F-Polynomial Ratios in the r-Kronecker

Noah Caplinger and Swapnil Garg joint with Ariana Chin and Nyah Davis
University of Minnesota, Twin Cities REU

August 2021

r-Kronecker Setup

- We investigate the r-Kronecker, the cluster algebra corresponding to exchange matrix $B=\left(\begin{array}{cc}0 & r \\ -r & 0\end{array}\right)$. (You may black box this)
- There is a distinguished set of generators $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ of the r-Kronecker called cluster variables.
- Cluster variables are rational functions in the variables $x_{1}, x_{2}, y_{1}, y_{2}$.
- The F-polynomial F_{i} is a polynomial in y_{1}, y_{2} obtained from x_{i} by setting x_{1}, x_{2} to 1 .
- Ultimately, we want to analyze certain ratios of F-polynomials.

F-polynomial recurrence

Definition

Let the sequence $\left\{a_{i}\right\}$ be defined by $a_{1}=0, a_{2}=1, a_{n}=r a_{n-1}-a_{n-2}$ for $n \geq 3$.

Then we have the following recurrence:

Proposition

For F-polynomials of the r-Kronecker, we have $F_{1}=F_{2}=1$,

$$
F_{k-1} F_{k+1}=F_{k}^{r}+y_{1}^{a_{k}} y_{2}^{a_{k-1}} .
$$

By cluster algebra magic, F_{k-1} divides $F_{k}^{r}+y_{1}^{a_{k}} y_{2}^{a_{k-1}}$. This lets us calculate F-polynomials recursively.

F-polynomial examples

Using $F_{k-1} F_{k+1}=F_{k}^{r}+y_{1}^{a_{k}} y_{2}^{a_{k-1}}$, we can calculate the first few F-polynomials.

$$
\begin{gathered}
F_{1}=1 \\
F_{2}=1 \\
F_{3}=1+y_{1} \\
F_{4}=\left(1+y_{1}\right)^{r}+y_{1}^{r} y_{2} \\
F_{5}=\frac{\left(\left(1+y_{1}\right)^{r}+y_{1}^{r} y_{2}\right)^{r}+y_{1}^{r^{2}-1} y_{2}^{r}}{1+y_{1}}
\end{gathered}
$$

REU Problem 3

We fix a positive integer $r \geq 2$, and let Q_{i} be a sequence of nonnegative integers such that $Q_{i}=r Q_{i-1}-Q_{i-2}$ for $i \geq 2$. Our goal is to find

$$
{ }_{r} G_{Q_{1}, Q_{2}}\left(y_{1}, y_{2}\right):=\lim _{i \rightarrow \infty} \frac{F_{i+1}^{Q_{i}}}{F_{i}^{Q_{i+1}}}
$$

due to the fact that it appears to converge.

Reading's results

Nathan Reading found that for $r=2$, we have the equality

$$
\begin{aligned}
{ }_{2} G_{1,1} & =\lim _{i \rightarrow \infty} \frac{F_{i}}{F_{i-1}} \\
& =\frac{1+y_{1}+y_{1} y_{2}+\sqrt{\left(1+y_{1}+y_{1} y_{2}\right)^{2}-4 y_{1} y_{2}}}{2} \\
& =1+y_{1} \sum_{i, j \geq 0}(-1)^{i+j} \operatorname{Nar}(i, j) y_{1}^{i} y_{2}^{j},
\end{aligned}
$$

where

$$
\operatorname{Nar}(i, j)=\left\{\begin{array}{l}
1 \quad i=j=0 \\
0 \quad \text { otherwise if } i j=0 \\
\frac{1}{i}\binom{i}{j}\binom{i}{j-1} \quad i \geq 1 \text { and } j \geq 1
\end{array}\right.
$$

- Note that the first equality is as a function in positive y_{1}, y_{2}, and the second is as a power series.

Reading's results

Nathan Reading found that for $r=2$, we have the equality

$$
\begin{aligned}
{ }_{2} G_{1,1} & =\lim _{i \rightarrow \infty} \frac{F_{i}}{F_{i-1}} \\
& =\frac{1+y_{1}+y_{1} y_{2}+\sqrt{\left(1+y_{1}+y_{1} y_{2}\right)^{2}-4 y_{1} y_{2}}}{2} \\
& =1+y_{1} \sum_{i, j \geq 0}(-1)^{i+j} \operatorname{Nar}(i, j) y_{1}^{i} y_{2}^{j},
\end{aligned}
$$

where

$$
\operatorname{Nar}(i, j)=\left\{\begin{array}{l}
1 \quad i=j=0 \\
0 \quad \text { otherwise if } i j=0 \\
\frac{1}{i}\binom{i}{j}\binom{i}{j-1} \quad i \geq 1 \text { and } j \geq 1
\end{array}\right.
$$

- Note that the first equality is as a function in positive y_{1}, y_{2}, and the second is as a power series.

