Whittaker coefficients and crystals

Aidan Kelley and Siki Wang
joint with Swapnil Garg and Frank Lu
Mentor: Prof. Ben Brubaker, TAs: Emily Tibor, Kayla Wright,
Meagan Kenney

August 4, 2021

Root system Φ

Root system Φ

- Vectors in \mathbb{R}^{n+1}, like $\alpha_{1}=(1,-1,0,0, .$.$) .$

Root system Φ

- Vectors in \mathbb{R}^{n+1}, like $\alpha_{1}=(1,-1,0,0, .$.$) .$
- Contain simple roots, positive roots, etc.

Root system Φ

- Vectors in \mathbb{R}^{n+1}, like $\alpha_{1}=(1,-1,0,0, .$.$) .$
- Contain simple roots, positive roots, etc.
- Matrix parameterization. E.g., for $A_{2},\left[\begin{array}{ccc}* & \alpha_{1} & \alpha_{1}+\alpha_{2} \\ & * & \alpha_{2} \\ & & *\end{array}\right]$

Root system Φ

- Vectors in \mathbb{R}^{n+1}, like $\alpha_{1}=(1,-1,0,0, .$.$) .$
- Contain simple roots, positive roots, etc.
- Matrix parameterization. E.g., for $A_{2},\left[\begin{array}{ccc}* & \alpha_{1} & \alpha_{1}+\alpha_{2} \\ & * & \alpha_{2} \\ & & *\end{array}\right]$
- Dynkin diagram for the associated Weyl group. E.g,

$$
A_{5}: \quad \alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}
$$

Dirichlet L-series

Dirichlet L-series

- $\mathcal{L}(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$.

Dirichlet L-series

- $\mathcal{L}(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$.
- E.g., $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\ldots$ (Riemann zeta-function)

Combinatorics of Dirichlet Series

Combinatorics of Dirichlet Series

- (Hoffstein) There is a way to associate a multiple Dirichlet series to a Dynkin diagram.

Combinatorics of Dirichlet Series

- (Hoffstein) There is a way to associate a multiple Dirichlet series to a Dynkin diagram.

Example

Dynkin diagram for the Weyl group of A_{5}.

$$
A_{5}: \bullet \frac{\left(\frac{d_{1}}{d_{2}}\right)}{\bullet} \cdot \frac{\left(\frac{d_{2}}{d_{3}}\right)}{\bullet} \cdot \frac{\left(\frac{d_{3}}{d_{4}}\right)}{\bullet} \frac{\left(\frac{d_{4}}{d_{5}}\right)}{\bullet}
$$

Associating each simple root $\alpha_{i} \in \Phi^{+}$with a complex variable s_{i}, we get the corresponding multiple Dirichlet series

$$
\sum_{d_{1}, \ldots, d_{5}=1}^{\infty} \frac{\left(\frac{d_{1}}{d_{2}}\right)\left(\frac{d_{2}}{d_{3}}\right)\left(\frac{d_{3}}{d_{4}}\right)\left(\frac{d_{4}}{d_{5}}\right)}{d_{1}^{s_{1}} d_{2}^{s_{2}} d_{3}^{s_{3} d_{4}^{s_{4}} d_{5}^{s_{5}}}}
$$

Whittaker coefficient

Whittaker coefficient

- (Brubaker-Friedberg) We can compute the Whittaker coefficient for a maximal parabolic Eisenstein series (subgroups of $G L_{n}$):

$$
\mathcal{W}_{f_{1}, f_{2}, s(1)} \sum_{d_{j} \in \mathfrak{o}_{s} / \mathfrak{o}_{s}^{\times}} H\left(d_{1}, \ldots, d_{N}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})
$$

Whittaker coefficient

- (Brubaker-Friedberg) We can compute the Whittaker coefficient for a maximal parabolic Eisenstein series (subgroups of $G L_{n}$):

$$
\mathcal{W}_{f_{1}, f_{2}, s(1)} \sum_{d_{j} \in \mathfrak{o}_{s} / \mathfrak{o}_{s}^{\times}} H\left(d_{1}, \ldots, d_{N}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})
$$

- We want to compute the Whittaker coefficient for A_{5}. Why?

