN−2d = x · xN−2d−1 is bijective.

Proposition 3.15. Assuming that the graded ring R has symmetric Hilbert series,
if it has a lex-greedy generating sequence (x1, x2, . . .) with deg(x1) = 1, then x1 is
a Lefschetz element for R.

In particular, this implies that the Hilbert series is symmetric unimodal.

Proof. Fix a degree d in the range 0, 1, 2, . . . , bN2 c. By our assumption that (x1, x2, . . .)
is a lex-greedy generating sequence, the first ad monomials

(3.2) {m1,m2, . . . ,mad}

of degree d in lex order give a k-basis for Rd. Since x1 is the smallest variable in
our lex order with x1 < x2 < · · · , it is also true that

(3.3) {m1 · xN−2d
1 ,m2 · xN−2d

1 , . . . ,mad · x
N−2d
1 }

are the first ad monomials of degree N − d in lex order. On the other hand,
by symmetry, aN−d = ad, and hence by our lex-greedy assumption again, the
monomials in (3.3) give a k-basis for RN−d. But this then shows that the map
Rd −→ RN−d which multiplies by xN−2d gives a k-vector space isomorphism, since
it carries the basis (3.2) to the basis (3.3). �

Thus, while lex-greediness looked promising, it is clear that finding an algorithm
to go from the right hand side of the Reiner-Tudose Conjecture to the standard
monomials might be asking too much. Thus, we see that it would be advanta-
geous to try another approach to prove this conjecture that doesn’t heavily involve
Gröbner Bases.
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4. An Approach Using Natural Maps Between Rings

There are several natural maps between Grassmannians, giving rise to maps
between Rk,`. The goal of this section is to utilise such maps, to construct com-
mutative diagrams, to which the Hilbert additivity property affords us equivalent
formulations of the Reiner-Tudose Conjecture and Conjecture 2.3, respectively. One
such family of natural maps is as follows.

4.1. Maps Between Grassmannians. One has an inclusion of Grassmannians

(4.1) Gr(k, k + `− 1) ↪→ Gr(k, k + `)

that comes from including Ck+`−1 ↪→ Ck+`, and then just sending a k-dimensional
subspace of Ck+`−1 to the same subspace inside Ck+`. Additionally, 4.1 induces a
map in the opposite direction on their respective cohomology rings.

(4.2) H∗(Gr(k, k + `)) � H∗(Gr(k, k + `− 1))

Lemma 4.1. Ik,` ⊆ Ik,`−1

Proof. It suffices to show that h`+k can be expressed as a linear combination of the
h`, h`+1, . . . , h`+k−1. We notice that

Q[e1, e2, . . . , ek] = Q[e1, e2, . . . ]/(ek+1, ek+2, . . . ) ,

and also

hd = det



e1 e2 · · · · · · ed

1 e1 e2
. . .

...

0 1 e1
. . .

...
...

...
. . .

. . . e2

0 · · · 0 1 e1


.

Doing cofactor expansion with respect to the first row, we get

hd = e1hd−1 − e2hd−2 + · · ·+ (−1)ded.

Letting d = ` + k and throwing away the last ` terms which are all zero, we are
done. �

Map (4.2) in terms of Rk,` is the following map:

(4.3) Rk,` � Rk,`−1

doing exactly what you would expect: it sends the image of each ei in Rk,` to the
same image of ei in Rk,`−1. This map is also well-defined when viewing Rk,` as the
quotient ring

Rk,` = Q[e1, . . . , ek]/Ik,` where Ik,` := (h`+1, h`+2, . . . , h`+k).

since Ik,` ⊆ Ik,`−1 by Lemma 4.1.
As the surjection 4.3 sends ei 7→ ei, it also induces surjections

(4.4) Rk,`,m � Rk,`−1,m

as one would have hoped.
On the other hand, by Proposition 2.15, we know that there exists a graded ring

isomorphism: Rk,` −→ R`,k that maps (the images of) ei 7→ hi for i = 1, 2, . . . , k
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and hj 7→ ej for j = 1, 2, . . . , `, this means that the above surjections Rk,`,m �
Rk,`−1,m also give rise to the following surjections:

ϕk,`,m : Rk,` � Rk−1,`,m.

4.2. Maps Between Lagrangian Grassmannians. Similarly, we obtain the fol-
lowing surjections:

RnLG � Rn−1
LG and Rn,mLG � Rn−1,m

LG

coming from restricting a nondegenerate symplectic bilinear form (−,−) on C2n to
such a bilinear form on C2n−2, so that one can send a (maximal) isotropic (n− 1)-

dimensional subspace W of C2n−2 to Ŵ := W + C · v0 where v0 is some fixed
vector of C2n that lies in (C2n−2)⊥. This would give an inclusion of the Lagrangian
Grassmannians, that gives rise to the above surjections.

One can also check directly that the surjective map

Q[e1, e2, . . . , en−1, en] −→ Q[e1, e2, . . . , en−1]
ei 7−→ ei for i = 1, 2, . . . , n− 1
en 7−→ 0

induces a surjective ring map RnLG � Rn−1
LG because it sends the ideal InLG defining

RnLG into the ideal In−1
LG .

4.3. Diagrammatic Reformulation for the Two Main Conjectures. In this
section, we describe equivalent forms of the Reiner-Tudose Conjecture using meth-
ods from algebraic topology. We first construct the equivalent conjectures for the
Lagrangian Grassmannian, because there are only two parameters, giving rise to a
2-D commutative diagram. Then, we naturally extend the methods to the Grass-
manian, giving rise to a 3-D commutative diagram.

4.3.1. Reformulation for RnLG. By the surjections in section 4.2, we obtain the
following commutative diagram:

R1,1
LG

R2,1
LG R2,2

LG

R3,1
LG R3,2

LG R3,3
LG

R4,1
LG R4,2

LG R4,3
LG R4,4

LG

...
...

...
...

. . .

Note that the rows and columns are not exact sequences, so we would like to
investigate the following commutative square
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Rn−1,m−1
LG Rn−1,m

LG

Rn,m−1
LG Rn,mLG .

First, we form the cokernels of the two horizontal injections and get an induced
surjective map between them. So the rows are short exact sequences of graded
Q-algebras

0 Rn−1,m−1
LG Rn−1,m

LG Rn−1,m
LG /Rn−1,m−1

LG 0

0 Rn,m−1
LG Rn,mLG Rn,mLG /Rn,m−1

LG 0

Then we apply the snake lemma to complete the commutative diagram where all
rows and columns are short exact sequences

0 0 0

0 Rn−1,m−1
LG Rn−1,m

LG Rn−1,m
LG /Rn−1,m−1

LG 0

0 Rn,m−1
LG Rn,mLG Rn,mLG /Rn,m−1

LG 0

0 ker(φn,m−1) ker(φn,m) ker(φn,m)/ ker(φn,m−1) 0

0 0 0

φn,m−1 φn,m

Property 4.2 (Hilbert Additivity Property for SES). Let

0 −→ A −→ B −→ C −→ 0

be a short exact sequence of graded vector spaces. The Hilbert Series is Additive
relatively to the below SES

(4.5) Hilb(B, q) = Hilb(A, q) + Hilb(C, q).

