PROBLEM 4: ROOT SYSTEMS, HIGHEST-WEIGHT POLYTOPES, AND EXPONENTIAL SUMS

SWAPNIL GARG, AIDAN KELLEY, FRANK LU, SIKI WANG

Abstract

In this paper, we consider the Dirichlet series that comes from the process of obtaining the Whittaker coefficients for the maximal parabolic Eisenstein series, outlined in from Brubaker and Friedberg's paper BF15] in the case of the Dynkin diagram of A_{5}. Specifically, we take the maximal parabolic corresponding to the removal of the second simple root from A_{5}. We compute the support of the exponential sum corresponding to this removal of the second simple root from A_{5}, in order to see how the Dirichlet series to another Dirichlet series associated to A_{5} outlined in Chinta's paper Chi05.

1. Introduction

Brubaker and Friedberg describe in their paper [BF15] a method to compute the Whittaker coefficients of a parabolic Eisenstein series for metaplectic covers of a split reductive group G. The resulting coefficient turns out to be a Dirichlet series over several variables, with each variable corresponding to the removal of a given root. This whole process results in a maximal chain of nested parabolics between (and including) the Borel subgroup B and the whole G, with the removal of each root corresponding to a step in the chain. In particular, the first removal step takes us from G to a maximal parabolic P.

In particular, their main result, [BF15, Theorem 4.1], states that for a specific character ψ we have the following coefficient:

$$
\mathcal{W}_{f_{1}, f_{2}, s}(1) \sum_{\substack{d_{j} \in \mathfrak{o}_{S} / \mathfrak{o}_{S}^{\times}, d_{j} \neq 0 \\ j=1,2, \ldots, N}} H\left(d_{1}, d_{2}, \ldots, d_{N}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D}) .
$$

Of particular interest in studying this formula is the explicit computation of the exponential sum H, as this will provide a lot of information about which terms in the Dirichlet series have nonzero coefficient.

One interesting aspect of this exponential sum H is the support of H, which has been found to be related to the representation theory of G. In particular, certain inequalities that define the support of H appear related to those arising out of the combinatorics of these representations. For a more explicit description of the combinatorics, see Littelmann's paper [Lit98]. In particular, Lit98]'s combinatorial machinery generates a polytope and various inequalities which Brubaker and Friedberg relate in [BF15] to the support of the function H in their explicit example of $G=G L_{4}(\mathbb{C})$, where the maximal parabolic has Levi subgroup $G L_{2}(\mathbb{C}) \times G L_{2}(\mathbb{C})$ Additionally, an earlier paper by Brubaker, Bump, and Friedberg, [BBF11, goes through a specific case of $G=G L_{n}(\mathbb{C})$, with the chain of parabolics with respective Levi subgroups $G L_{1}(\mathbb{C}) \times G L_{n-1}(\mathbb{C}) \supset G L_{1}(\mathbb{C}) \times G L_{1}(\mathbb{C}) \times G L_{n-2}(\mathbb{C}) \supset$
$\cdots \supset B$, observe as well how this combinatorial data is related to the evaluation of this exponential sum H.

A second process for generating a Dirichlet series, this time coming from a Dynkin diagram, is described by Chinta in [Chi05]. In particular, Chinta describes a Dirichlet series associated to the Dynkin diagram of A_{5} and analyzes nice analytic properties of this function. However, from the outset this process isn't immediately related to the Dirichlet series outlined by [BF15]. A major goal of this project was to see if the series produced by Chinta and the series produced by Brubaker and Friedberg, in the case when we have $G=G L_{6}(\mathbb{C})$ and the associated Dynkin diagram A_{5}, are closely related (possibly equal up to a change of variables). Motivating this search are the nice analytic properties of both the series Chinta constructs and of Whittaker functions. Additionally, both of these constructions yield functional equations generating Weyl groups that are isomorphic to A_{5}, further suggesting a connection.

As such, in this paper, we go through the process outlined in BF15 for the example where $G=G L_{6}(\mathbb{C})$, with the hope of analyzing the connection that this particular series has to both the work of [Lit98] and [Chi05]. While [BBF11] provides an inductive method for computing such a series for A_{n}, with parabolics given by removing the left-most root in the Dynkin diagram, the resulting form is difficult to compare with the series given in Chi05. In particular, the form of the series in [Chi05] suggests that a different choice of parabolics and running the process in BF15 with this new choice of parabolics will yield a series that is easier to compare to Chinta's.

Our approach for the report is as follows. We begin in section 2 by introducing some notation and setting some conventions. We will also review some properties of Gauss sums and root systems, and explain some of the key parts of the process given [BF15], before working through the example done in $[\mathrm{BF} 15]$ for $G L_{4}(\mathbb{C})$ in more detail.

Following this, in section 3 we provide some simplifications and describe general methods to computing the exponential sum $H(\mathbf{d}, \mathbf{t})$ corresponding to this process of removing the second root. These methods will also be useful in future study of this process in A_{n}. Section 4 then goes through some more specific computations of $H(\mathbf{d}, \mathbf{t})$ in the case of A_{5} to determine the support of this function. From here, we go back to the whole Dirichlet series in section 5 and explicitly describe each of the parts of the formula from [BF15, Theorem 4.1]. In particular, we relate what form they take in our example.

Sections 6 and 7 are dedicated to describing some of the progress we've made in more explicit computations with Sage, with section 6 focused on analyzing the connection between the polytopes described in Littelmann's paper [Lit98] and section 7 more oriented on explicit values of $H(\mathbf{d}, \mathbf{t})$. Finally, in section 8 , we outline future directions that we could take.

2. Preliminary Concepts and Definitions

This section introduces key concepts about Gauss sums and root systems. After introducing these concepts, we go through the example from [BF15] for their computation of the exponential sum H in the case where $G=G L_{4}(\mathbb{C})$ corresponding to A_{3}. This kind of computation will be our starting point for the work that we do in the rest of the report.
2.1. Gauss Sums. Given integers m, t, d, where $d>1$, define the Gauss sum as

$$
g_{t}(m, d)=\sum_{c \bmod d}\left(\frac{c}{d}\right)_{2}^{t} e^{2 \pi i \frac{m c}{d}} .
$$

Of particular interest are the evaluations of $g_{t}(m, d)$ when d is a prime power, and m is relatively prime to d. In this case, if $d=p^{k}$ for some $k>0$, again for integers m, t we can also define the related function

$$
j_{t}(m, d)=\sum_{c \bmod d}\left(\frac{c}{p}\right)_{2}^{t} e^{2 \pi i \frac{m c}{d}}
$$

We show a two important examples of Gauss sum examples that showcase techniques that will be important later in computing the full exponential sum $H(\mathbf{d}$,$) .$