Whittaker coefficient

- (Brubaker-Friedberg) We can compute the Whittaker coefficient for a maximal parabolic Eisenstein series (subgroups of $G L_{n}$):

$$
\mathcal{W}_{f_{1}, f_{2}, s(1)} \sum_{d_{j} \in \mathfrak{o}_{s} / \mathfrak{o}_{s}^{\times}} H\left(d_{1}, \ldots, d_{N}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})
$$

- We want to compute the Whittaker coefficient for A_{5}. Why?
- Conjecture of Bump, 1996: A multiple Dirichlet series (Chinta) coincide with the H-part (exponential sums) of the Whittaker coefficient.

Chinta Series

Chinta Series

- (Chinta) A multiple Dirichlet series related to A_{5} :

$$
\sum_{I} \frac{\chi_{I_{2}}\left(\hat{I}_{1}\right) \chi_{I_{2}}\left(\hat{I}_{3}\right) \chi_{I_{4}}\left(\hat{I}_{3}\right) \chi_{I_{5}}\left(\hat{I}_{5}\right)}{\left|I_{1}\right|^{S_{1}\left|I_{2}\right|^{S_{2}} \ldots\left|I_{5}\right|^{S_{5}}}} \cdot g\left(I_{1}, \ldots, I_{5}\right)
$$

Chinta Series

- (Chinta) A multiple Dirichlet series related to A_{5} :

$$
\sum_{I} \frac{\chi_{I_{2}}\left(\hat{I}_{1}\right) \chi_{I_{2}}\left(\hat{I}_{3}\right) \chi_{I_{4}}\left(\hat{I}_{3}\right) \chi_{I_{5}}\left(\hat{I}_{5}\right)}{\left|I_{1}\right|^{S_{1}\left|I_{2}\right|^{S_{2}} \ldots\left|I_{5}\right|^{S_{5}}}} \cdot g\left(I_{1}, \ldots, I_{5}\right)
$$

- With a change of variable, we get $g\left(I_{1}, \ldots, I_{5}\right)=H(x, y, z, w, v)$ a polynomial of 366 terms:

$$
1-v w-x y+v w x y-w z+v w z+p v^{2} w^{2} z-\ldots+p^{7} v^{4} w^{7} x^{4} y^{7} z^{8}
$$

Chinta Series

- (Chinta) A multiple Dirichlet series related to A_{5} :

$$
\sum_{I} \frac{\chi_{I_{2}}\left(\hat{I}_{1}\right) \chi_{I_{2}}\left(\hat{I}_{3}\right) \chi_{I_{4}}\left(\hat{I}_{3}\right) \chi_{I_{5}}\left(\hat{I}_{5}\right)}{\left|I_{1}\right|^{S_{1}\left|I_{2}\right|^{S_{2}} \ldots\left|I_{5}\right|^{S_{5}}}} \cdot g\left(I_{1}, \ldots, I_{5}\right)
$$

- With a change of variable, we get $g\left(I_{1}, \ldots, I_{5}\right)=H(x, y, z, w, v)$ a polynomial of 366 terms:

$$
1-v w-x y+v w x y-w z+v w z+p v^{2} w^{2} z-\ldots+p^{7} v^{4} w^{7} x^{4} y^{7} z^{8}
$$

- We suspect that the Chinta series comes from the Whittaker coefficient. Reason: Both have nice functional equations that generate a group isomorphic to the Weyl group of A_{5}.

Our Goal (REU Problem 4)

(1) Compute Whittaker coefficients using data from A_{5}.
(2) Understand the support of $H\left(d_{1}, \ldots, d_{N}\right)$. (Does it form a polytope in the Euclidean space? It is infinite?)

Questions we ask:

- How do we simplify $H\left(d_{1}, \ldots, d_{N}\right)$ and when is it nonzero?
- How does the polynomial from Whittaker compare with the Chinta series?

Our Strategy for removing roots

Our Strategy for removing roots

- Recall, a maximal parabolic corresponds to the choice of removing a simple root.

Our Strategy for removing roots

- Recall, a maximal parabolic corresponds to the choice of removing a simple root.
- Heuristic:
$\sum_{d_{i}=1}^{\infty} \frac{\left(\frac{d_{1}}{d_{2}}\right)\left(\frac{d_{2}}{d_{3}}\right)\left(\frac{d_{3}}{d_{4}}\right)\left(\frac{d_{4}}{d_{5}}\right)}{d_{1}^{s_{1}} d_{2}^{s_{2}} d_{3}^{S_{3}} d_{4}^{s_{4}} d_{5}^{s_{5}}}=\sum_{d_{2}, d_{4}=1}^{\infty} \frac{\mathcal{L}\left(s_{1}, \chi_{d_{2}}\right) \mathcal{L}\left(s_{3}, \chi_{d_{2} d_{4}}\right) \mathcal{L}\left(s_{5}, \chi_{d_{4}}\right)}{d_{2}^{s_{2}} d_{4}^{s_{4}}}$
For computation, removing α_{2} and α_{4} could give us a nicer polynomial to compare.