So Property 4.2 gives the following two equivalent expressions of Conjecture 2.3:

Conjecture 4.3. Assume m is odd, then the Hilbert series of ker(φn,m) is

Hilb( ker(φn,m), q) =
∑

1≤k≤m
k odd

qk · q(
n−k+1

2 )
[
n
k

]
q

Conjecture 4.4. Assume m is odd, then the Hilbert series of ker(φn,m)/ ker(φn,m−1)
is

Hilb( ker(φn,m)/ ker(φn,m−1), q) = qm · q(
n−m+1

2 )
[
n
m

]
q

Hence, proving any of the above conjectures would automatically prove Conjec-
ture 2.3, and vice versa.
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4.3.2. Reformulation for Rk,`. Similarly, by the surjections obtained in section 4.1,
and the same construction in 4.3.1 we have the following

0 0 0

0 Rk−1,`,m−1 Rk−1,`,m Rk−1,`,m/Rk−1,`,m−1 0

0 Rk,`,m−1 Rk,`,m Rk,`,m/Rk,`,m−1 0

0 ker(ϕk,`,m−1) ker(ϕk,`,m) ker(ϕk,`,m)/ ker(ϕk,`,m−1) 0

0 0 0

ϕk,`,m−1 ϕk,`,m

Since there are three variables for the subalgebras for the Grassmannian case, m, `
and k, the diagrammatic reformulation is actually a 3D prism, each direction rep-
resenting the three variables. Above, is a slice of the diagram and below are the
first three layers of the 3D-diagram:

R1,1,1

R1,2,1

R2,2,1 R2,2,2

R1,3,1

R2,3,1 R2,3,2

R3,3,1 R3,3,2 R3,3,3

Likewise, applying Property 4.2, we obtain equivalent formulation of the Reiner-
Tudose Conjecture.

Conjecture 4.5.

Hilb( ker(ϕk,`,m) , q) =

m∑
i=1

qi+(k−i)(`−i+1)

[
`
i

]
q

[
k − 1
k − i

]
q

Conjecture 4.6.

Hilb( ker(ϕk,`,m)/ ker(ϕk,`,m−1) , q) = qm · q(k−m)(`−(m−1))

[
`
m

]
q

[
k − 1
m− 1

]
q
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Analogously to the Lagrangian case, proving Conjecture 4.4 would automatically
prove the Reiner-Tudose Conjecture by Property 4.2.

4.4. Approach via Coefficient-Wise Inequalities. One might approach the
main conjectures by proving only a coefficientwise inequality, perhaps inductively.
While we were not successful in proving the conjecture using this approach, we
highlight why we considered it below. Proving an inequality forces a coefficientwise
equality, for the following reason: by Proposition 7, in [5]

(4.6) Hilb(Rk,`, q) =

[
k + `
k

]
q

= 1 +

k∑
i=1

k−i∑
j=0

qi
(
`

i

)
· qj(`−i+1)

(
i+ j − 1

j

)
.

On the other hand, we know, by using a telescoping series argument, that:

(4.7) Hilb(Rk,`, q) =

k∑
m=0

Hilb(Rk,`,m/Rk,`,m−1, q).

Hence if we show that the RHS of equation 4.6 is less (greater) than or equal to
the RHS of equation 4.7 as polynomials in q with nonnegative coefficients at q = 1,
then these two sides are the same integer

(
k+`
k

)
. Therefore, the coefficientwise

inequality must be an equality.
One might use recurrences to prove a coefficientwise inequality by induction.

While we have come up with recursive formulas, it was not clear for us how to
utilise them to demonstrate coefficientwise inequalities.

4.5. Recursive Formula for Rk,`. For the Grassmannian set-up, let’s define our
frequently occurring graded quotient Q-vector space and Hilbert series

Qk,`,m := Rk,`,m/Rk,`,m−1,

Hk,`,m := Hilb(Qk,`,m, q)

and let’s also recall from from [5, Remark 9] that the inner sum in the Reiner-

Tudose Conjecture is some kind of q-analogue of
(
k
m

)
that satisfies a q-Pascal-like

recurrence

fk,`m = fk−1,`
m−1 + q`−m+1fk−1,`

m .

Thus the conjecture can be rephrased as

Hk,`,m = qm
[
`
m

]
q

fk,`m(4.8)

= qm
[
`
m

]
q

(
fk−1,`
m−1 + q`−m+1fk−1,`

m

)
= qm · [`−m+ 1]q

[m]q

[
`

m− 1

]
q

fk−1,`
m−1 + q`−m+1 · qm

[
`
m

]
q

fk−1,`
m

hence

Hk,`,m =
q − q`−m+2

1− qm
Hk−1,`,m−1 + q`−m+1Hk−1,`,m.

We haven’t yet been able to use this recursive formula to prove any inequalities.
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4.6. A “q-Pascal Short Exact Sequence”. Proposition 4.7 below uses some of
the natural maps appearing in Diagram 4.3.2 to say something interesting about
Rk,`, modeling this q-Pascal recurrence:

(4.9)

[
k + `
k

]
q

=

[
k + `− 1
k − 1

]
q

+ qk
[
k + `− 1

k

]
q

.

Proposition 4.7. Consider this short exact sequence

0→ Q[e1, . . . , ek−1, ek]
ek·−→ Q[e1, . . . , ek−1, ek]

ek=0−→ Q[e1, . . . , ek−1]→ 0
f(e1, . . . , ek) 7−→ ek · f(e1, . . . , ek)

g(e1, . . . , ek−1, ek) 7−→ g(e1, . . . , ek−1, 0)

of maps of Q-vectors spaces, whose first map raises degree by k while the second
map preserves degree. Then it induces a short exact sequence on the quotients

0→ Rk,`−1 ·ek−→ Rk,`
ek=0−→ Rk−1,` → 0

which after taking Hilbert series, gives

Hilb(Rk,`, q) = Hilb(Rk−1,`, q) + qkHilb(Rk,`−1, q)

modeling the q-Pascal recurrence (4.9).

Proof. Recall that we can think of Rk,` as being the quotient of the ring of symmet-
ric functions ΛQ in which one mods out by the Q-span of Schur functions {sλ} for
which λ does not fit in a (`k) rectangle. The second “ek = 0” map can be identified
with the map that sends sλ to sλ if λ has no columns of length k, and maps it to 0
if it has at least one column of length k. Thus the kernel of the second map is the
span of {sλ} having λ inside the (`k) rectangle and having first column of length
k. However, it is not hard to see using the Pieri formula for multiplying sλ by ek
that this span is exactly the image of the first “ek·” map. �

However, it was not clear how to utilise Proposition 4.7, in conjunction with the
recursive formula 4.8, to analogously model recurrences involving the Rk,`,m for the
purpose of demonstrating coefficientwise inequalities.