Our results

Our results include:

- reproving Reading's result without introducing scattering diagrams.
- finding $r G_{Q_{1}, Q_{2}}$ for $r=2$ and general Q_{1}, Q_{2}.
- finding a functional equation for ${ }_{r} G_{Q_{1}, Q_{2}}$ for general r and general

Our results

Our results include:

- reproving Reading's result without introducing scattering diagrams.
- finding ${ }_{r} G_{Q_{1}, Q_{2}}$ for $r=2$ and general Q_{1}, Q_{2}.
- finding a functional equation for $r G_{Q_{1}, Q_{2}}$ for general r and general

Our results

Our results include:

- reproving Reading's result without introducing scattering diagrams.
- finding ${ }_{r} G_{Q_{1}, Q_{2}}$ for $r=2$ and general Q_{1}, Q_{2}.
- finding a functional equation for ${ }_{r} G_{Q_{1}, Q_{2}}$ for general r and general Q_{1}, Q_{2}.

Infinite product

Our results use the following infinite product:

Proposition [C.-Chin-Davis-G.]

For all $i \geq 2$, we have the equality

$$
\frac{F_{i+1}^{Q_{i}}}{F_{i}^{Q_{i+1}}}=\prod_{k=2}^{i}\left(1+\frac{y_{1}^{a_{k}} y_{2}^{a_{k-1}}}{F_{k}^{r}}\right)^{Q_{k}}
$$

Furthermore, the limit is well-defined as a formal power series, i.e.

$$
\lim _{i \rightarrow \infty} \frac{F_{i+1}^{Q_{i}}}{F_{i}^{Q_{i+1}}}=\prod_{k=2}^{\infty}\left(1+\frac{y_{1}^{a_{k}} y_{2}^{a_{k-1}}}{F_{k}^{r}}\right)^{Q_{k}}
$$

This follows from the recurrence $F_{k-1} F_{k+1}=F_{k}^{r}+y_{1}^{a_{k}} y_{2}^{a_{k-1}}$.

Finding a functional equation

- To investigate the infinite product, we emulate Reading's strategy by finding a functional equation.
- The substitution below transforms each term in the product into the next term in the product.

Proposition [C.-Chin-Davis-G.]

For $y_{1}^{\prime}=\left(\frac{y_{1}}{1+y_{1}}\right)^{r} y_{2}, y_{2}^{\prime}=\frac{1}{y_{1}}$, we have

$$
\frac{\left(y_{1}^{\prime}\right)^{a_{k}}\left(y_{2}^{\prime}\right)^{a_{k-1}}}{F_{k}\left(y_{1}^{\prime}, y_{2}^{\prime}\right)^{r}}=\frac{y_{1}^{a_{k+1}} y_{2}^{a_{k}}}{F_{k+1}\left(y_{1}, y_{2}\right)^{r}}
$$

Corollary

With $y_{1}^{\prime}, y_{2}^{\prime}$ as above, we have

$$
\prod_{k=2}^{\infty}\left(1+\frac{\left(y_{1}^{\prime}\right)^{a_{k}}\left(y_{2}^{\prime}\right)^{a_{k-1}}}{F_{k}\left(y_{1}^{\prime}, y_{2}^{\prime}\right)^{r}}\right)^{Q_{k}}=\prod_{k=3}^{\infty}\left(1+\frac{y_{1}^{a_{k}} y_{2}^{a_{k-1}}}{F_{k}^{r}}\right)^{Q_{k-1}}
$$

2-Kronecker functional equation

When $r=2$ and $Q_{i}=1$, we can obtain a functional equation directly from this corollary.

Corollary (restated)

For $y_{1}^{\prime}=\left(\frac{y_{1}}{1+y_{1}}\right)^{r} y_{2}, y_{2}^{\prime}=\frac{1}{y_{1}}$, as before, we have

$$
\prod_{k=3}^{\infty}\left(1+\frac{y_{1}^{a_{k}} y_{2}^{a_{k-1}}}{F_{k}^{r}}\right)^{Q_{k-1}}=\prod_{k=2}^{\infty}\left(1+\frac{\left(y_{1}^{\prime}\right)^{a_{k}}\left(y_{2}^{\prime}\right)^{a_{k-1}}}{F_{k}\left(y_{1}^{\prime}, y_{2}^{\prime}\right)^{r}}\right)^{Q_{k}}
$$