Computing the Whittaker coefficient

(Brubaker-Friedberg) Theorem 4.1:

$$
\mathcal{W}_{f_{1}, f_{2}, s(1)} \sum_{d_{j} \in \mathfrak{o}_{s} / \mathfrak{o}_{s}^{\times}} H\left(d_{1}, \ldots, d_{N}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})
$$

Some results:

Computing the Whittaker coefficient

(Brubaker-Friedberg) Theorem 4.1:

$$
\mathcal{W}_{f_{1}, f_{2}, s(1)} \sum_{d_{j} \in \mathfrak{o}_{s} / \mathfrak{o}_{s}^{\times}} H\left(d_{1}, \ldots, d_{N}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})
$$

Some results:

$$
\text { - } \delta_{P}^{s+1 / 2}(\mathfrak{D})=\left(d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}\right)^{-3 s-3 / 2}
$$

Computing the Whittaker coefficient

(Brubaker-Friedberg) Theorem 4.1:

$$
\mathcal{W}_{f_{1}, f_{2}, s(1)} \sum_{d_{j} \in \mathfrak{o}_{s} / \mathfrak{o}_{s}^{\times}} H\left(d_{1}, \ldots, d_{N}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})
$$

Some results:

- $\delta_{P}^{s+1 / 2}(\mathfrak{D})=\left(d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}\right)^{-3 s-3 / 2}$
- $H\left(d_{1}, \ldots, d_{N}\right):=\sum_{c_{i} \bmod D_{j}} \prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right) e^{2 \pi i \sum_{j} v_{j}}$: Gauss sums calculated from removing α_{2} (will be explained in detail)

Computing the Whittaker coefficient

(Brubaker-Friedberg) Theorem 4.1:

$$
\mathcal{W}_{f_{1}, f_{2}, s(1)} \sum_{d_{j} \in \mathfrak{o}_{s} / \mathfrak{o}_{s}^{\times}} H\left(d_{1}, \ldots, d_{N}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})
$$

Some results:

- $\delta_{P}^{s+1 / 2}(\mathfrak{D})=\left(d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}\right)^{-3 s-3 / 2}$
- $H\left(d_{1}, \ldots, d_{N}\right):=\sum_{c_{i} \bmod D_{j}} \prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right) e^{2 \pi i \sum_{j} v_{j}}$: Gauss sums calculated from removing α_{2} (will be explained in detail)
- $\zeta_{D}=\left(d_{4} d_{3} d_{2} d_{1}, d_{5}\right)_{S}\left(d_{4} d_{3} d_{2}, d_{6}\right)_{S}\left(d_{4} d_{3}, d_{7}\right)_{S}\left(d_{4}, d_{8}\right)_{S}$.

Computing the Whittaker coefficient

(Brubaker-Friedberg) Theorem 4.1:

$$
\mathcal{W}_{f_{1}, f_{2}, s(1)} \sum_{d_{j} \in \mathfrak{o}_{s} / \mathfrak{o}_{s}^{\times}} H\left(d_{1}, \ldots, d_{N}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})
$$

Some results:

- $\delta_{P}^{s+1 / 2}(\mathfrak{D})=\left(d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}\right)^{-3 s-3 / 2}$
- $H\left(d_{1}, \ldots, d_{N}\right):=\sum_{c_{i} \bmod D_{j}} \prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right) e^{2 \pi i \sum_{j} v_{j}}$: Gauss sums calculated from removing α_{2} (will be explained in detail)
- $\zeta_{D}=\left(d_{4} d_{3} d_{2} d_{1}, d_{5}\right)_{S}\left(d_{4} d_{3} d_{2}, d_{6}\right)_{S}\left(d_{4} d_{3}, d_{7}\right)_{S}\left(d_{4}, d_{8}\right)_{S}$.
- $c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})$: The inductive step for further removing roots from $A_{1} \times A_{3}$

Root System A_{n}

- A root system $\Phi \subset \mathbb{R}^{n+1}$ is a finite collection of vectors ("roots") under some axioms
- There is a method of enumerating the positive roots

Example

Below is one possible enumeration of roots for the A_{3} case

$$
\left[\begin{array}{cccc}
* & \beta_{3} & \beta_{2} & \beta_{1} \\
& * & \beta_{5} & \beta_{4} \\
& & * & \beta_{6} \\
& & & *
\end{array}\right]
$$