Since the Reiner-Tudose Conjecture is equivalent to Conjecture 4.6; we consid-
ered it to be useful to formulate a recursive formula for

Hilb( kerϕk,`,m/ kerϕk,`,m−1, q)

which we will denote here by:

Hilb( kerϕk,`,m/ kerϕk,`,m−1, q) = ψk,`,m := qmq(k−m)(`−m+1)

[
`
m

]
q

[
k − 1
m− 1

]
q

to give a recursive formula, we first present the following:

Lemma 4.8 (q-analogue of Hockey Stick). Take arbitrary n,m ∈ Z. The following
holds: [

n
m

]
q

=

n−m∑
i=0

qm·i
[
n− `− i
m− 1

]
q

Proof. Fix m ∈ Z. This is clear when n ≤ m. We induct on n. We note:[
n
m

]
q

=

[
n− 1
m− 1

]
q

+ qm
[
n− 1
m

]
q
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By induction, we have

qm
[
n− 1
m

]
q

= qm
n−m−1∑
i=0

qm·i
[
n− 2− i
m− 1

]
q

=

n−m∑
i=1

qm·i
[
n− `− i
m− 1

]
q

Plugging back into the previous expression gives the desired form of

[
n
m

]
q

. �

The following corollaries simplify the proof of Proposition 4.11.

Corollary 4.9. The following holds:

qmq(k−m)(`−m+1)qm
[
`− 1
m

] [
k − 2
m− 2

]
= q

k−m∑
i=1

qk·iψk−1,`−1−i,m−1

Proof. It is clear from the formula that the following holds for each i:

qmq(k−m)(`−m+1)

[
`− 1− i
m− 1

] [
k − 2
m− 2

]
= q · qi(k−m)ψk−1,`−1−i,m−1.

Expanding the

[
`− 1
m

]
term in the corollary yields the following:

qmq(k−m)(`−m+1)qm
[
`− 1
m

] [
k − 2
m− 2

]
= qm

`−m−1∑
i=0

qm·iq(k−m)(`−m+1)qm
[
`− 2− i
m− 1

] [
k − 2
m− 2

]

=

`−m∑
i=1

qm·iq(k−m)(`−m+1)qm
[
`− 1− i
m− 1

] [
k − 2
m− 2

]

=

`−m∑
i=1

qm·iq(k−m)iqψk−1,`−1−i,m−1

= q

`−m∑
i=1

qkiψk−1,`−1−i,m−1.

�

Corollary 4.10. Analogously, the following holds true:

qmq(k−m)(`−m+1)qm−1

[
`− 1
m− 1

]
q

[
k − 2
m− 1

]
q

= q

`−m∑
i=1

q`·iψk−1−i,`−1,m−1

Proof. Similar to before, note that:

qmq(k−m)(l−m+1)

[
`− 1
m− 1

] [
k − 2− i
m− 1

]
= q · qi(l−m+1)ψk−1−i,`−1,m−1
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Expanding the

[
k − 2
m− 1

]
term in the corollary we have:

qmq(k−m)(`−m+1)qm−1

[
`− 1
m− 1

] [
k − 2
m− 1

]
= qm−1

k−m−1∑
i=0

q(m−1)iq(k−m)(`−m+1)qm
[
`− 1
m− 1

] [
k − 2− i
m− 2

]

=

k−m∑
i=1

q(m−1)iq(k−m)(`−m+1)qm
[
`− 1
m− 1

] [
k − 2− i
m− 2

]

=

k−m∑
i=1

q(m−1)iq(`−m+1)iqψk−1,`−1−i,m−1

= q

k−m∑
i=1

q`·iψk−`−i,`−1,m−1

�

The above lead to the following:

Proposition 4.11. ψ follows the following recurrence:

ψk,`,m = qψk−1,`−1,m−1+qk+`−1ψk−1,`−1,m+q

`−m∑
i=1

qkiψk−1,`−1−i,m−1+q

k−m∑
i=1

ql·iψk−1−i,`−1,m−1

Proof. We start with Pascal’s identity to obtain the following:

ψk,`,m = qmq(k−m)(`−m+1)

([
`− 1
m− 1

]
q

+ qm
[
`− 1
m

]
q

)([
k − 2
m− 2

]
q

+ qm−1

[
k − 2
m− 1

])

= qmq(k−m)(`−m+1)

([
`− 1
m− 1

]
q

[
k − 2
m− 2

]
q

+ q2m−1

[
`− 1
m

]
q

[
k − 2
m− 1

]
q

+qm
[
`− 1
m

]
q

[
k − 2
m− 2

]
q

+ qm−1

[
`− 1
m− 1

]
q

[
k − 2
m− 1

]
q

)

= qψk−1,`−1,m−1 + q(k+`−1)ψk−1,`−1,m + q

`−m∑
i=1

qk·iψk−1,`−1−i,m−1 + q

k−m∑
i=1

q`·iψk−`−i,`−1,m−1

�

4.7. Recursive Formula for Rn,mLG . The following recursive formula avoids the
problem posed by Rn,mLG vanishing at m even:
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ψnm(q) = qmq(
n−m+1

2 )
[
n
m

]
q

= qmq(
n−m+1

2 )

([
n− 1
m− 1

]
q

+ qm
[
n− 1
m

]
q

)

= qmq(
n−m+1

2 )
[
n− 1
m− 1

]
q

+ q2mq(
n−m+1

2 )
[
n− 1
m

]
q

= qmq(
n−m+1

2 )

(
1− qn−1

1− qm−1

[
n− 2
m− 2

]
q

)
+ q2mq(

(n−1)−m+1
2 )qn−m

[
n− 1
m

]
q

= q2qm−2q(
(n−2)−(m−2)+1

2 )
(

1− qn−1

1− qm−1

)[
n− 2
m− 2

]
q

+ qnqmq(
(n−1)−m+1

2 )
[
n− 1
m

]
q

= q2

(
1− qn−1

1− qm−1

)
ψn−2
m−2(q) + qnψn−1

m (q)

Where we used the result that follows from the following identities:

(a)

[
n
m

]
q

=

[
n− 1
m− 1

]
q

+ qm
[
n− 1
m

]
q

(b)

[
n
m

]
q

=

[
n− 1
m

]
q

+ qn−m
[
n− 1
m− 1

]
q

⇒
[
n− 1
m

]
q

=

[
n
m

]
q

− qn−m
[
n− 1
m− 1

]
q

⇒
[
n
m

]
q

=

[
n− 1
m− 1

]
q

+ qm

([
n
m

]
q

− qn−m
[
n− 1
m− 1

]
q

)

⇒
[
n
m

]
q

=
1− qn

1− qm

[
n− 1
m− 1

]
q

.

4.8. Doubly Filtered Basis. In this section we outline an unsuccessful attempt
to exploit the simplicity of the RHS of Conjecture 4.6. Utilising a combinatorial
interpretation of the RHS, we attempted to construct a 1-1 correspondence between
the doubly filtered basis elements and some Ferrers diagrams. We were motivated
by the fact that, accomplishing this task, would have allowed us to take the union,
over m, of the doubly filtered basis, yielding the kind of basis we are looking for,
for the whole algebra.