The RHS is exactly ${ }_{2} G_{1,1}\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$, while the LHS differs from ${ }_{2} G_{1,1}\left(y_{1}, y_{2}\right)$ by a factor of $1+y_{1}$. This gives the functional equation

$$
{ }_{2} G_{1,1}\left(y_{1}, y_{2}\right):=\lim _{i \rightarrow \infty} \frac{F_{i+1}}{F_{i}}={ }_{2} G_{1,1}\left(\frac{y_{1}^{2} y_{2}}{\left(1+y_{1}\right)^{2}}, \frac{1}{y_{1}}\right) \cdot\left(1+y_{1}\right) .
$$

r-Kronecker functional equation

Similar substitutions can be made to find a functional equation for general r.

Theorem [C.-Chin-Davis-G.]

Fix r and a sequence $\left\{Q_{i}\right\}$. Then with $y_{1}^{\prime}=\left(\frac{y_{1}}{1+y_{1}}\right)^{r} y_{2}, y_{2}^{\prime}=\frac{1}{y_{1}}$ and $y_{1}^{\prime \prime}=\left(\frac{y_{1}^{\prime}}{1+y_{1}^{\prime}}\right)^{r} y_{2}^{\prime}, y_{2}^{\prime \prime}=\frac{1}{y_{1}^{\prime}}$, we have

$$
{ }_{r} G_{Q_{1}, Q_{2}}\left(y_{1}, y_{2}\right)=\frac{r G_{Q_{1}, Q_{2}}\left(y_{1}^{\prime}, y_{2}^{\prime}\right)^{r}}{r G_{Q_{1}, Q_{2}}\left(y_{1}^{\prime \prime}, y_{2}^{\prime \prime}\right)} \cdot\left(1+y_{1}\right)^{Q_{2}} \cdot\left(1+\frac{y_{1}^{r} y_{2}}{\left(1+y_{1}\right)^{r}}\right)^{Q_{3}-r Q_{2}}
$$

Functional equation derivation

Set $r=3, Q_{1}=0, Q_{2}=1$ and $y_{1}^{\prime}=\left(\frac{y_{1}}{1+y_{1}}\right)^{3} y_{2}, y_{2}^{\prime}=\frac{1}{y_{1}}$. Then

$$
\begin{array}{ll}
{ }_{3} G_{0,1}\left(y_{1}, y_{2}\right)=\left(1+y_{1}\right)\left(1+\frac{y_{1}^{3} y_{2}}{F_{3}^{3}}\right)^{3} & \left(1+\frac{y_{1}^{8} y_{2}^{3}}{F_{4}^{3}}\right)^{8} \cdots \\
{ }_{3} G_{0,1}\left(y_{1}^{\prime}, y_{2}^{\prime}\right)= & \left(1+\frac{y_{1}^{3} y_{2}}{F_{3}^{3}}\right) \\
\left(1+\frac{y_{1}^{8} y_{2}^{3}}{F_{4}^{3}}\right)^{3} \cdots \\
{ }_{3} G_{0,1}\left(y_{1}^{\prime \prime}, y_{2}^{\prime \prime}\right)= & \left(1+\frac{y_{1}^{8} y_{2}^{3}}{F_{4}^{3}}\right) \cdots
\end{array}
$$

yielding the functional equation

$$
{ }_{3} G_{-1,1}\left(y_{1}, y_{2}\right)=\frac{{ }_{3} G_{-1,1}\left(y_{1}^{\prime}, y_{2}^{\prime}\right)^{3}}{{ }_{3} G_{-1,1}\left(y_{1}^{\prime \prime}, y_{2}^{\prime \prime}\right)}\left(1+y_{1}\right) .
$$

2-Kronecker solution

It turns out the 2-Kronecker case is fully analytically solvable.

Theorem [C.-Chin-Davis-G.]

In the 2-Kronecker case we have

$$
\begin{aligned}
{ }_{2} G_{0,1}= & \lim _{i \rightarrow \infty} \frac{F_{i+1}^{i-1}}{F_{i}^{i}} \\
= & \frac{1}{2 y_{1}}\left(\left(1+y_{1}+y_{1} y_{2}\right)^{2}-4 y_{1} y_{2}\right. \\
& \left.+\left(-1+y_{1}+y_{1} y_{2}\right) \sqrt{\left(1+y_{1}+y_{1} y_{2}\right)^{2}-4 y_{1} y_{2}}\right) .
\end{aligned}
$$

- We have ${ }_{2} G_{Q_{1}, Q_{2}}={ }_{2} G_{1,1}^{Q_{1}} \cdot{ }_{2} G_{0,1}^{Q_{2}-Q_{1}}$

2-Kronecker solution

It turns out the 2-Kronecker case is fully analytically solvable.