Removing the second root from A_{5}

- We want to split up A_{5} into $A_{1} \times A_{3}$ and "what's left"

Figure: The Dynkin diagram corresponding to removing the second node

Removing the second root from A_{5}

- In the below diagram, the asterisks represent the A_{1} and A_{3} root systems
- We can rig the enumeration to do the $A_{1} \times A_{3}$ roots first and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{8}$ last.

$$
\left[\begin{array}{cccccc}
* & * & \gamma_{4} & \gamma_{3} & \gamma_{2} & \gamma_{1} \\
* & * & \gamma_{8} & \gamma_{7} & \gamma_{6} & \gamma_{5} \\
& & * & * & * & * \\
& & * & * & * & * \\
& & * & * & * & * \\
& & * & * & * & *
\end{array}\right]
$$

- We'll compute the asterisk $A_{1} \times A_{3}$ part inductively

Gauss Sums - A Prototype for the Exponential Sum

Definition

$$
g_{t}(m, d)=\sum_{c \bmod d}\left(\frac{c}{d}\right)^{t} e^{2 \pi i \frac{m c}{d}}
$$

Gauss Sums - A Prototype for the Exponential Sum

Definition

$$
g_{t}(m, d)=\sum_{c \bmod d}\left(\frac{c}{d}\right)^{t} e^{2 \pi i \frac{m c}{d}}
$$

Example

$$
g_{1}\left(1, p^{2}\right)=\sum_{c \bmod p^{2}}\left(\frac{c}{p^{2}}\right) e^{2 \pi i \frac{c}{p^{2}}}
$$

Gauss Sums - A Prototype for the Exponential Sum

Definition

$$
g_{t}(m, d)=\sum_{c \bmod d}\left(\frac{c}{d}\right)^{t} e^{2 \pi i \frac{m c}{d}}
$$

Example

$$
g_{1}\left(1, p^{2}\right)=\sum_{c \bmod p^{2}}\left(\frac{c}{p^{2}}\right) e^{2 \pi i \frac{c}{p^{2}}}
$$

Reindex to $c=x+p y$ with $x, y \bmod p$.

$$
\begin{aligned}
g_{1}\left(1, p^{2}\right) & =\sum_{x, y \bmod p}\left(\frac{x}{p^{2}}\right) e^{2 \pi i \frac{x}{p^{2}}+\frac{y}{p}}=\sum_{x \bmod p}\left(\frac{x}{p^{2}}\right) e^{2 \pi i \frac{x}{p^{2}}} \sum_{y \bmod p} e^{2 \pi i \frac{y}{p}} \\
& =\sum_{x \bmod p}\left(\frac{x}{p^{2}}\right) e^{2 \pi i \frac{x}{p^{2}}} \cdot 0=0
\end{aligned}
$$

Gauss Sums - A Prototype for the Exponential Sum

Definition

$$
g_{t}(m, d)=\sum_{c \bmod d}\left(\frac{c}{d}\right)^{t} e^{2 \pi i \frac{m c}{d}}
$$

Example

$$
g_{1}(p, p)=\sum_{c \bmod p}\left(\frac{c}{p}\right) e^{2 \pi i \frac{c p}{p}}
$$

Gauss Sums - A Prototype for the Exponential Sum

Definition

$$
g_{t}(m, d)=\sum_{c \bmod d}\left(\frac{c}{d}\right)^{t} e^{2 \pi i \frac{m c}{d}}
$$

Example

$$
g_{1}(p, p)=\sum_{c \bmod p}\left(\frac{c}{p}\right) e^{2 \pi i \frac{c p}{p}}
$$

For $c \bmod p,(c, p)=1$, half of c are squares and half are not, so

$$
g_{1}(p, p)=\sum_{c \bmod p}\left(\frac{c}{p}\right)=0
$$

Defining the Exponential Sum

- We associate an exponential sum to removing a certain root from a root system

Definition (Brubaker-Friedberg)

For $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{N}\right)$ with $d_{i}=p^{l_{i}}$ for some prime

$$
H(\mathbf{d})=\sum_{c_{i} \bmod D_{i}} \exp \left(2 \pi i\left(\sum_{i} v_{i}\right)\right) \prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right)
$$

Defining the Exponential Sum

Definition (Brubaker-Friedberg)