Consider the right most Short Exact Column in Section 4.3.2 which is given by

0 −→ A −→ Rk,`,m/Rk,`,m−1 −→ Rk−1,`,m/Rk−1,`,m−1(4.10)

where

A := ker(ϕk,`,m)/ ker(ϕk,`,m−1).

By applying property 4.2 to the SES (4.10) we obtain:

(4.11) Hilb(Rk,`,m/Rk,`,m−1, q) = Hilb(A , q) + Hilb(Rk−1,`,m/Rk−1,`,m−1 q).
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where Hilb(A , q) and Hilb(Rk−1,`,m)/Rk−1,`,m−1 q) are considered as subspaces
of Hilb(Rk,`,m/Rk,`,m−1, q). By rearranging equation 4.11 we obtain:

(4.12) Hilb(A , q) = Hilb(Rk,`,m/Rk,`,m−1, q)−Hilb(Rk−1,`,m/Rk−1,`,m−1, q).

Now let Bk,l denote the Q-basis for Rk,` given by the Gröbner basis with respect
to a lexicographic monomial order in which ek > · · · > e2 > e1.

Lemma 4.12. Bk,`,m := {x ∈ Bk,` : ej - x for j ≥ m+ 1} is a Q-basis for Rk,`,m.

Proof. As in [15], this follows from the elimination of variables properties of the
Gröbner bases with respect to lexographical ordering, and the fact that standard
monomials give rise to bases for the quotients. �

Also, let
Qk−1,`,m = Rk−1,`,m/Rk−1,`,m−1,

Then it is clear that Bk−1,`,m=: Bk−1,`,m := Bk−1,`,m \ Bk−1,`,m−1 is a Q-basis for
Qk−1,`,m and we refer to it as the (once) filtered basis. Similarly, let

Qk,`,m = Rk,`,m/Rk,`,m−1

and hence likewise Bk,`,m=: Bk,`,m := Bk,`,m \ Bk,l,m−1 is a Q-basis for Qk,`,m

Proposition 4.13. Bk−1,`,m ⊂ Bk,`,m.

Proof. We can write

Rk,`,m = Q[e1, · · · , em]/Ik,`,m

Rk−1,`,m = Q[e1, · · · , em]/Ik−1,`,m.

Furthermore, by definition of an elimination ideal, we can write the defining ideals
as

Ik,`,m = Ik,` ∩Q[e1, · · · , em]

Ik−1,`,m = Ik−1,` ∩Q[e1, · · · , em].

Since Ik,` ⊂ Ik−1,`, it implies that Ik,`,m ⊂ Ik−1,`,m. Let LT (G(I)) denote the
leading terms of a Gröbner basis for the ideal I with respect to lexicographical
ordering. Thus, we have that LT (G(Ik,`,m)) ⊂ LT (G(Ik,`,m)). Let

SM(Rk,`,m) = {x ∈ Rk,`,m : y6 | x,∀y ∈ LT (G(Ik,`,m))}
denote the set of standard monomials with respect to the ideal Ik,`,m, and likewise,
let

SM(Rk−1,`,m) = {x ∈ Rk−1,`,m : y6 | x,∀y ∈ LT (G(Ik−1,`,m))}
denote the set of standard monomials with respect to the ideal Ik−1,`,m. Then, it
follows that

SM(Rk−1,`,m) ⊂ SM(Rk,`,m).

It also immediately follows that

SM(Rk−1,`,m−1) ⊂ SM(Rk,`,m−1),

hence
Bk−1,`,m ⊂ Bk,`,m.

�
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Now let

Dk,`,m = Bk,`,m \Bk−1,`,m

denote the doubly filtered basis. Thus, when we compute the Q-basis of the com-
plement of Bk−1,`,m inside Bk,`,m (i.e. Dk,`,m), we can consecutively compute the
RHS of equation 4.12 which is equal to Hilb(A , q), which is what we want.

Remark 4.14. Notice that the doubly-filtered basis Dk,`,m, is not the Q-basis of the
A. To see this let f be the map:

(4.13) f : Rk,l,m/Rk,l,m−1 −→ Rk−1,l,m/Rk−1,l,m−1

appearing in the commutative diagram in in Section 4.3.2.
From the exactness of the last column in the commutative diagram in subsection

4.3.2, namely:
(4.14)

0 −→ ker(φk,l,m)/ker(φk,l,m−1)
g−→ Rk,`,m/Rk,`,m−1 f−→ Rk−1,`,m/Rk−1,`,m−1 −→ 0

whose general structure is:

0 −→ ker(f) −→ Rk,`,m/Rk,`,m−1 −→ cokernel(g) −→ 0.

we deduce that:

(4.15) ker(f) = ker(φk,l,m)/ker(φk,l,m−1).

Subsequently, for elements γ ∈ Bk−1,`,m such that γ ∈ Bk,`,m, the surjection f
maps γ to itself.

For γ ∈ Dk,`,m = Bk,`,m \ Bk−1,`,m, f(γ) is not necessarily zero, and could be
some linear combination of the γ’s. Hence, the ker(f) is not necessarily Dk,`,m.

By definition of the Hilbert Series we get that:
(4.16)∑

x∈Dk,`,m
qdeg(x) = Hilb(Rk,`,m/Rk,`,m−1, q)−Hilb(Rk−1,`,m/Rk−1,`,m−1 , q).

Hence using equation 4.16 and equation 4.12, it follows that

Hilb(A, q) =
∑

x∈Dk,`,m
qdeg(x)

By Conjecture 4.6, we obtain the equivalent conjecture in terms of the doubly
filtered basis:

Conjecture 4.15.

Hilb(A, q) =
∑

x∈Dk,`,m
qdeg(x) = qm · q(k−m)(`−(m−1))

[
`
m

]
q

[
k − 1
m− 1

]
q

Definition 4.16. We say a partition λ is `-bounded if λ1 ≤ `.

Definition 4.17. A `-bounded partition λ = (λ1, . . . , λ`(λ)) is called m-vacant if m
is the largest integer so that a ((m− 1)m) rectangle can fit inside the complement
of λ in the (``(λ)) rectangle.

Definition 4.18. A partition λ = (λ1, . . . , λ`(λ)) ⊂ (`k) is called strong m-vacant
if it’s m-vacant and `(λ) = k.



34 THE 2020 POLYMATH JR. “Q-B-AND-G” GROUP†

Proposition 4.19. (Combinatorial Interpretation of the Reiner-Tudose Conjec-
ture)

Hilb(Rk,`,m/Rk,`,m−1, q) =
∑
λ⊂(`k)

m−vacant

q|λ|

Proof. Let λ ⊂ (`k) be an m-vacant partition. Then we can decompose λ into four
sub-partitions:

1. (1m) (red)
2. ((`−m+ 1)l(λ)−m) (purple)
3. a partition P ⊂ ((`−m)m) (pink)
4. a partition Q ⊂ ((m− 1)l(λ)−m) (green)

`(λ)

k

`

m

m− 11

The pair of sub-partitions (P,Q) together with the number of parts `(λ) specify
the m-vacant partition λ uniquely. That is to say, by specifying a number j in the
range m ≤ j ≤ k, and an arbitrary pair partitions (P,Q) with P ⊂ ((`−m)m) and
Q ⊂ ((m − 1)j−m), there exists a unique m-vacant partition λ ⊂ (`k), such that
(P,Q) is the pair of sub-partitions for λ and j = l(λ).