Theorem [C.-Chin-Davis-G.]

In the 2-Kronecker case we have

$$
\begin{aligned}
{ }_{2} G_{0,1}= & \lim _{i \rightarrow \infty} \frac{F_{i+1}^{i-1}}{F_{i}^{i}} \\
= & \frac{1}{2 y_{1}}\left(\left(1+y_{1}+y_{1} y_{2}\right)^{2}-4 y_{1} y_{2}\right. \\
& \left.+\left(-1+y_{1}+y_{1} y_{2}\right) \sqrt{\left(1+y_{1}+y_{1} y_{2}\right)^{2}-4 y_{1} y_{2}}\right) .
\end{aligned}
$$

- We have ${ }_{2} G_{Q_{1}, Q_{2}}={ }_{2} G_{1,1}^{Q_{1}} \cdot{ }_{2} G_{0,1}^{Q_{2}-Q_{1}}$.

Proof details

- Recall that Reading proved

$$
{ }_{2} G_{1,1}=\lim _{i \rightarrow \infty} \frac{F_{i}}{F_{i-1}}=\frac{1+y_{1}+y_{1} y_{2}+\sqrt{\left(1+y_{1}+y_{1} y_{2}\right)^{2}-4 y_{1} y_{2}}}{2}
$$

- Reading's method was to find the functional equation

$$
{ }_{2} G_{1,1}\left(\frac{y_{1}}{\left(1+y_{2}\right)^{2}}, y_{2}\right)\left(1+y_{2}\right)={ }_{2} G_{1,1}\left(\frac{y_{2}}{\left(1+y_{1}\right)^{2}}, y_{1}\right)\left(1+y_{1}\right)
$$

and then use it to find the coefficients of the function as a power series.

- We can use the same strategy using our functional equation!

Proof details

- Recall that Reading proved

$$
{ }_{2} G_{1,1}=\lim _{i \rightarrow \infty} \frac{F_{i}}{F_{i-1}}=\frac{1+y_{1}+y_{1} y_{2}+\sqrt{\left(1+y_{1}+y_{1} y_{2}\right)^{2}-4 y_{1} y_{2}}}{2}
$$

- Reading's method was to find the functional equation

$$
{ }_{2} G_{1,1}\left(\frac{y_{1}}{\left(1+y_{2}\right)^{2}}, y_{2}\right)\left(1+y_{2}\right)={ }_{2} G_{1,1}\left(\frac{y_{2}}{\left(1+y_{1}\right)^{2}}, y_{1}\right)\left(1+y_{1}\right)
$$

and then use it to find the coefficients of the function as a power series.

- We can use the same strategy using our functional equation!

Proof details (continued)

- As an intermediate step, we can reprove Reading's result using our functional equation

$$
{ }_{2} G_{1,1}\left(y_{1}, y_{2}\right)={ }_{2} G_{1,1}\left(\frac{y_{1}^{2} y_{2}}{\left(1+y_{1}\right)^{2}}, \frac{1}{y_{1}}\right) \cdot\left(1+y_{1}\right) .
$$

- We also have the functional equation

Proof details (continued)

- As an intermediate step, we can reprove Reading's result using our functional equation

$$
{ }_{2} G_{1,1}\left(y_{1}, y_{2}\right)={ }_{2} G_{1,1}\left(\frac{y_{1}^{2} y_{2}}{\left(1+y_{1}\right)^{2}}, \frac{1}{y_{1}}\right) \cdot\left(1+y_{1}\right)
$$

- We also have the functional equation

$$
{ }_{2} G_{0,1}\left(y_{1}, y_{2}\right)=\frac{{ }_{2} G_{0,1}\left(\frac{y_{1}^{2} y_{2}}{\left(1+y_{1}\right)^{2}}, \frac{1}{y_{1}}\right)}{{ }_{2} G_{1,1}\left(y_{1}, y_{2}\right)} .
$$

Future work

- investigate the subset of \mathbb{C}^{2} on which ${ }_{r} G_{Q_{1}, Q_{2}}$ converges
- see whether we can find a closed form for coefficients of the power series ${ }_{r} G_{Q_{1}, Q_{2}}$
- in particular, find coefficients of ${ }_{r} G_{1, \alpha}$ for α a root of $x^{2}=r x-1$

Acknowledgments

We would like to thank our mentor, Dr. Elizabeth Kelley, as well as our TA, Dr. Eric Nathan Stucky.