For $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{N}\right)$ with $d_{i}=p^{l_{i}}$ for some prime

$$
H(\mathbf{d})=\sum_{c_{i} \bmod D_{i}} \exp \left(2 \pi i\left(\sum_{i} v_{i}\right)\right) \prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right)
$$

We define $v_{j}=\frac{c_{N}}{d_{N}}$ when j is the removed root and is otherwise

$$
\sum_{\left(k, k^{\prime}\right) \in S_{j}}(-1)^{i+i^{\prime}} \eta_{i, i^{\prime}, k,-k^{\prime}}\left(b_{k} d_{k}^{-1}\right)^{i}\left(c_{k^{\prime}} d_{k^{\prime}}^{-1}\right)^{i^{\prime}} \prod_{l \geq k}\left(d_{l}^{-1}\right)^{\left\langle\alpha_{j}, \gamma_{l}^{\vee}\right\rangle} \prod_{k^{\prime}<l<k}\left(d_{l}^{-1}\right)^{i^{\prime}\left\langle\gamma_{k}^{\prime}, \gamma_{l}^{\vee}\right\rangle}
$$

Defining the Exponential Sum

Definition (Brubaker-Friedberg)

For $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{N}\right)$ with $d_{i}=p^{l_{i}}$ for some prime

$$
H(\mathbf{d})=\sum_{c_{i} \bmod D_{i}} \exp \left(2 \pi i\left(\sum_{i} v_{i}\right)\right) \prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right)
$$

We define $v_{j}=\frac{c_{N}}{d_{N}}$ when j is the removed root and is otherwise

$$
\sum_{\left(k, k^{\prime}\right) \in S_{j}}(-1)^{i+i^{\prime}} \eta_{i, i^{\prime}, k,-k^{\prime}}\left(b_{k} d_{k}^{-1}\right)^{i}\left(c_{k^{\prime}} d_{k^{\prime}}^{-1}\right)^{i^{\prime}} \prod_{l \geq k}\left(d_{l}^{-1}\right)^{\left\langle\alpha_{j}, \gamma_{l}^{\vee}\right\rangle} \prod_{k^{\prime}<l<k}\left(d_{l}^{-1}\right)^{i^{\prime}\left\langle\gamma_{k}^{\prime}, \gamma_{l}^{\vee}\right\rangle}
$$

D_{j} are defined in terms of $d_{j} \mathrm{~s}$ as follows:

$$
D_{j}=d_{j} \prod_{k>j} d_{k}^{\left\langle\gamma_{j}, \gamma_{k}\right\rangle}
$$

Removing the second root from A_{5}

- We compute $H(\mathbf{d})$ in the A_{5} case with second node of the Dynkin diagram removed.

Removing the second root from A_{5}

- We compute $H(\mathbf{d})$ in the A_{5} case with second node of the Dynkin diagram removed.

$$
\begin{aligned}
& H(\mathbf{d})=\sum_{c_{i} \bmod D_{i}} \exp \left(2 \pi i \left(-\frac{b_{5} c_{1} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}-\frac{b_{6} c_{2} d_{7} d_{8}}{d_{2} d_{3} d_{4}}-\frac{b_{7} c_{3} d_{8}}{d_{3} d_{4}}-\frac{b_{8} c_{4}}{d_{4}}\right.\right. \\
& \left.\left.+\frac{c_{8}}{d_{8}}+\frac{b_{4} c_{3} d_{8}}{d_{3} d_{7}}+\frac{b_{8} c_{7}}{d_{7}}+\frac{b_{3} c_{2} d_{7}}{d_{2} d_{6}}+\frac{b_{7} c_{6}}{d_{6}}+\frac{b_{2} c_{1} d_{6}}{d_{1} d_{5}}+\frac{b_{6} c_{5}}{d_{5}}\right)\right) \prod_{k=1}^{8}\left(\frac{c_{k}}{d_{k}}\right),
\end{aligned}
$$

where loosely we define $b_{i} \equiv c_{i}^{-1} \bmod d_{i}$

Removing the second root from A_{5}

$$
\begin{aligned}
& H(\mathbf{d})=\sum_{c_{i} \bmod D_{i}} \exp \left(2 \pi i \left(-\frac{b_{5} c_{1} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}-\frac{b_{6} c_{2} d_{7} d_{8}}{d_{2} d_{3} d_{4}}-\frac{b_{7} c_{3} d_{8}}{d_{3} d_{4}}-\frac{b_{8} c_{4}}{d_{4}}\right.\right. \\
& \left.\left.+\frac{c_{8}}{d_{8}}+\frac{b_{4} c_{3} d_{8}}{d_{3} d_{7}}+\frac{b_{8} c_{7}}{d_{7}}+\frac{b_{3} c_{2} d_{7}}{d_{2} d_{6}}+\frac{b_{7} c_{6}}{d_{6}}+\frac{b_{2} c_{1} d_{6}}{d_{1} d_{5}}+\frac{b_{6} c_{5}}{d_{5}}\right)\right) \prod_{k=1}^{8}\left(\frac{c_{k}}{d_{k}}\right)
\end{aligned}
$$