Example 2.1. In this example, we show how "summing over all roots of unity" can make a Gauss sum vanish. Here, consider the example

$$
g_{1}\left(1, p^{2}\right)=\sum_{c \bmod p^{2}}\left(\frac{c}{p^{2}}\right)_{2} e^{2 \pi i \frac{c}{p^{2}}}
$$

To solve this, we re-index to $c=x+p y$ with $x, y \bmod p$ and notice that $\left(\frac{c}{p^{2}}\right)_{2}$ only depends on $c \bmod p$. Then, we get

$$
\begin{aligned}
g_{1}\left(1, p^{2}\right) & =\sum_{x, y \bmod p}\left(\frac{x}{p^{2}}\right)_{2} e^{2 \pi i \frac{x}{p^{2}}+\frac{y}{p}} \\
& =\sum_{x \bmod p}\left(\frac{x}{p^{2}}\right)_{2} e^{2 \pi i \frac{x}{p^{2}}} \sum_{y \bmod p} e^{2 \pi i \frac{y}{p}} \\
& =\sum_{x \bmod p}\left(\frac{x}{p^{2}}\right)_{2} e^{2 \pi i \frac{x}{p^{2}}} \cdot 0=0
\end{aligned}
$$

where in the penultimate the sum over y vanishes because the sum of all roots of unity is 0 .

Example 2.2. Next, we present an example where the sum vanishes due to symmetry in the quadratic residue symbol. We evaluate

$$
g_{1}(p, p)=\sum_{c \bmod p}\left(\frac{c}{p}\right)_{2} e^{2 \pi i \frac{c p}{p}}
$$

Here, the exponent of e is $2 \pi i$ times an integer, so $e^{(\cdots)}=1$. Then, we have

$$
g_{1}(p, p)=\sum_{\substack{c \bmod p \\ 3}}\left(\frac{c}{p}\right)_{2}=0
$$

because for $c \bmod p,\left(\frac{0}{p}\right)_{2}=0$ and for non-zero c, half have $\left(\frac{c}{p}\right)_{2}=1$ and half have $\left(\frac{c}{p}\right)_{2}=-1$.

Certain values of Gauss sums for specific values of m and d and our related function j are well-known. For the sake of completeness, we list without proof a few of the more important ones we will use.

Proposition 2.3. For a not divisible by p, we have
and

$$
j_{t}\left(a p^{k}, p^{\ell}\right)=\left(\frac{a}{p}\right)_{2}^{-t} \cdot \begin{cases}0 & \ell-k \geq 2 \\ p^{\ell-1} j_{t}(1, p) & \ell-k=1 \\ 0 & \ell-k \leq 0, t \text { odd } \\ p^{\ell-1}(p-1) & \ell-k \leq 0, t \text { even }\end{cases}
$$

Proposition 2.4. For an odd prime p, we have

$$
j_{t}(1, p)=g_{t}(1, p)= \begin{cases}-1 & t \text { even } \\ \sqrt{p} & p \equiv 1 \bmod 4, t \text { odd } \\ i \sqrt{p} & p \equiv 3 \bmod 4, t \text { odd }\end{cases}
$$

Proposition 2.5. For $k \geq l$ and for any a, in particular, $p \mid a$ is allowed, we have

$$
j_{t}\left(a p^{k}, p^{l}\right)= \begin{cases}0 & t \text { odd } \\ p^{l-1}(p-1) & t \text { even }\end{cases}
$$

Proposition 2.6. For $k<l$ and for any a, in particular, $p \mid a$ is allowed, we have

$$
j_{t}\left(a p^{k}, p^{l}\right)=p^{k} j_{t}\left(a, p^{l-k}\right) .
$$

Proposition 2.7. We have the following special case: $j_{t}(x, 1)=1$.
These propositions will turn out to be useful when we try to evaluate the exponential sum H later in the report.
2.2. Root Systems. We now go over some concepts about the combinatorics of root systems. For a more detailed overview, see [BB05], upon which some of the definitions are based.

Definition 1 (See p. 4 from [BB05]). A Weyl group is a finite group W, generated by elements $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ so that
(W1) $s_{i}^{2}=e$ for $i \in\{1,2, \ldots, n\}$, and
(W2) $\left(s_{i} s_{j}\right)^{m_{i j}}$ for $i, j \in\{1,2, \ldots, n\}$ where $i \neq j$,
and $m_{i j} \in\{2,3,4,6\}$ for each $i, j \in\{1,2, \ldots, n\}$ where $i \neq j$.

Weyl groups are a special subset of groups called Coxeter group. We will not need the definition of this whole class in generality. In fact, throughout our report we will typically consider the Weyl group S_{n}, the symmetric group on n letters.

Associated to this Weyl group is the root system A_{n-1}. We proceed to a definition of a root system.
Definition 2 (Definition on p. 10, BB05). A root system is a finite set $\Phi \subset \mathbb{R}^{d} \backslash\{0\}$ for some positive integer d, if for all $\alpha, \beta \in \Phi$, the following conditions hold:
(R1) $\Phi \cap \mathbb{R} \alpha=\{\alpha,-\alpha\}$,
(R2) Given a root $\alpha \in \Phi$, let σ_{α}, be the reflection about the hyperplane perpendicular to α. Then, $\sigma_{\alpha}(\Phi)=\Phi$.
(R3) $\sigma_{\alpha}(\beta)-\beta=m \alpha$, where $m \in \mathbb{Z}$.
The group generated by the σ_{α} is called the Weyl group of Φ. The naming is not coincidental; one can verify that this group satisifies axioms (W1) and (W2).

One way we can express our reflection explicitly is using the following formula:

$$
\sigma_{\beta}(\alpha)=\alpha-\frac{2\left\langle\alpha_{j}, \beta\right\rangle}{\langle\beta, \beta\rangle} \beta,
$$

where $\langle\bullet, \bullet\rangle$ is an inner product invariant under the action of the Weyl group.
Definition 3. Fix some choice of hyperplane through the origin, which can be defined by $\langle x, v\rangle=0$ for some nonzero vector v. A positive root is a root $\alpha \in \Phi$ so that $\langle\alpha, v\rangle>0$, and a negative root is a root where $\langle\alpha, v\rangle<0$. We call the set of positive roots Φ^{+}and the set of negative roots Φ^{-}. A simple root is a positive root that cannot be expressed a nonnegative linear combination of other positive roots.

The notion of positive roots lets us define a poset on the positive roots Φ^{+}. Then, say that $\beta>\beta^{\prime}$ if $\beta-\beta^{\prime} \in \Phi^{+}$. Say that β covers β^{\prime} if $\beta>\beta^{\prime}$ and there exists no $\delta \in \Phi^{+}$such that $\beta>\delta>\beta^{\prime}$.

In our case, we will be working exclusively with the type A root system which can be described as

$$
\left\{e_{i}-e_{j}: i, j \in\{1,2, \ldots, n\}, i \neq j\right\} \subset \mathbb{R}^{n}
$$

where e_{i} is the $i^{\text {th }}$ standard basis vector. Then, using the hyperplane generated by the vector $v=(n, n-1, n-2, \ldots, 1)$, we have that the positive roots here are those where $i<j$ in the above set, and the simple roots are those where $j=i+1$.