Therefore,∑
λ⊂(`k)

m−vacant

q|λ| =

k∑
j=m

∑
P⊂((`−m)m)

Q⊂((m−1)j−m)

qm · q(`−m+1)(j−m) · q|P | · q|Q|

= qm

 ∑
P⊂((`−m)m)

q|P |

 k∑
j=m

q(j−m)(`−m+1)
∑

Q⊂((m−1)j−m)

q|Q|


= qm

[
`
m

]
q

k−m∑
j=0

qj(`−m+1)

[
m+ j − 1

j

]
q


as required. �

Similarly, we now provide a combinatorial interpretation of the RHS in Con-
jecture 4.15 which requires strong m-vacant Ferrers diagrams. A general strong
m-vacant Ferrers diagram is depicted below:
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k = `(λ)

`

m

m− 1

Recall that the RHS of Conjecture 4.15 is

qm · q(k−m)(`−(m−1))

[
`
m

]
q

[
k − 1
m− 1

]
q

.

The red strip whose height is m, corresponds to the multiplicity of the first q, the

green box whose dimension is ((m−1)k−m) corresponds to the degree of

[
k − 1
m− 1

]
q

,

since

[
k − 1
m− 1

]
q

=

[
(k −m) +m− 1

k −m

]
q

. The pink box whose dimension is ((`−m)m)

corresponds to the degree of

[
`
m

]
q

=

[
`−m+m

m

]
q

. Lastly, the dimension of the

purple box, ((`−m+1)k−m) corresponds to the multiplicity of the second q. Hence,
combinatorially, we interpret the RHS as the number of Strong m-vacant Ferrers
diagrams fitting inside (`k) rectangle. Therefore we get:

(4.17) qm
[
`
m

]
q

q(k−m)(`−(m−1))

[
k − 1
m− 1

]
q

=
∑
λ∈(k)`

λ is strong m-vacant

q|λ|.

The correspondence in Proposition 4.19 between m-vacant partitions and the
combinatorial formula in the Reiner-Tudose conjecture was first observed and ex-
plained by Reiner and Tudose in [5, Prop. 8].

This observation made us speculate that there exists a correspondence:

{λ ⊂ (k)` : λ is strong m-vacant} ←→ {Dk,`,m}
where a m-vacant partition λ corresponds to an element of the Gröbner basis of
the same degree, but we were unsuccessful in finding one.

5. Schur and k-Schur Functions

The first half of this section consists of a brief review of the classic picture
of Schubert calculus (Schur functions, Pieri’s rule, etc.) and its variation in the
Lagrangian Grassmannians. It serves as a motivation for the second half on k-Schur
functions (a fundamental tool in our approach to the Reiner-Tudose Conjecture).

We begin by fixing some notations. In this section, we denote a non-increasing
sequence of positive integers λ = (λ1, λ2, . . . , λ`(λ)) to be a partition. Recall that
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the English notation of the Ferrers diagram of λ consists of left-aligned rows of
boxes placed from top to bottom, where the ith row consists of λi boxes. We shall
use λ and its Ferrers diagram interchangeably.

5.1. Schur and Pieri for the Grassmannian. The cohomology ring Rk,` of the
Grassmannian has a basis {sλ} consisting of Schur functions indexed by partitions
λ in a (`k) rectangle. In terms of the generators e1, . . . , ek for Rk,`, they can be
expressed by the second Jacobi-Trudi determinant as coined in this Wikipedia page.

sλ = det(eλ′i+j−i)i,j=1,2,...,λ1

where λ′i is the number of squares in the ith column of λ, with the usual conventions
that e0 = 1 and ei = 0 if i is not in the range [0, k]. For example, the partition
λ = (5, 2, 2, 1) shown here

has λ′ = (λ′1, λ
′
2, λ
′
3, λ
′
4, λ
′
5) = (4, 3, 1, 1, 1) as shown here

and

s(5,2,2,1) = det


e4 e5 e6 e7 e8

e2 e3 e4 e5 e6

0 1 e1 e2 e3

0 0 1 e1 e2

0 0 0 1 e1


The Pieri’s rule allows one to multiply one of the basis elements sλ by any of

the variables ek = (s(1,1,...,1)), and expand the product back into the basis {sµ}:

ek · sλ =
∑
µ

sµ

where µ runs over all partitions that lie inside the (`k) that are obtained from λ by
adding a vertical k-strip: a collection of k new boxes that have at most one box in
each row. As an example, assuming that k, ` ≥ 6, we have

e2 · s(5,2,2,1) = s(6,3,2,1) + s(6,2,2,2) + s(6,2,2,1,1) + s(5,3,3,1)

+ s(5,3,2,2) + s(5,3,2,1,1) + s(5,2,2,2,1) + s(5,2,2,1,1,1)

corresponding to these µ obtained from λ by adding a vertical 2-strip:

https://en.wikipedia.org/wiki/Schur_polynomial
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Note that if we had not assumed k, ` ≥ 6, then some of these terms would have
been omitted. For example, if ` ≥ 6 but k = 5, then the last term s(5,2,2,1,1,1) would
have been omitted. If both k = ` = 5, then we would have also omitted the first
terms s(6,3,2,1), s(6,2,2,2), s(6,2,2,1,1).

5.2. Schur and Pieri for the Lagrangian Grassmannian. We are using the
talk by Tamvakis [7] and Kresch-Tamvakis [4] as references here.

The cohomology ring RnLG of the Lagrangian Grassmannian has a basis {σλ} of
Schur Q-functions indexed by strict partitions λ, whose shifted Young diagram fits
inside an ambient triangle ∆n = (n, n − 1, . . . , 2, 1). Equivalently, this says that
λ = (λ1 > · · · > λ`) with λ1 ≤ n. For example, for n = 6, here is the ambient
triangle and a strict partition λ = (4, 2) contained within it:

In terms of the generators e1, . . . , en, for RnLG, with the usual conventions that
e0 = 1 and ei = 0 if i is not in [0, n], the σλ can be expressed in two steps:

• First, define for i > j ≥ 1,

σi,j := eiej + 2

n−i∑
k=1

(−1)kei+kej−k.
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• Second, define

σλ := Pf(σλi,λj )1≤i<j≤r

where Pf((σλi,λj )1≤i<j≤r denotes the Pfaffian9 of the skew-symmetric matrix that
has σλi,λj as its above-diagonal (i, j)-entry if i < j; here r is the smallest even
integer that is greater than or equal to `(λ), the number of nonzero parts of λ.