where loosely we define $b_{i} \equiv c_{i}^{-1} \bmod d_{i}$

Proposition (S. Garg-K.-F. Lu-W.)

Put the d_{j} s in a matrix corresponding to the position of γ_{j}. Then,

$$
\begin{aligned}
D_{j} & =d_{j} \times d_{k} s \text { below } d_{j} \text { in the same column } \\
& \times d_{k} s \text { to the left of } d_{j} \text { in the same row }
\end{aligned}
$$

Recall the original definition: $\quad D_{j}=d_{j} \prod_{k \gg j} d_{k}^{\left\langle\gamma_{j}, \gamma_{k}\right\rangle}$

Removing the second root from A_{5}

Proposition (S. Garg-K.-F. Lu-W.)

Put the d_{j} s in a matrix corresponding to the position of γ_{j}. Then,

$$
\begin{aligned}
D_{j} & =d_{j} \times d_{k} s \text { below } d_{j} \text { in the same column } \\
& \times d_{k} s \text { to the left of } d_{j} \text { in the same row }
\end{aligned}
$$

Recall the original definition: $\quad D_{j}=d_{j} \prod_{k>j} d_{k}^{\left\langle\gamma_{j}, \gamma_{k}\right\rangle}$

Example

Here, the matrix is

d_{4}	d_{3}	d_{2}	d_{1}
d_{8}	d_{7}	d_{6}	d_{5}

We then have

$$
D_{3}=d_{3} d_{7} d_{4}, \quad D_{4}=d_{4} d_{8}
$$

Removing the second root from A_{5}

$$
\begin{aligned}
& H(\mathbf{d})=\sum_{c_{i} \bmod D_{i}} \exp \left(2 \pi i \left(-\frac{b_{5} c_{1} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}-\frac{b_{6} c_{2} d_{7} d_{8}}{d_{2} d_{3} d_{4}}-\frac{b_{7} c_{3} d_{8}}{d_{3} d_{4}}-\frac{b_{8} c_{4}}{d_{4}}\right.\right. \\
& \left.\left.+\frac{c_{8}}{d_{8}}+\frac{b_{4} c_{3} d_{8}}{d_{3} d_{7}}+\frac{b_{8} c_{7}}{d_{7}}+\frac{b_{3} c_{2} d_{7}}{d_{2} d_{6}}+\frac{b_{7} c_{6}}{d_{6}}+\frac{b_{2} c_{1} d_{6}}{d_{1} d_{5}}+\frac{b_{6} c_{5}}{d_{5}}\right)\right) \prod_{k=1}^{8}\left(\frac{c_{k}}{d_{k}}\right),
\end{aligned}
$$

where loosely we define $b_{i} \equiv c_{i}^{-1} \bmod d_{i}$

Proposition (GKLW)

Each term in the exponent other than $\frac{c_{8}}{d_{8}}$ is of the form

$$
\pm \frac{b_{i} c_{j} D_{i}}{D_{j}}
$$

Recall the original definition of a term:

$$
(-1)^{i+i^{\prime}} \eta_{i, i^{\prime}, k,-k^{\prime}}\left(b_{k} d_{k}^{-1}\right)^{i}\left(c_{k^{\prime}} d_{k^{\prime}}^{-1}\right)^{i^{\prime}} \prod_{l>l}\left(d_{l}^{-1}\right)^{\left\langle\alpha_{j}, \gamma_{l}^{\vee}\right\rangle} \prod_{l, l}\left(d_{l}^{-1}\right)^{i^{\prime}\left\langle\gamma_{k}^{\prime}, \gamma_{l}^{\vee}\right\rangle}
$$