Then, the Weyl group associated to this root system is S_{n}. In this case, the simple roots have corresponding reflections which correspond to the simple reflections s_{i}, which generate S_{n}. For notational purposes, we will denote $\alpha_{i}:=e_{i}-e_{i+1}$ as our simple roots and $\beta_{i, j}:=$ $e_{i}-e_{j}$.
2.3. Reductive Groups. We now consider how this work with root systems relates to a reductive group G (or, more precisely, the split metaplectic cover of the reductive group G). For us, we will always have $G=G L_{n}(\mathbb{C})$ for some n (and usually $n=6$). This group is associated with the root system of type A_{n-1}.

We associate a maximal parabolic to a simple root as follows, along the lines of BF15, $\S 5.1]$. For our group $G L_{n}(\mathbb{C})$ and a maximal parabolic P, which is the subgroup of block
upper triangular matrices with two blocks of size m and $n-m$ for some $1 \leq m \leq n-1$, we let M be the Levi subgroup of P. In our case, this subgroup M will be isomorphic to $G L_{m}(\mathbb{C}) \times G L_{n-m}(\mathbb{C})$. Notice that we can associate a Weyl group to M as well, which will be $A_{m-1} \times A_{n-m-1} \subset A_{n-1}$. In this case, we associate the parabolic P with removing the simple root α_{m}. Indeed, the Weyl group for M is the subgroup of S_{n} generated by all the simple reflections except s_{m}, and we can think of the root system of $A_{m-1} \times A_{n-m-1} \subset A_{n-1}$ as the subset of our original root system.

Visually, we can think of P, M as the following respective matrix forms

$$
\left(\begin{array}{cc}
{\left[G L_{m}(\mathbb{C})\right]} & * \\
0 & {\left[\begin{array}{c}
G L_{n-m}(\mathbb{C}) \\
0
\end{array}\right]}
\end{array}\right), \quad\left(\begin{array}{c}
{\left[G L_{m}(\mathbb{C})\right]} \\
0
\end{array}\right]
$$

with the removed root "located" at the corner between the two blocks in M, like so:

$$
\left(\begin{array}{llllll}
* & * & 0 & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 & 0 \\
0 & 0 & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & * & * & * & *
\end{array}\right) .
$$

Remark. Later, when we analyze the entire Dirichlet series, we will be repeating this process with our Levi subgroup M until we eventually arrive at the Borel subgroup B, which for us is the set of upper triangular matrices. How this is done will be more precisely outlined when we consider the rest of the Dirichlet series.

From here, we enumerate the positive roots γ_{i} in the associated root system, following the method outlined by [BF15]. Let w_{M} be the longest word of the Weyl group of M. Then, if w_{0} is the longest word of the Weyl group of G, we can decompose $w_{0}=w_{M} w^{P}$. Write the reduced decomposition of w^{P} as $s_{i_{t+1}} s_{i_{t+2}} \cdots s_{i_{m}}$. Then, define $\gamma_{1}=w_{M}\left(\alpha_{i_{t+1}}\right), \gamma_{2}=$ $w_{M} s_{i_{t+1}}\left(\alpha_{i_{t+2}}\right), \ldots, \gamma_{N}=w_{M} s_{i_{t+1}} s_{i_{t+2}} \cdots s_{i_{m-1}}\left(\alpha_{i_{m}}\right)$. We will use this ordering of the roots when we review the definition of the exponential sum $H(\mathbf{d} ; \mathbf{t})$ given in BF15].
2.4. The Definition of H. We now parse the exponential sum H that is given in [BF15], associated with a maximal parabolic subgroup $P \subset G$. See the next section for an example of these definitions.

In our case, we are particularly interested in certain characters $\psi_{\mathbf{t}}$ associated to a vector \mathbf{t}, as defined in the beginning of Section 6 of [BF15] by

$$
\psi_{\mathbf{t}}\left(w_{0} e_{-\alpha_{j}}(x) w_{0}^{-1}\right)=\psi\left(t_{j} x\right) .
$$

As such, as our exponential sum H depends on the character we choose, which [BF15] emphasizes in [BF15, Equation (30)], defining the sum as

$$
H(\mathbf{d} ; \mathbf{t})=\sum_{c_{j}\left(\bmod D_{j}\right)} \psi\left(\sum_{j} t_{j} v_{j}\right) \prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right)_{2}^{q_{k}} .
$$

For our computations, we treat [BF15, Proposition 5.7] as definition of the D_{j}, given by

$$
D_{j}=d_{j} \prod_{l=j+1}^{N} d_{l}^{\left\langle\gamma_{j}, \gamma_{l}^{\vee}\right\rangle}
$$

where the d_{i} are the coordinates of the vector \mathbf{d} and γ_{j} are our positive roots with their enumeration. Additionally, for our report, we take $\psi(x)=e^{2 \pi i x}$ and $q_{k}=1$ for each k.

As for the v_{j}, they are defined in equation (26) of [BF15] as

$$
v_{j}=\sum_{\left(k, k^{\prime}\right) \in S_{j}}\left[(-1)^{i+i^{\prime}} \eta_{i, i^{\prime}, \gamma_{k},-\gamma_{k^{\prime}}}\left(b_{k} d_{k}^{-1}\right)^{i}\left(c_{k^{\prime}} d_{k^{\prime}}^{-1}\right)^{i^{\prime}} \prod_{l \geq k}\left(d_{l}^{-1}\right)^{\left\langle\alpha_{j}, \gamma_{l}\right\rangle} \prod_{k^{\prime}<l<k}\left(d_{l}^{-1}\right)^{\left.i^{\prime} \gamma_{k}^{\prime}, \gamma_{l}\right\rangle}\right],
$$

summing over $i, i^{\prime}, k, k^{\prime}$ so that $i \gamma_{k}-i^{\prime} \gamma_{k^{\prime}}=-\alpha_{j}$.
The $\eta_{i, i^{\prime}, \gamma_{k},-\gamma_{k^{\prime}}}$ are constants that can be defined with the following equation, equation (21) in [BF15] (see [Ste16] for a more detailed exposition):

$$
e_{\alpha}(s) e_{\beta}(t) e_{\alpha}(s)^{-1}=e_{\beta}(t)\left[\prod_{\substack{i, j \in \mathbb{Z}^{+} \\ i \alpha+j \beta=\gamma \in \Phi}} e_{\gamma}\left(\eta_{i, j ; \alpha, \beta} s^{i} t^{j}\right)\right] .
$$

In our report, as we are taking reductive group $G=G L_{n}(\mathbb{C})$, this map $e_{\alpha}(t)$ can be given by

$$
e_{\alpha}(t)=I+t E_{i, j},
$$

where $\alpha=e_{i}-e_{j}$ and $E_{i, j}$ is the matrix with 1 in i, j th entry and 0 s elsewhere. Note that $E_{i j} E_{l k}=\delta_{j l} E_{i k}$.

