F-Polynomial Ratios in the r-Kronecker

Noah Caplinger and Swapnil Garg joint with Ariana Chin and Nyah Davis

University of Minnesota, Twin Cities REU

August 2021

- We investigate the *r*-Kronecker, the cluster algebra corresponding to exchange matrix $B = \begin{pmatrix} 0 & r \\ -r & 0 \end{pmatrix}$. (You may black box this)
- There is a distinguished set of generators {*x_i*}_{*i*∈ℕ} of the *r*-Kronecker called *cluster variables*.
- Cluster variables are rational functions in the variables x_1, x_2, y_1, y_2 .
- The *F*-polynomial *F_i* is a polynomial in *y*₁, *y*₂ obtained from *x_i* by setting *x*₁, *x*₂ to 1.
- Ultimately, we want to analyze certain ratios of *F*-polynomials.

Definition

Let the sequence $\{a_i\}$ be defined by $a_1 = 0, a_2 = 1, a_n = ra_{n-1} - a_{n-2}$ for $n \ge 3$.

Then we have the following recurrence:

Proposition

For F-polynomials of the r-Kronecker, we have $F_1 = F_2 = 1$,

$$F_{k-1}F_{k+1} = F_k^r + y_1^{a_k}y_2^{a_{k-1}}.$$

By cluster algebra magic, F_{k-1} divides $F_k^r + y_1^{a_k} y_2^{a_{k-1}}$. This lets us calculate *F*-polynomials recursively.

.

Using $F_{k-1}F_{k+1} = F_k^r + y_1^{a_k}y_2^{a_{k-1}}$, we can calculate the first few *F*-polynomials.

$$F_{1} = 1$$

$$F_{2} = 1$$

$$F_{3} = 1 + y_{1}$$

$$F_{4} = (1 + y_{1})^{r} + y_{1}^{r}y_{2}$$

$$F_{5} = \frac{((1 + y_{1})^{r} + y_{1}^{r}y_{2})^{r} + y_{1}^{r^{2} - 1}y_{2}^{r}}{1 + y_{1}}$$

→ ∃ → 4

Image: Image:

We fix a positive integer $r \ge 2$, and let Q_i be a sequence of nonnegative integers such that $Q_i = rQ_{i-1} - Q_{i-2}$ for $i \ge 2$. Our goal is to find

$$_{r}G_{Q_{1},Q_{2}}(y_{1},y_{2}) := \lim_{i \to \infty} \frac{F_{i+1}^{Q_{i}}}{F_{i}^{Q_{i+1}}},$$

due to the fact that it appears to converge.

Reading's results

Nathan Reading found that for r = 2, we have the equality

$${}_{2}G_{1,1} = \lim_{i \to \infty} \frac{F_{i}}{F_{i-1}} \\ = \frac{1 + y_{1} + y_{1}y_{2} + \sqrt{(1 + y_{1} + y_{1}y_{2})^{2} - 4y_{1}y_{2}}}{2} \\ = 1 + y_{1}\sum_{i,j \ge 0} (-1)^{i+j} \operatorname{Nar}(i,j) y_{1}^{i} y_{2}^{j},$$

where

$$\mathsf{Nar}(i,j) = \begin{cases} 1 & i = j = 0\\ 0 & \text{otherwise if } ij = 0\\ \frac{1}{i} \binom{i}{j} \binom{i}{j-1} & i \ge 1 \text{ and } j \ge 1 \end{cases}$$

Note that the first equality is as a function in positive y₁, y₂, and the second is as a power series.