Removing the second root from A_{5}

$$
\begin{aligned}
& H(\mathbf{d})=\sum_{c_{i} \bmod D_{i}} \exp \left(2 \pi i \left(-\frac{b_{5} c_{1} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}-\frac{b_{6} c_{2} d_{7} d_{8}}{d_{2} d_{3} d_{4}}-\frac{b_{7} c_{3} d_{8}}{d_{3} d_{4}}-\frac{b_{8} c_{4}}{d_{4}}\right.\right. \\
& \left.\left.+\frac{c_{8}}{d_{8}}+\frac{b_{4} c_{3} d_{8}}{d_{3} d_{7}}+\frac{b_{8} c_{7}}{d_{7}}+\frac{b_{3} c_{2} d_{7}}{d_{2} d_{6}}+\frac{b_{7} c_{6}}{d_{6}}+\frac{b_{2} c_{1} d_{6}}{d_{1} d_{5}}+\frac{b_{6} c_{5}}{d_{5}}\right)\right) \prod_{k=1}^{8}\left(\frac{c_{k}}{d_{k}}\right)
\end{aligned}
$$

where loosely we define $b_{i} \equiv c_{i}^{-1} \bmod d_{i}$

Proposition (GKLW)

Each term in the exponent other than $\frac{c_{8}}{d_{8}}$ is of the form

$$
\pm \frac{b_{i} c_{j} D_{i}}{D_{j}}
$$

- We can check this for b_{4}, c_{3} with $D_{3}=d_{3} d_{7} d_{4}, D_{4}=d_{4} d_{8}$.

Removing the second root from A_{5}

$$
\begin{aligned}
& H(\mathbf{d})=\sum_{c_{i} \bmod D_{i}} \exp \left(2 \pi i \left(-\frac{b_{5} c_{1} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}-\frac{b_{6} c_{2} d_{7} d_{8}}{d_{2} d_{3} d_{4}}-\frac{b_{7} c_{3} d_{8}}{d_{3} d_{4}}-\frac{b_{8} c_{4}}{d_{4}}\right.\right. \\
& \left.\left.+\frac{c_{8}}{d_{8}}+\frac{b_{4} c_{3} d_{8}}{d_{3} d_{7}}+\frac{b_{8} c_{7}}{d_{7}}+\frac{b_{3} c_{2} d_{7}}{d_{2} d_{6}}+\frac{b_{7} c_{6}}{d_{6}}+\frac{b_{2} c_{1} d_{6}}{d_{1} d_{5}}+\frac{b_{6} c_{5}}{d_{5}}\right)\right) \prod_{k=1}^{8}\left(\frac{c_{k}}{d_{k}}\right),
\end{aligned}
$$

where loosely we define $b_{i} \equiv c_{i}^{-1} \bmod d_{i}$

- To better understand the sum, we draw a "dependency graph"

Figure: There is a $b_{i} c_{j}$ term in the sum \Longleftrightarrow there is an edge $i \rightarrow j$ in the graph. We circle 8 to remember the $\frac{c_{8}}{d_{8}}$ term

Removing the second root from A_{5}

$$
\begin{aligned}
& H(\mathbf{d})=\sum_{c_{i} \bmod D_{i}} \exp \left(2 \pi i \left(-\frac{b_{5} c_{1} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}-\frac{b_{6} c_{2} d_{7} d_{8}}{d_{2} d_{3} d_{4}}-\frac{b_{7} c_{3} d_{8}}{d_{3} d_{4}}-\frac{b_{8} c_{4}}{d_{4}}\right.\right. \\
& \left.\left.+\frac{c_{8}}{d_{8}}+\frac{b_{4} c_{3} d_{8}}{d_{3} d_{7}}+\frac{b_{8} c_{7}}{d_{7}}+\frac{b_{3} c_{2} d_{7}}{d_{2} d_{6}}+\frac{b_{7} c_{6}}{d_{6}}+\frac{b_{2} c_{1} d_{6}}{d_{1} d_{5}}+\frac{b_{6} c_{5}}{d_{5}}\right)\right) \prod_{k=1}^{8}\left(\frac{c_{k}}{d_{k}}\right),
\end{aligned}
$$

where loosely we define $b_{i} \equiv c_{i}^{-1} \bmod d_{i}$

- To better understand the sum, we draw a "dependency graph"

Figure: There is a $b_{i} c_{j}$ term in the sum \Longleftrightarrow there is an edge $i \rightarrow j$ in the graph. We circle 8 to remember the $\frac{c_{8}}{d_{8}}$ term

Removing the second root from A_{5}

Figure: There is a $b_{i} c_{j}$ term in the sum \Longleftrightarrow there is an edge $i \rightarrow j$ in the graph. We circle 8 to remember the $\frac{c_{8}}{d_{8}}$ term

- We can follow paths to compute what the other edges are in terms of the a_{j} s.