In our particular example, we will not need to refer to this whole definition, because the case of $G=G L_{n}(\mathbb{C})$ turns out to make these η coefficients rather simple to compute. We will see this later when we consider A_{n} in general.

We now proceed to our example computation of $H(\mathbf{d} ; \mathbf{t})$ when $n=4$, with the H associated to removing the second root.
2.5. Example: The $G L_{4}(\mathbb{C})$ example from [BF15]. Here we will go through the example included in [BF15, §7] in more detail, to make it clear what the general process for computing the value of the exponential sum H looks like.

From Brubaker and Friedberg's paper [BF15], if we're given a maximal parabolic P corresponding to removing the second root, we can decompose our longest word w_{0} (which in this case is the longest word of A_{3}) in the word $w_{M} w^{P}$, where w_{M} is the longest word in the subgroup obtained by removing a root. In this case, we are removing α_{2}, so the Weyl group of M is generated only by the reflections corresponding to α_{1} and α_{3}. Recall that simple roots correspond to simple reflections (see the discussion under Definition 3), and so these reflections are namely s_{1}, s_{3}.

But then the longest word in the Levi subgroup being the permutation $w_{M}=s_{1} s_{3}$, which means that we end up with a decomposition by $w_{0}=s_{1} s_{3} s_{2} s_{1} s_{3} s_{2}$.

From here, we can obtain the ordering of positive roots corresponding to this decomposition, as discussed at the end of subsection 2.3. In this case, this ordering corresponds to the following ordering of roots: $\gamma_{1}=w_{M}\left(\alpha_{2}\right), \gamma_{2}=w_{M} s_{2}\left(\alpha_{1}\right), \gamma_{3}=w_{M} s_{2} s_{1}\left(\alpha_{3}\right)$, and
$\gamma_{4}=w_{M} s_{2} s_{1} s_{3}\left(\alpha_{2}\right)$. Applying these words, we obtain the following enumeration of the positive roots:

$$
\begin{aligned}
& \gamma_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}, \\
& \gamma_{2}=\alpha_{2}+\alpha_{3}, \\
& \gamma_{3}=\alpha_{1}+\alpha_{2}, \\
& \gamma_{4}=\alpha_{2} .
\end{aligned}
$$

In coordinates, we can express the simple roots as $\alpha_{1}=(1,-1,0,0), \alpha_{2}=(0,1,-1,0)$ and $\alpha_{3}=(0,0,1,-1)$. From here, we can coordinatize the positive roots

$$
\begin{aligned}
& \gamma_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}=(1,0,0,-1) \\
& \gamma_{2}=\alpha_{2}+\alpha_{3}=(0,1,0,-1) \\
& \gamma_{3}=\alpha_{1}+\alpha_{2}=(1,0,-1,0 \\
& \gamma_{4}=\alpha_{2}=(0,1,-1,0)
\end{aligned}
$$

We can also picture these roots as corresponding the positions in a matrix, as shown below:

$$
\left(\begin{array}{cccc}
1 & 0 & \gamma_{3} & \gamma_{1} \\
0 & 1 & \gamma_{4} & \gamma_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We now can compute the D's, recalling the formula: $D_{j}=d_{j} \prod_{l=j+1}^{N} d_{l}^{\left\langle\gamma_{j}, \gamma_{l}\right\rangle}$, so we have

$$
\begin{gathered}
D_{1}=d_{1} d_{2}^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle} d_{3}^{\left\langle\gamma_{1}, \gamma_{3}\right\rangle} d_{4}^{\left\langle\gamma_{1}, \gamma_{4}\right\rangle}=d_{1} d_{2} d_{3}, \\
D_{2}=d_{2} d_{3}^{\left\langle\gamma_{2}, \gamma_{3}\right\rangle} d_{4}^{\left\langle\gamma_{2}, \gamma_{4}\right\rangle}=d_{2} d_{4}, \\
D_{3}=d_{3} d_{4}^{\left\langle\gamma_{3}, \gamma_{4}\right\rangle}=d_{3} d_{4}, \quad D_{4}=d_{4} .
\end{gathered}
$$

Next, the v 's are computed by applying (26) of [BF15]:

$$
v_{j}=\sum_{\left(k, k^{\prime}\right) \in S_{j}}\left[(-1)^{i+i^{\prime}} \eta_{i, i^{\prime}, k,-k^{\prime}}\left(b_{k} d_{k}^{-1}\right)^{i}\left(c_{k^{\prime}} d_{k^{\prime}}^{-1}\right)^{i^{\prime}} \prod_{l \geq k}\left(d_{l}^{-1}\right)^{\left\langle\alpha_{j}, \gamma_{l}\right\rangle} \prod_{k^{\prime}<l<k}\left(d_{l}^{-1}\right)^{i^{\prime}\left\langle\gamma_{k}^{\prime}, \gamma_{l}\right\rangle}\right]
$$

Since $j=1, . ., N$ and $N=4$ for our case, we compute v_{1}, v_{2} and v_{3}. We first find the set of $\left(k, k^{\prime}\right)$ s.t. $i \gamma_{k}-i^{\prime} \gamma_{k^{\prime}}=-\alpha_{1}$ where $i=1, i^{\prime}=1$. This gives us the pairs $(2,1),(4,3) \in S_{1}$. Similarly, we obtain the pairs $(3,1),(4,2) \in S_{3}$ and $\emptyset \in S_{2}$. So we have:

$$
\begin{aligned}
v_{1} & =(-1)^{2} \eta_{1,1 ; \gamma_{2},-\gamma_{1}} \cdot \frac{b_{2} c_{1}}{d_{2} d_{1}} \cdot \frac{1}{d_{2}^{\left\langle\alpha_{1}, \gamma_{2}\right\rangle}} \frac{1}{d_{3}^{\left\langle\alpha_{1}, \gamma_{3}\right\rangle}} \frac{1}{d_{4}^{\left\langle\alpha_{1}, \gamma_{4}\right\rangle}}+(-1)^{2} \eta_{1,1 ; \gamma_{4},-\gamma_{3}} \cdot \frac{b_{4} c_{3}}{d_{4} d_{3}} \cdot \frac{1}{d_{4}^{\left\langle\alpha_{1}, \gamma_{4}\right\rangle}} \\
& =\frac{b_{4} c_{3}}{d_{3}}+\frac{b_{2} c_{1} d_{4}}{d_{3} d_{1}} \\
v_{2} & =\frac{c_{4}}{d_{4}} \\
v_{3} & =(-1)^{2} \eta_{1,1 ; \gamma_{4},-\gamma_{2}} \cdot \frac{b_{4} c_{2}}{d_{4} d_{2}} \cdot \frac{1}{d_{4}^{\left\langle\alpha_{3}, \gamma_{4}\right\rangle}} \frac{1}{d_{3}^{\left\langle\gamma_{2}, \gamma_{3}\right\rangle}}+(-1)^{2} \eta_{1,1 ; \gamma_{3},-\gamma_{1}} \cdot \frac{b_{3} c_{1}}{d_{3} d_{1}} \cdot \frac{1}{d_{4}^{\left\langle\alpha_{3}, \gamma_{4}\right\rangle}} \frac{1}{d_{3}^{\left\langle\alpha_{3}, \gamma_{3}\right\rangle}} \frac{1}{d_{2}^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle}} \\
& =-\left(\frac{b_{4} c_{2}}{d_{2}}+\frac{b_{3} c_{1} d_{4}}{d_{1} d_{2}}\right) .
\end{aligned}
$$