Caplinger and Garg (UMN REU)

٠

Reading's results

Nathan Reading found that for r = 2, we have the equality

$${}_{2}G_{1,1} = \lim_{i \to \infty} \frac{F_{i}}{F_{i-1}} \\ = \frac{1 + y_{1} + y_{1}y_{2} + \sqrt{(1 + y_{1} + y_{1}y_{2})^{2} - 4y_{1}y_{2}}}{2} \\ = 1 + y_{1}\sum_{i,j \ge 0} (-1)^{i+j} \operatorname{Nar}(i,j) y_{1}^{i} y_{2}^{j},$$

where

$$\mathsf{Nar}(i,j) = \begin{cases} 1 & i = j = 0\\ 0 & \mathsf{otherwise if } ij = 0\\ \frac{1}{i} \binom{i}{j} \binom{i}{j-1} & i \ge 1 \mathsf{ and } j \ge 1 \end{cases}$$

• Note that the first equality is as a function in positive y₁, y₂, and the second is as a power series.

Caplinger and Garg (UMN REU)

•

Our results include:

- reproving Reading's result without introducing scattering diagrams.
- finding $_{r}G_{Q_{1},Q_{2}}$ for r = 2 and general Q_{1}, Q_{2} .
- finding a functional equation for ${}_r G_{Q_1,Q_2}$ for general r and general Q_1, Q_2 .

Our results include:

- reproving Reading's result without introducing scattering diagrams.
- finding $_{r}G_{Q_{1},Q_{2}}$ for r = 2 and general Q_{1}, Q_{2} .
- finding a functional equation for ${}_r G_{Q_1,Q_2}$ for general r and general Q_1, Q_2 .

Our results include:

- reproving Reading's result without introducing scattering diagrams.
- finding $_{r}G_{Q_{1},Q_{2}}$ for r = 2 and general Q_{1}, Q_{2} .
- finding a functional equation for ${}_rG_{Q_1,Q_2}$ for general r and general Q_1, Q_2 .

Our results use the following infinite product:

Proposition [C.-Chin-Davis-G.]

For all $i \ge 2$, we have the equality

$$\frac{F_{i+1}^{Q_i}}{F_i^{Q_{i+1}}} = \prod_{k=2}^i \left(1 + \frac{y_1^{a_k} y_2^{a_{k-1}}}{F_k^r}\right)^{Q_k}$$

Furthermore, the limit is well-defined as a formal power series, i.e.

$$\lim_{i \to \infty} \frac{F_{i+1}^{Q_i}}{F_i^{Q_{i+1}}} = \prod_{k=2}^{\infty} \left(1 + \frac{y_1^{a_k} y_2^{a_{k-1}}}{F_k^r} \right)^{Q_k}$$

This follows from the recurrence $F_{k-1}F_{k+1} = F_k^r + y_1^{a_k}y_2^{a_{k-1}}$.

Finding a functional equation

- To investigate the infinite product, we emulate Reading's strategy by finding a functional equation.
- The substitution below transforms each term in the product into the next term in the product.

Proposition [C.-Chin-Davis-G.]

For
$$y'_1 = (\frac{y_1}{1+y_1})^r y_2, y'_2 = \frac{1}{y_1}$$
, we have

$$\frac{(y_1')^{a_k}(y_2')^{a_{k-1}}}{F_k(y_1',y_2')^r} = \frac{y_1^{a_{k+1}}y_2^{a_k}}{F_{k+1}(y_1,y_2)^r}$$

Corollary

With y'_1, y'_2 as above, we have

$$\prod_{k=2}^{\infty} \left(1 + \frac{(y_1')^{a_k} (y_2')^{a_{k-1}}}{F_k (y_1', y_2')^r} \right)^{Q_k} = \prod_{k=3}^{\infty} \left(1 + \frac{y_1^{a_k} y_2^{a_{k-1}}}{F_k^r} \right)^{Q_{k-1}}$$

Caplinger and Garg (UMN REU)

When r = 2 and $Q_i = 1$, we can obtain a functional equation directly from this corollary.