Then the (Lagrangian) Pieri formula [4, eqn. (51)] expresses the product of an
ek with a σλ back in the basis {σµ}:

σλ · ek =
∑
µ

2N(λ,µ)σµ

where µ runs over all strict partitions lying in the ambient triangle ∆n which are
obtained from λ by adding a horizontal k-strip: a collection of new boxes that have
at most one box in each column. Here N(λ, µ) is the number of rows within the
horizontal k-strip µ\λ that do not contain a “diagonal” box of the ambient triangle;
the diagonal boxes are the leftmost box in each row, so in row 1 and column 1, in
row 2 and column 2, etc. As an example, assuming that n = 6, we have

σ(4,2) · e3 = 4σ(6,3) + 2σ(6,2,1) + 4σ(5,3,1)

corresponding to these µ obtained from λ by adding a horizontal 3-strip:

Note that if we had used a larger n, that is n ≥ 7, an extra term 2σ(7,2) would have
appeared in the formula.

5.3. k-Bounded Partitions and k-Conjugation. The k-Schur functions s
(k)
λ

were first introduced in [8] to solve the Macdonald positivity conjecture. The

set {s(k)
λ | λ1 ≤ k} is a basis for the ring Λk = Q[h1, . . . , hk], and they play

the analogous role as Schur functions {sλ} in the symmetric function ring Λ =
Q[h1, h2, h3, . . . ].

Remark 5.1. Instead of working in Rk,`, we can equivalently work in R`,k by Propo-
sition 2.15. We shall do that in the remaining sections of this paper for the fol-
lowing convenience. In the literature, the terms k-conjugate and k-Schur functions
are standard. If we were instead working in Rk,`, then we would be using the
non-standard terms `-conjugate and `-Schur functions.

Definition 5.2. The hook-length of a box c whose coordinate is (i, j) (where (1,1) is
the upper left corner) in the diagram of λ is defined to be λi+|{m|λm ≥ j}|−i−j+1.
Intuitively, when we consider the diagram of λ in the English notation, the hook-
length of c = (i, j) is just the number of boxes directly below and to the right of c
plus 1 (which counts c itself).

9For the definition of a Pfaffian, see this Wikipedia page.

 https://en.wikipedia.org/wiki/Pfaffian
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As an example, we label the hook-length of every box in the partition λ =
(4, 3, 1, 1).

7 4 3 1

5 2 1

2

1

Now let fix a positive integer k.

Definition 5.3. We say a partition λ is k-bounded if λ1 ≤ k.

Definition 5.4. We say a partition λ is a (k + 1)-core if no cell in λ has hook-
length k+1. Note that this definition permits that some boxes can have hooklength
strictly greater than k + 1.

Continuing with the above example, λ = (4, 3, 1, 1) is a 4-bounded partition. It
is also a 6-core.

Proposition 5.5. The set of k-bounded partitions and the set of (k + 1)-cores are
in bijection with each other. More precisely, there is a bijective map

p : {(k + 1)-cores} → {k-bounded partitions}

defined by removing all boxes in a (k + 1)-core with hook-length greater than k + 1
and then left-aligning the remaining boxes.

Proof. Following [9, Ch.2 Prop. 1.3], we shall describe the inverse map p−1: Con-
sider a k-bounded partition and work from top to bottom in its diagram; for a
given row, calculate the hook-lengths of its boxes; if there is a box with hook-
length greater than k, slide this row to the right until all boxes have hook-length
less than or equal to k. We omit the rest of the proof as readers can check it
themselves or read from [9]. �

This bijection is best described by illustrating an example labelled with hook-
lengths. Considering again the 4-bounded partition λ = (4, 3, 1, 1) and we apply
the map p−1 to obtain a 5-core p−1(λ).

7 4 3 1

5 2 1

2

1

→

11 8 7 6 4 3 2 1

6 3 2 1

2

1

Definition 5.6. Given a k-bounded partition λ, we define its k-conjugate λω(k) to
be p(p−1(λ)′), i.e. a composition of three maps: first p−1, then the usual conjuga-
tion, and finally p.

For example, to obtain the 4-conjugate of λ = (4, 3, 1, 1), we do the following
operations:
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p−1

4-conjugate conjugate

p

5.4. k-Schur Functions and Two Conjectural Bases. There are multiple equiv-
alent definitions of k-Schur functions (with an additional parameter t). However,
we shall only use the following definition from [10], which defines “parameterless”
k-Schur functions (i.e. t = 1).

Definition 5.7. The k-Schur functions, indexed by k-bounded partitions, are
defined by inverting the unitriangular system:

(5.1) hλ = s
(k)
λ +

∑
µ:µ.λ

K
(k)
µλ s

(k)
µ for all λ1 ≤ k

where µ.λ is the dominance partial ordering on partitions of a fixed size n defined
by the condition µ1+· · ·+µi > λ1+· · ·+λi for some i and µ1+· · ·+µj = λ1+· · ·+λj
for all j < i, and K

(k)
µλ are the k-Kostka numbers, and they are defined as the

number of k-tableaux of shape p−1(µ) and k-weight λ. Precise definitions of these
terms can be found in [10].

We will begin with some facts about k-Schur functions.

Fact: The set {s(k)
λ | λ1 ≤ k} indexed by all k-bounded partitions is a basis

of Λk = Q[h1, . . . , hk]; Moreover, it induces a basis {s(k)
λ | λ ⊂ (k`)} of R`,k =

Q[e1, . . . , e`]/(hk+1, . . . , hk+`) ∼= Q[h1, . . . , hk]/(e`+1, . . . , e`+k) by Proposition 2.17
and [12, Proposition 1] with the following key property:

Proposition 5.8. The involution in Proposition 2.17, ω : Λk → Λk that takes any
hλ to eλ has the following action on the k-Schur basis:

ω(s
(k)
λ ) = s

(k)

λω(k)

That is, for any k-bounded partition λ, the involution ω takes a k-Schur function
indexed by λ to a k-Schur function indexed by the k-conjugate of λ. Moreover, if
we consider the induced involution ω on R`,k and partitions λ ⊂ (k`), the same
formula still holds.

Proof. See [10, Theorem 38]. �
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To simplify the notation, we denote

P `,k,m =: {λ | λ1 ≤ m, λω(k) ⊂ (k`)}

and

P `,k =: {λ | λω(k) ⊂ (k`)}.

By proposition 5.8, we see that the set S`,k = {s(k)
λ | λ ∈ P `,k} is a basis for R`,k.

Let’s recall the following useful definition, which will be used in the proof below.

Definition 5.9. A k-bounded partition λ = (λ1, . . . , λ`(λ)) is called m-vacant if m
is the largest integer so that a ((m− 1)m) rectangle can fit inside the complement
of λ in the (k`(λ)) rectangle.

Now we are ready to give an new combinatorial interpretation of the RHS of
the Reiner-Tudose Conjecture. We already know by Propsosition 4.19 that the
RHS counts the number of k-bounded m-vacant partitions, we want to show that
k-bounded m-vacant partitions are exactly those k-conjugates that are m-bounded:
We repeat the definition of an m-vacant Ferrers diagram with respect to the swtich
we’ve made in ` and k.