To see where we got $\eta_{1,1 ; \gamma_{2},-\gamma_{1}}$, for instance, we compute $e_{\gamma_{2}}(s) e_{-\gamma_{1}}(t) e_{\gamma_{2}}(s)^{-1}$, which yields us with the matrix product

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & s \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
t & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & s \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)^{-1}
$$

Evaluating the product of matrices yields us with the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
s t & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
t & 0 & 0 & 1
\end{array}\right)
$$

At the same time, noticing that $\gamma_{2}-\gamma_{1}=-\alpha_{1}$, we evaluate $e_{-\gamma_{1}}(t) e_{-\alpha_{1}}\left(\eta_{1,1 ; \gamma_{2},-\gamma_{1}} s t\right)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ t & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ \eta_{1,1 ; \gamma_{2},-\gamma_{1}} s t & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ \eta_{1,1 ; \gamma_{2},-\gamma_{1}} s t & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ t & 0 & 0 & 1\end{array}\right)$,
where we see that $\eta_{1,1 ; \gamma_{2},-\gamma_{1}}=1$. Again, we will perform this computation in more generality later on, which will reduce the amount of matrix multiplication we need to explicitly perform.

3. Computing an exponential sum from A_{n}

In this section, we describe our method of computing the exponential sums which arise from removing the r th node in a Dynkin diagram of A_{n}. In order to do this, we use facts about the geometry of the roots appearing in the unipotent radical of the chosen parabolic to simplify computing v_{j}. Then, we draw an associated directed graph which allows us to better understand the sum. Finally, we use the graph as a guide to reindex the sum into a nicer form.

Let Φ be the root system, Φ_{M} the root system of our Levi subgroup, and Φ_{P} the set of (positive) roots in our unipotent radical. Note that $\Phi^{+}=\Phi_{M}^{+} \sqcup \Phi_{P}$.

In this section, we work in the case that each d_{i} is a power of the same prime and we write $d_{i}=p^{l_{i}}$. As discussed in Theomerem 6.5 of [BF15], $H(\mathbf{d}, \mathbf{t})$ satisfies a "twisted multiplicativity" condition, so we only need to evaluate $H(\mathbf{d}, \mathbf{t})$ on prime powers.

Further, in the following section there will be times when we want to index d_{i} s linearly, and other times when we want to do so according to the position of γ_{i} in the matrix. To accomplish this, we use the following notation: Define the function I which takes a position in our matrix to the index of the corresponding γ_{i}, meaning for $\gamma_{i}=e_{a}-e_{b}$ that

$$
I(a, b)=i
$$

We will simplify this notation by writing

$$
\gamma_{i, j}:=\gamma_{I(i, j)}, \quad d_{i, j}:=d_{I(i, j)}
$$

Throughout this section we describe how our methods apply to the following example:
Example 3.1. Let $G=\mathrm{GL}_{6}(\mathbb{C})$, with associated root system Φ of type A_{5}. We "remove the second simple root" of Φ, meaning that we fix our Levi subalgebra $M \cong \mathrm{GL}_{2}(\mathbb{C}) \times \mathrm{GL}_{4}(\mathbb{C})$. In this section, we simply state facts about this example which will be justified in section 4
3.1. Computing D_{j} 's geometrically. Here, we discuss how to view the computation of D_{j} 's geometrically. Since D_{j} depends on the relationship between the $\gamma_{k} \mathrm{~s}$, we first discuss their geometry.

First, fix the standard coordinates for A_{n} in \mathbb{R}^{n+1} as described in Section 2.2. We can associate any positive simple root to the i, j th position of an $(n+1) \times(n+1)$ matrix. Our $\gamma_{1}, \ldots, \gamma_{N}$ are all in a $r \times(n+1-r)$ rectangle in the upper right corner of such a matrix, where r is the index of the node we remove.

Example 3.2. In Example 3.1, the positioning of the $\gamma_{j} \mathrm{~s}$ looks like

$$
\left[\begin{array}{cccccc}
* & * & \gamma_{4} & \gamma_{3} & \gamma_{2} & \gamma_{1} \\
* & * & \gamma_{8} & \gamma_{7} & \gamma_{6} & \gamma_{5} \\
& & * & * & * & * \\
& & * & * & * & * \\
& & * & * & * & * \\
& & * & * & * & *
\end{array}\right],
$$

where the asterisks represent the A_{1} and A_{3} parts that are left over.
We formalize this observation with the following
Proposition 3.3. $\gamma=e_{a}-e_{b} \in \Phi_{P}$ if and only if $a<b, a \leq r$, and $b \geq r+1$.
Proof. First, say γ is a root in the unipotent radical. Since γ is positive, $a<b$. If we had $a>r$, then $r<a<b$, so γ is a sum of positive simple roots $\alpha_{a}+\alpha_{a+1}+\cdots+\alpha_{b-1}$ which avoids α_{r}. Then, $\gamma \in \Phi_{M}$, a contradiction since $\Phi_{M} \cap \Phi_{P}=\emptyset$. Similarly, if we had $b<r+1$, then $a<b<r+1$ and again $\gamma \in \Phi_{M}$.