Corollary (restated)

For
$$y_1' = (rac{y_1}{1+y_1})^r y_2, y_2' = rac{1}{y_1}$$
, as before, we have

$$\prod_{k=3}^{\infty} \left(1 + \frac{y_1^{a_k} y_2^{a_{k-1}}}{F_k^r} \right)^{Q_{k-1}} = \prod_{k=2}^{\infty} \left(1 + \frac{(y_1')^{a_k} (y_2')^{a_{k-1}}}{F_k (y_1', y_2')^r} \right)^{Q_k}$$

The RHS is exactly $_2G_{1,1}(y'_1, y'_2)$, while the LHS differs from $_2G_{1,1}(y_1, y_2)$ by a factor of $1 + y_1$. This gives the functional equation

$${}_{2}G_{1,1}(y_{1}, y_{2}) := \lim_{i \to \infty} \frac{F_{i+1}}{F_{i}} = {}_{2}G_{1,1}\left(\frac{y_{1}^{2}y_{2}}{(1+y_{1})^{2}}, \frac{1}{y_{1}}\right) \cdot (1+y_{1}).$$

Similar substitutions can be made to find a functional equation for general r.

Theorem [C.-Chin-Davis-G.]

Fix *r* and a sequence $\{Q_i\}$. Then with $y'_1 = (\frac{y_1}{1+y_1})^r y_2, y'_2 = \frac{1}{y_1}$ and $y''_1 = (\frac{y'_1}{1+y'_1})^r y'_2, y''_2 = \frac{1}{y'_1}$, we have

$${}_{r}G_{Q_{1},Q_{2}}(y_{1},y_{2})=\frac{{}_{r}G_{Q_{1},Q_{2}}(y_{1}',y_{2}')^{r}}{{}_{r}G_{Q_{1},Q_{2}}(y_{1}'',y_{2}'')}\cdot(1+y_{1})^{Q_{2}}\cdot\left(1+\frac{y_{1}'y_{2}}{(1+y_{1})^{r}}\right)^{Q_{3}-rQ_{2}}.$$

Functional equation derivation

Set
$$r = 3$$
, $Q_1 = 0$, $Q_2 = 1$ and $y'_1 = (\frac{y_1}{1+y_1})^3 y_2, y'_2 = \frac{1}{y_1}$. Then

$${}_{3}G_{0,1}(y_{1}, y_{2}) = (1 + y_{1}) \left(1 + \frac{y_{1}^{3}y_{2}}{F_{3}^{3}}\right)^{3} \left(1 + \frac{y_{1}^{8}y_{2}^{3}}{F_{4}^{3}}\right)^{8} \cdots$$

$${}_{3}G_{0,1}(y_{1}', y_{2}') = \left(1 + \frac{y_{1}^{3}y_{2}}{F_{3}^{3}}\right) \left(1 + \frac{y_{1}^{8}y_{2}^{3}}{F_{4}^{3}}\right)^{3} \cdots$$

$${}_{3}G_{0,1}(y_{1}'', y_{2}'') = \left(1 + \frac{y_{1}^{8}y_{2}^{3}}{F_{4}^{3}}\right) \cdots$$

yielding the functional equation

$$_{3}G_{-1,1}(y_{1}, y_{2}) = \frac{_{3}G_{-1,1}(y_{1}', y_{2}')^{3}}{_{3}G_{-1,1}(y_{1}'', y_{2}'')}(1+y_{1}).$$

2-Kronecker solution

It turns out the 2-Kronecker case is fully analytically solvable.

Theorem [C.–Chin–Davis–G.]

In the 2-Kronecker case we have

$$\begin{split} {}_{2}G_{0,1} &= \lim_{i \to \infty} \frac{F_{i+1}^{i-1}}{F_{i}^{i}} \\ &= \frac{1}{2y_{1}} \left((1+y_{1}+y_{1}y_{2})^{2} - 4y_{1}y_{2} \\ &+ (-1+y_{1}+y_{1}y_{2})\sqrt{(1+y_{1}+y_{1}y_{2})^{2} - 4y_{1}y_{2}} \right). \end{split}$$

• We have ${}_2G_{Q_1,Q_2} = {}_2G_{1,1}^{Q_1} \cdot {}_2G_{0,1}^{Q_2-Q_1}$.

2-Kronecker solution

It turns out the 2-Kronecker case is fully analytically solvable.

Theorem [C.–Chin–Davis–G.]