Example

Since $b_{i}=c_{i}^{-1}$, we have

$$
b_{4} c_{3}=b_{4} c_{7} b_{7} c_{3}=a_{2} a_{3}
$$

Removing the second root from A_{5}

$$
\begin{aligned}
& H(\mathbf{d})=\sum_{a_{i}} \exp \left(2 \pi i \left(-\frac{a_{7} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}-\frac{a_{5} d_{7} d_{8}}{d_{2} d_{3} d_{4}}-\frac{a_{3} d_{8}}{d_{3} d_{4}}-\frac{a_{1}}{d_{4}}\right.\right. \\
& \left.\left.+\frac{a_{0}}{d_{8}}+\frac{a_{2} a_{3} d_{8}}{d_{3} d_{7}}+\frac{a_{1} a_{2}}{d_{7}}+\frac{a_{4} a_{5} d_{7}}{d_{2} d_{6}}+\frac{a_{3} a_{4}}{d_{6}}+\frac{a_{6} a_{7} d_{6}}{d_{1} d_{5}}+\frac{a_{5} a_{6}}{d_{5}}\right)\right) \prod_{k=1}^{8}\left(\frac{a_{k}}{\cdots}\right)
\end{aligned}
$$

Figure: There is a $b_{i} c_{j}$ term in the sum \Longleftrightarrow there is an edge $i \rightarrow j$ in the graph. We circle 8 to remember the $\frac{c_{8}}{d_{8}}$ term

Removing the second root from A_{5}

$$
\begin{aligned}
& H(\mathbf{d})=\sum_{a_{i}} \exp \left(2 \pi i \left(-\frac{a_{7} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}-\frac{a_{5} d_{7} d_{8}}{d_{2} d_{3} d_{4}}-\frac{a_{3} d_{8}}{d_{3} d_{4}}-\frac{a_{1}}{d_{4}}\right.\right. \\
& \left.\left.+\frac{a_{0}}{d_{8}}+\frac{a_{2} a_{3} d_{8}}{d_{3} d_{7}}+\frac{a_{1} a_{2}}{d_{7}}+\frac{a_{4} a_{5} d_{7}}{d_{2} d_{6}}+\frac{a_{3} a_{4}}{d_{6}}+\frac{a_{6} a_{7} d_{6}}{d_{1} d_{5}}+\frac{a_{5} a_{6}}{d_{5}}\right)\right) \prod_{k=1}^{8}\left(\frac{a_{k}}{\ldots}\right)
\end{aligned}
$$

Figure: A visualization of the dependencies in the re-indexed sum

Progress Summary

- We compute a Dirichlet Series from a Dynkin Diagram
- We show how to interpret relevant quantities in terms of the geometry of the $\gamma_{j} \mathrm{~s}$
- We model the exponential sum as a graph and use it to facilitate re-indexing to "nicer" coordinates
this gives us...
- An understanding of where the $H(d, t)$'s are supported: Finite cases (most exponents ≤ 1) and a few infinite cases.

Future Directions

- Change of variables from the Whittaker coefficient to the Chinta polynomial
- Understand the 15 zeta functions that got pulled out from the Chinta series, and how it coincide with the normalizing zeta factor of the Whittaker function
- Another description of the same polynomial is through "string data" defined in Littelmann. We bounded a polytope but it currently has 12624 vertices...

Acknowledgements

Acknowledgements

- Thanks Ben for patiently explaining this problem to us again and again (until one of us finally starts to understand).

Acknowledgements

- Thanks Ben for patiently explaining this problem to us again and again (until one of us finally starts to understand).
- Thanks Kayla, Emily and Megan for all the TA sessions, answering endless discord Q\&As’ and spending 2.5 hours yesterday to help us polish the talk.

Acknowledgements

- Thanks Ben for patiently explaining this problem to us again and again (until one of us finally starts to understand).
- Thanks Kayla, Emily and Megan for all the TA sessions, answering endless discord Q\&As’ and spending 2.5 hours yesterday to help us polish the talk.
- Thanks all staff \& participants of the REU for providing invaluable intellectual and emotional support for 2 months.

Acknowledgements

- Thanks Ben for patiently explaining this problem to us again and again (until one of us finally starts to understand).
- Thanks Kayla, Emily and Megan for all the TA sessions, answering endless discord Q\&As' and spending 2.5 hours yesterday to help us polish the talk.
- Thanks all staff \& participants of the REU for providing invaluable intellectual and emotional support for 2 months.
- The End!