Proposition 5.10. For any 1 ≤ m ≤ k,

(5.2)
∑

λ∈P `,k,m
q|λ| = 1 +

m∑
i=1

qi
[
k
i

]
q

 `−i∑
j=0

qj(k−i+1)

[
i+ j − 1

j

]
q


In other words, the RHS of the Reiner-Tudose Conjecture is counting partitions in
(k`) whose k-conjugate is m-bounded.

Proof. Let’s first fix m and j, and set `(λ) to be m+ j, then the formula

qi
[
k
i

]
q

qj(k−m+1)

[
m+ j − 1

j

]
q

counts k-bounded and m-vacant partitions λ = (λ1, ..., λ`(λ)).
As shown in the Figure below, the white and gray parts are empty. The green-

colored part (including the red and blue boxes inside it) indicates the parts that
λ must have in order for ((m − 1)m) to be the maximal rectangle fitting in the
complement. The yellow-colored part is however, an optional part of λ. This
correspondence between m-vacant partitions and the combinatorial formula in the
conjecture was first observed and explained by Reiner and Tudose in [5, Prop. 8]
and is also explained in Proposition 4.19.
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`

k

m

m− 1

2

1

ambient rectangle: (k`)

gray maximal rectangle: ((m− 1)m)

green part: ((k −m+ 1)j) ∪ (1m)

yellow part: unknown size

Our goal is to show that when we apply the map p−1 to such a λ, we will always
get a m-bounded but not (m− 1)-bounded partition, i.e. (λω(k))1 = m.

Lemma 5.11. For a k-bounded partition λ, we have that λ is m-vacant if and only
if λω(k) is m-bounded, but not (m− 1)-bounded.

Proof of Lemma. It suffices to show that the first part of λω(k) has exactly m boxes,
since λω(k) is always a partition, and hence its parts form a weakly decreasing
sequence. Recall the construction of p−1: Working from bottom to top in the
diagram of λ, for a given row, calculate the hook-lengths of its boxes; if there is a
box with hook-length greater than k, slide this row to the right until all boxes have
hook-length less than or equal to k.

In the process of constructing λω(k), the box blue b = (j + 1, 1) will not move
because its hook-length is at most (k −m + 1) + m − 1 = k. Meanwhile, the red
box r = (j, 1) must slide to the right (for at least 1 unit) because its hook-length is
at least (k −m+ 1) + (m+ 1)− 1 = k + 1.

Therefore, the first part of λω(k) must have exactly m boxes, which is what we
claimed. Conversely, if we start with λω(k) whose first part has exactly m′ boxes
where m′ 6= m is a positive integer, then by the same argument, λ is m′-vacant. In
particular, λ is not m-vacant. �

Lemma 5.11 then completes the proof of this Proposition. �

It seems tempting to conclude that the basis {s(k)
λ | λ ∈ P `,k} would be the key

ingredient to prove the conjecture. However, this is problematic for the following

reason: for am-bounded λ ∈ P `,k, the basis element s
(k)
λ is not necessarily contained
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in the m-th subalgebra R`,k,m. This suggests us to consider the following two sets
of elements:

(1) {hλ | λ ∈ P `,k}
(2) {s(i)

λ | λ ∈ P `,k and λ1 = i}
Either of these two sets has the property that the element indexed by a m-bounded
partition is inside the m-th subalgebra R`,k,m.

More precisely, we make the following conjectures about these two sets:

Conjecture 5.12. P `,k can be used as the index set for complete homogeneous
functions and i-Schur functions where i depends on each individual index:

(1a) H`,k := {hλ | λ ∈ P `,k} is a basis of R`,k.
(1b) H`,k,m := {hλ | λ ∈ P `,k,m} is a basis of R`,k,m.

(2a) {s(i)
λ | λ ∈ P `,k and λ1 = i} is a basis of R`,k.

(2b) {s(i)
λ | λ ∈ P `,k,m and λ1 = i} is a basis of R`,k,m.

In both conjectures above, part (b) is stronger than part (a). However, part (a)
suffices to prove one side of the inequality in the R-T conjecture. Without loss of
generality, we assume that (1a) is true and demonstrate how we could get the R-T
conjecture from it:

Theorem 5.13. If Conj. 5.12 (1a) holds, then in the Reiner-Tudose Conjecture,
the left hand side is degree-wise greater than or equal to its right hand side, i.e.:

(5.3) Hilb(R`,k,m, q) ≥ 1 +

m∑
i=1

qi
[
k
i

]
q

 `−i∑
j=0

qj(k−i+1)

[
i+ j − 1

j

]
q


Note that we have reversed the roles of k and ` in the original conjecture for con-
venience, which we can do by Proposition 2.15.

Proof. Since the span(H`,k,m) ⊂ R`,k,m, we clearly have

Hilb(Rk,`,m, q) ≥ Hilb(span(H`,k,m), q)

where the inequality is interpreted as a degree-wise inequality. But by definition,
Hilb(span(H`,k,m), q) is just

∑
λ∈P `,k,m q

|λ|. Thus the theorem follows easily from
Proposition 5.10. �

5.5. Correspondence Between Filtered and Monomial Basis. Initially, we
hoped that k-conjugation gives the 1-1 correspondence we were looking for in Sub-
section 4.8. However, this does not work as we found a counterexample when
k = 6, ` = 5,m = 3. Indeed, the degree 13 part of D6,5,3 is

{h2
3h

3
2h1, h3

3h
4
1, h3

3h2h
2
1, h3

3h
2
2, h4

3h1}.

However, the k-conjugates of the strong 3-vacant partitions in the (65) box is

{h3h
10
1 , h3h

5
2, h3h

4
2h

2
1, h3

3h
2
2, h2

3h
3
2h1}.

Note that this does not mean that a correspondence between the doubly filtered
basis and the monomial basis does not exist, it merely means that the k-conjugation
does not define the 1-1 correspondence we are looking for.

If we manage to demonstrate that the hλ indexed by λ which are k-conjugates
of weak m-vacant partitions form a basis of the m’th filtered Rk,`,m, it amounts
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to proving the Reiner-Tudose Conjecture. This motivates us to seek this 1-1 cor-
respondence. We initially observed based on Macaulay2 data, that the basis of
Rk,` obtained from indexing the generators hλ where λ is a k-conjugated Ferrers
diagram fitting in an (`k) box is the same as the monomial basis. However, this
is not true in general, as R3,3 presents a counterexample; for m = 2, not all basis
elements of degree 7 agree. Where h2h

5
1 is a standard monomial given by Gröbner

basis, but it is not in Hk,`,m (however, h2
2h

3
1 ∈ Hk,`,m). This is a counterexample

that shows that the Q-basis of standard monomials with respect to the lex Gröbner
basis and the set Hk,`,m are not the same.