Now, let γ satisfy the conditions of the theorem. Since $a<b, \gamma \in \Phi^{+}$. Further, $a \leq r$ and $b \geq r+1$ so writing

$$
\gamma=\alpha_{a}+\cdots+\alpha_{b-1}
$$

this expansion must include α_{r}. Thus, $\gamma \notin \Phi_{M}$, so $\gamma \in \Phi_{P}$.
Lemma 3.4.

$$
\left\langle\gamma_{i}, \gamma_{j}\right\rangle= \begin{cases}2 & \gamma_{i}=\gamma_{j} \\ 1 & \gamma_{i}, \gamma_{j} \text { are in the same row or same column } \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Assume $\gamma_{i} \neq \gamma_{j}$. Let $\gamma_{i}=e_{a}-e_{b}, \gamma_{j}=e_{c}-e_{d}$. Since γ_{i}, γ_{j} reside in a $r \times(n+1-r)$ matrix in the upper right hand corner, we must have $a, c \geq r+1$ and $b, d \leq r$. Then, $a \neq d, b \neq c$. If γ_{i}, γ_{j} are in the same row, this means $a=c$. However, as $\gamma_{i} \neq \gamma_{j}$, we have $b \neq d$ which implies

$$
\left\langle\gamma_{i}, \gamma_{j}\right\rangle=\left\langle e_{a}, e_{c}\right\rangle-\left\langle e_{a}, e_{d}\right\rangle-\left\langle e_{b}, e_{c}\right\rangle-\left\langle e_{b}, e_{d}\right\rangle=1-0-0+0=1
$$

Similarly, if γ_{i}, γ_{j} are in the same row, then their inner product is 1 . However, if they are not in the same row or column, then $a \neq c$ and $b \neq d$. Since $a \neq d$ and $b \neq c$, their inner product is just 0 .

We also need an additional lemma about the ordering of the roots. Suppose that we pick a maximal parabolic $P \subset G L_{n}(\mathbb{C})$, corresponding to removing the root α_{i}.

Lemma 3.5. If $\gamma_{j}>\gamma_{k}$ in the usual ordering on the roots then $j<k$.
Proof. Recall from subsection 2.3 that our ordering of the roots arises from decomposing the longest word of our Weyl group, w_{0} into $w_{M} w^{P}$, where P is our maximal parabolic and M is the Levi subgroup. In this case, our Weyl group is S_{n}.

To find the ordering of the roots, we thus must find a nice decomposition for w^{P}. In order to do this, recall that our M in this case is going to be $G L_{i}(\mathbb{C}) \times G L_{n-i}(\mathbb{C})$. In this case, our Weyl group associated to this Levi subgroup of P is $S_{i} \times S_{n-i}$. meaning that in particular our longest word w_{M} has the one-line notation

$$
i(i-1)(i-2) \ldots 21 n(n-1)(n-2) \ldots(i+1),
$$

in essence combining the longest word of S_{i} with that of S_{n-i}.
From here, we claim that the following decomposition for w^{P} yields us with $w_{0}=w_{M} w^{P}$:

$$
s_{i} s_{i+1} s_{i+2} \ldots s_{n-1} s_{i-1} s_{i} s_{i+1} \ldots s_{n-2} \ldots s_{n-i}
$$

To see this, we first consider what the permutation $w_{j, k}=s_{j} s_{j+1} s_{j+2} \ldots s_{k}$ does, for $j<$ $k \leq n-1$. It's not hard to see that this permutation sends $k+1$ to j, increases each of $j, j+1, \ldots, k$ by one, and fixes the rest of the elements; this is just the cycle $(j j+$ $1 \ldots k+1$. We now consider the combined effect of these permutations, which can be expressed as $w_{i, n-1} w_{i-1, n-2} \ldots w_{1, n-i}$. Notice that the first permutation sends $1,2, \ldots, n-i$ to $2,3, \ldots, n-i+1$, respectively, per our description above. But by construction, we see that we may repeat this; indeed, if after a of these $w_{j, k}$ permutations (going from right to left) we end up at $a+1, a+2, \ldots, n-i+a$, then notice that by construction the $a+1$ st one to apply is $w_{a+1, n-i+a}$, which increases each of these elements by one, meaning that the first $a+1$ send $1,2, \ldots, n-i$ to $a+2, a+3, \ldots n-i+a+1$.

In total, we see that this permutation sends x to $i+x$ for $x=1,2, \ldots, n-i$. Therefore, the product of these has at least $(n-i) i$ inversions; the pairs (x, y) where $x<i<y$ are inversions (the last $n-i$ elements are the first $n-i$. But our word only has length $(n-i) i$, so there are exactly that many inversions. This in particular means that our permutation above is just the one with one-line notation $(n-i+1)(n-i+2) \ldots n 12 \ldots(n-i)$. But then this is w^{P}, since $w_{M} w^{P}$ is precisely w_{0}.

We now explicitly state the ordering of the roots with this particular decomposition. In this case, our ordering will be

$$
\gamma_{1}=w_{M}\left(\alpha_{i}\right), \gamma_{2}=w_{M} s_{i}\left(\alpha_{i+1}\right), \ldots, \gamma_{(n-i) i}=w_{M} s_{i} s_{i+1} \ldots s_{n-i-1}\left(\alpha_{n-i}\right)
$$

We will turn to coordinates for this part. Notice that the action of s_{i}, corresponding to $\alpha_{i}=e_{i}-e_{i+1}$, sends the vector $\sum_{j=1}^{n} v_{j} e_{j}$ to $\sum_{j=1}^{n} v_{j} e_{j}-\left(v_{i}-v_{i+1}\right)\left(e_{i}-e_{i+1}\right)$, which swaps the i th and $i+1$ st coordinates. In other words, we can see that the action of the Weyl group is to permute the coordinates. For instance, as $\alpha_{i}=e_{i}-e_{i+1}$, we have that $w_{M}\left(e_{i}-e_{i+1}\right)=e_{1}-e_{n}$.

We will use this to show, in fact, that the following is our ordering of roots:

$$
\begin{equation*}
\gamma_{k(n-i)+l}=e_{k+1}-e_{n-l+1}, \tag{1}
\end{equation*}
$$

where $1 \leq l \leq n-i$ and $0 \leq k<i$. To prove this, observe that by definition, we have that

$$
\gamma_{k(n-i)+l}=w_{M} w_{i, n-1} w_{i-1, n-2} \ldots w_{i-k+1, n-k} w_{i-k, i-k+l-2} \alpha_{i-k-1+l}
$$

(if $k=0$ we remove all the middle terms, leaving $w_{M} w_{i, i+l-1} a_{i+l-1}$, and similarly if $l=1$ we remove the $w_{i-k+1, n-k} w_{i-k, i-k+l-2}$ term).

We see that, from our observation about the $w_{a, b}$ being cycles, how they act on the coordinates, and how $\alpha_{i-k-1+l}=e_{i-k-1+l}-e_{i-k+l}$, we have that $w_{i-k, i-k+l-2} \alpha_{i-k-1+l}=$ $e_{i-k}-e_{i-k+l}$. Notice if $l=0$ that this does nothing, which is also what we expect.

For the next terms, we see that

$$
w_{i, n-1} w_{i-1, n-2} \ldots w_{i-k+1, n-k}\left(e_{i-k}-e_{i-k+l}\right)=e_{i-k}+e_{i+l} .
$$

For instance, we can see that $w_{i-k+1, n-k}\left(e_{i-k}-e_{i-k+l}\right)=e_{i-k}-e_{i-k+l+1}$, since $i-k+l \leq n-k$. It's also not hard to see that this process repeats for the other cycles. Note that if $k=0$ this again does nothing, which is also consistent with what we want (in the case where $k=0$, none of these terms exist, so we expect to just get back the same root, which we do).