In the 2-Kronecker case we have

$${}_{2}G_{0,1} = \lim_{i \to \infty} \frac{F_{i+1}^{i-1}}{F_{i}^{i}}$$

= $\frac{1}{2y_{1}} \left((1 + y_{1} + y_{1}y_{2})^{2} - 4y_{1}y_{2} + (-1 + y_{1} + y_{1}y_{2})\sqrt{(1 + y_{1} + y_{1}y_{2})^{2} - 4y_{1}y_{2}} \right).$

• We have
$${}_2G_{Q_1,Q_2} = {}_2G_{1,1}^{Q_1} \cdot {}_2G_{0,1}^{Q_2-Q_1}$$
 .

• Recall that Reading proved

$${}_{2}G_{1,1} = \lim_{i \to \infty} \frac{F_{i}}{F_{i-1}} = \frac{1 + y_{1} + y_{1}y_{2} + \sqrt{(1 + y_{1} + y_{1}y_{2})^{2} - 4y_{1}y_{2}}}{2}$$

• Reading's method was to find the functional equation

$${}_{2}G_{1,1}\left(\frac{y_{1}}{(1+y_{2})^{2}}, y_{2}\right)(1+y_{2}) = {}_{2}G_{1,1}\left(\frac{y_{2}}{(1+y_{1})^{2}}, y_{1}\right)(1+y_{1}),$$

and then use it to find the coefficients of the function as a power series.

• We can use the same strategy using our functional equation!

• Recall that Reading proved

$${}_{2}G_{1,1} = \lim_{i \to \infty} \frac{F_{i}}{F_{i-1}} = \frac{1 + y_{1} + y_{1}y_{2} + \sqrt{(1 + y_{1} + y_{1}y_{2})^{2} - 4y_{1}y_{2}}}{2}$$

• Reading's method was to find the functional equation

$${}_{2}G_{1,1}\left(\frac{y_{1}}{(1+y_{2})^{2}}, y_{2}\right)(1+y_{2}) = {}_{2}G_{1,1}\left(\frac{y_{2}}{(1+y_{1})^{2}}, y_{1}\right)(1+y_{1}),$$

and then use it to find the coefficients of the function as a power series.

• We can use the same strategy using our functional equation!

• As an intermediate step, we can reprove Reading's result using our functional equation

$$_{2}G_{1,1}(y_{1}, y_{2}) = _{2}G_{1,1}\left(\frac{y_{1}^{2}y_{2}}{(1+y_{1})^{2}}, \frac{1}{y_{1}}\right) \cdot (1+y_{1}).$$

• We also have the functional equation

$${}_{2}G_{0,1}(y_{1}, y_{2}) = \frac{{}_{2}G_{0,1}\left(\frac{y_{1}^{2}y_{2}}{(1+y_{1})^{2}}, \frac{1}{y_{1}}\right)}{{}_{2}G_{1,1}(y_{1}, y_{2})}.$$

• As an intermediate step, we can reprove Reading's result using our functional equation

$$_{2}G_{1,1}(y_{1}, y_{2}) = _{2}G_{1,1}\left(\frac{y_{1}^{2}y_{2}}{(1+y_{1})^{2}}, \frac{1}{y_{1}}\right) \cdot (1+y_{1}).$$

• We also have the functional equation

$${}_{2}G_{0,1}(y_{1},y_{2})=\frac{{}_{2}G_{0,1}\left(\frac{y_{1}^{2}y_{2}}{(1+y_{1})^{2}},\frac{1}{y_{1}}\right)}{{}_{2}G_{1,1}(y_{1},y_{2})}.$$

- investigate the subset of \mathbb{C}^2 on which ${}_r G_{Q_1,Q_2}$ converges
- see whether we can find a closed form for coefficients of the power series ${}_{r}G_{Q_{1},Q_{2}}$
 - in particular, find coefficients of $_{r}{\it G}_{1,\alpha}$ for α a root of $x^{2}={\it r}x-1$

We would like to thank our mentor, Dr. Elizabeth Kelley, as well as our TA, Dr. Eric Nathan Stucky.