6. Implications

In this section we discuss how, if assuming Conj. 5.12 (1a) holds, Theorem 5.13
would lead to a significant simplification of the proof of [5, Thm. 5] (Hoffman’s
Theorem), and we comment on how our result may lead to a possible k-Schur
analogue in other Lie types.

6.1. Simplifying Hoffman’s Theorem. We re-present here [5, Conj. 2]

Conjecture 6.1. For d ≥ k`−m2 +m+ 1 we have Rk,`d = Rk,`,m−1
d .

By [5], we know that the Reiner-Tudose Conjecture =⇒ Conjecture 6.1. How-
ever, since in Theorem 5.13 we only prove one side of the inequality, we now want
to show why the mere inequality in Theorem 5.13 suffices to imply Conjecture 6.1.

Proposition 6.2. Theorem 5.13 =⇒ Conjecture 6.1

Proof. Since Rk,` ⊇ Rk,`,m−1 and hence Rk,`d ⊇ Rk,`,m−1
d , this means Conjecture

6.1 is equivalent to saying that

dimQR
k,`
d = dimQR

k,`,m−1
d

whenever d ≥ k`−m2 +m+ 1, or equivalently

Hilb(Rk,`, q)−Hilb(Rk,`,m−1, q) =

k∑̀
d=0

(
dimQR

k,`
d − dimQR

k,`,m−1
d

)
· qd

has no qd terms for d ≥ k` − m2 + m + 1, that is, it has degree in q at most
k`−m2 +m. However, we can re-express

Hilb(Rk,`, q)−Hilb(Rk,`,m−1, q) = Hilb(Rk,`,k, q)−Hilb(Rk,`,m−1, q)

=

k∑
p=m

(
Hilb(Rk,`,p, q)−Hilb(Rk,`,p−1, q)

)
=

k∑
p=m

Hilb(Rk,`,p/Rk,`,p−1, q).

Since we want to show the left side above has degree in q at most k` −m2 + m,
it suffices to show that the same is true for every summand on the right side. As
done in [5], Theorem 5.13 is equivalent to the following assertion: for p ≥ 1, the
quotient (graded) vector space Rk,`,p/Rk,`,p−1 has Hilbert Series

Hilb(Rk,`,p/Rk,`,p−1, q) ≥
k−p∑
j=0

qj(`−p+1)

[
p+ j − 1

j

]
q

qp
[
`
p

]
q

.(6.1)
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Thus we want to show that the right hand side of equation 6.1 has degree in q at

most k`−m2 +m whenever p ≥ m(≥ 1). Since the q-binomial coefficient

[
r + s
r

]
q

has degree rs as a polynomial in q, the right hand side of equation 6.1 has degree
in q equal to

max
j=0,1,...,k−p

{j(`− p+ 1) + p+ (p− 1)j + p(`− p)} = max
j=0,1,...,k−p

{`(j + p)− p2 + p}

= k`− p2 + p

and this is bounded above by k`−m2 +m for p ≥ m ≥ 1.
Next, we take the sum of the RHS of equation 6.1 ranging from p = m to p = k,

that is:

k∑
p=m

k−p∑
j=0

qj(`−p+1)

[
p+ j − 1

j

]
q

qp
[
`
p

]
q

 ,

and we see that the degree of this expression is still bounded above by k`−m2+m.
Now, multiplying the expression in Theorem 5.13, by -1, the inequality is reversed

to obtain:

(6.2) −Hilb(R`,k,m, q) ≤ −(1 +

m∑
i=1

qi
[
k
i

]
q

 `−i∑
j=0

qj(k−i+1)

[
i+ j − 1

j

]
q

)

The key point here is that, by applying equation 6.2, we get:

Hilb(Rk,`, q)−Hilb(Rk,`,m−1, q) ≤ Hilb(Rk,`, q)−

1 +

m−1∑
i=1

qi
[
`
i

]
q

k−i∑
j=0

qj(`−i+1)

[
i+ j − 1

j

]
q

 .

Also, Hilb(Rk,`,k, q) = Hilb(Rk,`, q) and

Hilb(Rk,`, q) =

1 +

k∑
i=1

qi
[
`
i

]
q

k−i∑
j=0

qj(`−i+1)

[
i+ j − 1

j

]
q


since the m = k case has been proven by [5]. Thus, we have

Hilb(Rk,`, q)−Hilb(Rk,`,m−1, q) ≤ Hilb(Rk,`, q)−

1 +

m−1∑
i=1

qi
[
`
i

]
q

k−i∑
j=0

qj(`−i+1)

[
i+ j − 1

j

]
q


=

k∑
p=m

k−p∑
j=0

qj(`−p+1)

[
p+ j − 1

j

]
q

qp
[
`
p

]
q

 (∗)

where the inequality in (*) is a degree-wise inequality.
This demonstrates that the degree of (*) is bounded above by k` − m2 + m,

hence the degree of Hilb(Rk,`, q) − Hilb(Rk,`,m−1, q) must also be bounded above
by k`−m2 +m. �

We now briefly review the implication of the above results. Recall that Conjec-
ture 6.1 is the same as [5, Conj. 2], and [5, §3] explains why [5, Conj. 2] =⇒ [5,
Conj. 3] =⇒ [5, Conj. 4]. Moreover [5, SS4, 5] demonstrates, using an inductive
argument on m and making use of the fact that Rk,` satisfies the Hard Lefschetz
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Theorem that [5, Conj. 4] leads to a significant shortening of the proof of the follow-
ing theorem of Hoffman. To state it, define for each α ∈ Q× a ring endomorphism
φα : R → R on a graded Q-algebra R via φα(x) = αdx for homogeneous elements
x in Rd.

Theorem 6.3. (Hoffman, [5]) For k 6= `, every graded algebra endomorphism

φ : Rk,` −→ Rk,` which does not annihilate, Rk,`1 is of the form φα.
For k = ` any such endomorphism is either of the form φα or ω ◦ φα.

Here ω is the involution in Proposition 2.17. Not only does this characterise

endomorphisms on Rk,` that are nonzero on Rk,`1 , but it also constitutes a signifi-
cant progress towards proving the stronger Hoffman Theorem conjectered in [14].
Furthermore, via the Lefschetz fixed point theorem, we conclude that Gr(k,Ck+`)
has the fixed point property if and only if k` is odd [5]. This contributes to the
identification of manifolds with this important property, which is intriguing as they
are relatively scarce [14].

6.2. k-Schur Analogue for Other Lie Types. It is worth noting that there
exists an analogue of the Reiner-Tudose conjecture in Lie type C, namely the La-
grangian Conjecture 2.3. The argument we used to prove Theorem 5.13 involves
tools such as k-Schur functions and k-conjugation. It is not currently clear to us
whether we can advance to prove half of Conj. 2.3 using a similar argument as
in Conj. 2.1. However, the fact that these two conjectures have strikingly similar
forms may strongly suggest that there exists an analogue of k-Schur functions and
k-conjugation in the setting of Lie type C. This may be an ending point for this
research, but it is an exciting starting point for a future project.
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