Finally, we have that $w_{M}\left(e_{i-k}-e_{i-k+l}\right)=e_{k+1}-e_{n-l+1}$, which is exactly what we claimed. Thus, the ordering that we specified is indeed the ordering arising from this decomposition.

From here, the lemma isn't hard to prove: if $\gamma_{i}>\gamma_{j}$, where $\gamma_{i}=e_{a}-e_{b}, \gamma_{j}=e_{c}-e_{d}$, we have that this inequality holds if and only if $e_{a}+e_{d}-e_{b}-e_{c}$ is a positive root, which holds precisely when either $a=c$ and $d<b$, or $b=d$ and $a<c$.

In the first case, $\gamma_{j}>\gamma_{k}$ implies that $\gamma_{j}=e_{a}-e_{b}, \gamma_{k}=e_{a}-e_{d}$, which implies that $j=(a-1)(n-i)+(n+1-b)<(a-1)(n-i)+(n+1-d)=k$ and in the second case we have $\gamma_{j}=e_{a}-e_{d}, \gamma_{k}=e_{c}-e_{d}$, meaning that from $j=(a-1)(n-i)+(n+1-d)<$ $(c-1)(n-i)+(n+1-d)=k$, using the ordering given in equation (1). This proves the lemma.

We can use these lemmas to compute $D_{j}=D_{a, b}$ in a geometric way:

Proposition 3.6. We have that

$$
D_{a, b}=d_{a, b} \prod_{c<a} d_{c, b} \prod_{c>b} d_{a, c}
$$

Remark. If we place the $d_{j}^{\prime} \mathrm{s}$ in a matrix according to the positions of their corresponding $\gamma_{j} \mathrm{~s}$, then we can understand the preceding proposition as saying
$D_{j}=d_{j} \cdot d_{k} \mathrm{~s}$ below d_{j} in the same column $\cdot d_{k} \mathrm{~s}$ to the left of d_{j} in the same row Proof of Proposition 3.6. The definition of D_{j} is

$$
D_{j}=d_{j} \prod_{k>j} d_{k}^{\left\langle\gamma_{j}, \gamma_{k}\right\rangle}
$$

Using Lemma 3.4, we know that $\left\langle\gamma_{j}, \gamma_{k}\right\rangle$ is always 1 or 0 . Then, letting

$$
S:=\left\{k: k>j,\left\langle\gamma_{j}, \gamma_{k}\right\rangle\right\}
$$

we see that

$$
D_{j}=d_{j} \prod_{k \in S} d_{j}
$$

Now, making use of our index function I, define

$$
S^{\prime}=\{I(c, b): c<a\} \cup\{I(a, c): c>b\}
$$

Showing $S=S^{\prime}$ will prove the claim.
First, say $k=I(s, t) \in S$. Then, $\left\langle\gamma_{i}, \gamma_{j}\right\rangle=1$, so by Lemma 3.4, γ_{k} is in the same row or same column as γ_{j}, meaning $a=s$ or $b=t$. For simplicity, assume they are in the same row, meaning $a=s$.

Assume for contradiction that $t \leq b$. Since $k \neq j$, we know $b \neq t$, so $t<b$. Then, we have

$$
\gamma_{k}-\gamma_{j}=\left(e_{a}-e_{b}\right)-\left(e_{s}-e_{t}\right)=e_{t}-e_{b},
$$

which is a positive root since $t<b$. Then, $\gamma_{k}>\gamma_{j}$. But, Lemma 3.5 then implies $k<j$, a contradiction. Thus, $t>b$ so $k \in S^{\prime}$. The case where instead $b=t$ identical.

Now, say $k=I(s, t) \in S^{\prime}$, and again assume we are in the case $a=s$. Then, γ_{j}, γ_{k} are in the same row, so Lemma 3.4 implies $\left\langle\gamma_{j}, \gamma_{k}\right\rangle=1$.

We then have $t>b$, so

$$
\gamma_{j}-\gamma_{k}=\left(e_{s}-e_{t}\right)-\left(e_{a}-e_{b}\right)=e_{b}-e_{t}
$$

is a positive root. Then, $\gamma_{k}>\gamma_{j}$ so by Lemma 3.5, we get $k>j$. Thus, $k \in S$, and the case when $b=t$ is again identical.

3.2. Computing the structure coefficients η.

Proposition 3.7. Let Φ be a root system of type A_{n} using the usual coordinates. Let $\alpha \in \Phi^{+}$, $\beta \in \Phi^{-}, \alpha+\beta \neq 0$, such that $x \alpha+y \beta \in \Phi^{-}$for some $x, y \in \mathbb{Z}^{+}$. Then, $x=y=1$, and letting $\alpha=e_{i}-e_{j}, \beta=e_{k}-e_{l}$, we must have either $j=k$ or $i=l$ and

$$
\eta_{\alpha, \beta ; 1,1}= \begin{cases}+1 & j=k \\ -1 & i=l\end{cases}
$$

Proof. First, remember that under our coordinates, every root in Φ is given by $e_{a}-e_{b}$ for some a, b. Then, say we have

$$
x \alpha+y \beta=x\left(e_{i}-e_{j}\right)+y\left(e_{k}-e_{l}\right) \in \Phi^{-},
$$

Say for contradiction that $x \geq 2$. Recall that every root in Φ is of the form $e_{s}-e_{t}$. Then, to ensure $x \alpha+y \beta$ is of this form we need $i=l$ and $j=k$. This says $\alpha+\beta=0$, which we assumed was not the case. Then, $x<2$, meaning $x=1$, and similarly $y=1$. Further, if we had $i \neq k$ and $j \leq l$ then $\alpha+\beta$ would be a sum of 4 basis vectors and would also not be in Φ. Then, we have exactly one of $i=l$ or $j=k$.

Now, we can rewrite (21) from [BF15] as

$$
\begin{equation*}
e_{\alpha}(s) e_{\beta}(t) e_{\alpha}(s)^{-1}=e_{\beta}(t) e_{\alpha+\beta}\left(\eta_{\alpha, \beta ; 1,1} s t\right) \tag{2}
\end{equation*}
$$

We will drop the 1,1 and simply write $\eta_{\alpha, \beta}$ to mean $\eta_{\alpha, \beta ; 1,1}$. First assume we are in the case where $i=l$ and $j \neq k$. We see that

$$
e_{\alpha}(s)=I_{n+1}+s E_{i j}, e_{\beta}(t)=I_{n+1}+t E_{k l} .
$$

We compute the LHS of (2)

$$
\begin{aligned}
e_{\alpha}(s) e_{\beta}(t) e_{\alpha}(s)^{-1} & =\left(I_{n+1}+s E_{i j}\right)\left(I_{n+1}+t E_{k l}\right)\left(I_{n+1}-s E_{i j}\right) \\
& =\left(I_{n+1}+s E_{i j}\right)\left(I_{n+1}+t E_{k l}-s E_{i j}-s t E_{k j}\right) \\
& =I_{n+1}+t E_{k l}-s E_{i j}-s t E_{k j}+s E_{i j} \\
& =I_{n+1}+t E_{k l}-s t E_{k j} .
\end{aligned}
$$

Since $i=l$, we have that

$$
\alpha+\beta=e_{i}-e_{j}-\left(e_{k}-e_{l}\right)=e_{k}-e_{j} .
$$

The RHS of (2) is then

$$
\begin{aligned}
e_{\beta}(t) e_{\alpha+\beta}\left(\eta_{\alpha, \beta} s t\right) & =\left(I_{n+1}+t E_{k l}\right)\left(I_{n+1}+\eta_{\alpha, \beta} s t E_{k j}\right) \\
& =I_{n+1}+t E_{k l}+\eta_{\alpha, \beta} s t E_{k j}
\end{aligned}
$$

So we see that we must have $\eta_{\alpha, \beta}=-1$. The case where $j=l$ is similar and we end up with $\eta_{\alpha, \beta}=1$.

Corollary 3.8. For γ, γ^{\prime} in the same row or same column and $\gamma-\gamma^{\prime} \in \Phi^{-}$

$$
\eta_{1,1 ; \gamma,-\gamma^{\prime}}= \begin{cases}-1 & \gamma, \gamma^{\prime} \text { are in the same row } \\ +1 & \gamma, \gamma^{\prime} \text { are in the same column }\end{cases}
$$

Proof. Set $\gamma=e_{i}-e_{j}, \gamma^{\prime}=e_{l}-e_{k}$ so that $-\gamma^{\prime}=e_{k}-e_{l}$. Then, if γ, γ^{\prime} are in the same row, $i=l$, so we are in the first case of Proposition 3.7. Similarly, if γ, γ^{\prime} are in the same column, we are in the second case of Proposition 3.7.

3.3. Computing v_{j} s.

Definition 4 (Brubaker-Friedberg, [BF15], (26)). We define

$$
\begin{equation*}
v_{j}=\sum_{\left(k, k^{\prime}\right) \in S_{j}}\left[(-1)^{i+i^{\prime}} \eta_{i, i^{\prime}, k,-k^{\prime}}\left(b_{k} d_{k}^{-1}\right)^{i}\left(c_{k^{\prime}} d_{k^{\prime}}^{-1}\right)^{i^{\prime}} \prod_{l \geq k}\left(d_{l}^{-1}\right)^{\left\langle\alpha_{j}, \gamma_{l}^{\vee}\right\rangle} \prod_{k^{\prime}<l<k}\left(d_{l}^{-1}\right)^{i^{\prime}\left\langle\gamma_{k}^{\prime}, \gamma_{l}^{\vee}\right\rangle}\right] \tag{3}
\end{equation*}
$$

where S_{j} is the set of pairs $\left(k, k^{\prime}\right), k>k^{\prime}$, such that $i \gamma_{k}-i^{\prime} \gamma_{k^{\prime}}=-\alpha_{j}$ for some $i, i^{\prime} \in \mathbb{Z}^{>0}$.
Proposition 3.9 (similar to Brubaker-Friedberg, [BF15], Lemma 6.3). We can simplify the definition for v_{j} by defining it in terms of the D_{j} s as follows:

$$
v_{j}=\sum_{\left(k, k^{\prime}\right) \in S_{j}}(-1)^{i+i^{\prime}} \eta_{i, i^{\prime}, k,-k^{\prime}} b_{k}^{i} c_{k^{\prime}}^{i^{\prime}} \frac{D_{k}^{i}}{D_{k^{\prime}}^{i^{\prime}}}
$$

Proof. We use v_{j} as defined in (3)
Since $\left(k, k^{\prime}\right) \in S_{j}$ as defined above, we have that $i \gamma_{k}-i^{\prime} \gamma_{k^{\prime}}=-\alpha_{j}$. Then, we make the following simplification

$$
\begin{aligned}
\prod_{l \geq k}\left(d_{l}^{-1}\right)^{\left\langle\alpha_{j}, \gamma_{l}^{\vee}\right\rangle} \prod_{k^{\prime}<l<k}\left(d_{l}^{-1}\right)^{i^{\prime}\left\langle\gamma_{k}^{\prime}, \gamma_{l}^{\vee}\right\rangle} & =\prod_{l \geq k}\left(d_{l}^{-1}\right)^{\left\langle i^{\prime} \gamma_{k^{\prime}}-i \gamma_{k}, \gamma_{l}^{\vee}\right\rangle} \prod_{k^{\prime}<l<k}\left(d_{l}^{-1}\right)^{i^{\prime}\left\langle\gamma_{k}^{\prime}, \gamma_{l}^{\vee}\right\rangle} \\
& =\prod_{l \geq k}\left(d_{l}\right)^{i\left\langle\gamma_{k}, \gamma_{l}^{\vee}\right\rangle} \prod_{l>k^{\prime}}\left(d_{l}^{-1}\right)^{i^{\prime}\left\langle\gamma_{k}^{\prime}, \gamma_{l}^{\vee}\right\rangle}
\end{aligned}
$$

Now, we look at each of these two products and get

$$
\prod_{l \geq k}\left(d_{l}\right)^{i\left\langle\gamma_{k}, \gamma_{l}^{\vee}\right\rangle}=\left(d_{k}\right)^{i\left\langle\gamma_{k}, \gamma_{k}^{\vee}\right\rangle} \prod_{l>k}\left(d_{l}\right)^{i\left\langle\gamma_{k}, \gamma_{l}^{\vee}\right\rangle}=d_{k}^{2 i} \prod_{l>k}\left(d_{l}\right)^{i\left\langle\gamma_{k}, \gamma_{l}^{\vee}\right\rangle}=d_{k}^{i} D_{k}^{i}
$$

where the middle equality follows from the fact that that

$$
\left\langle\gamma_{k}, \gamma_{k}^{\vee}\right\rangle=\left\langle\gamma_{k}, \frac{2 \gamma_{k}}{\left\langle\gamma_{k}, \gamma_{k}\right\rangle}\right\rangle
$$

for any root system. Then, by definition

$$
\prod_{l>k^{\prime}}\left(d_{l}^{-1}\right)^{i^{\prime}\left\langle\gamma_{k}^{\prime}, \gamma_{l}^{\vee}\right\rangle}=d_{k^{\prime}}^{i^{\prime}} D_{k^{\prime}}^{-i^{\prime}}
$$

Putting this together, we have

$$
\begin{aligned}
v_{j} & =\sum_{\left(k, k^{\prime}\right) \in S_{j}}\left[(-1)^{i+i^{\prime}} \eta_{i, i^{\prime}, k,-k^{\prime}}\left(b_{k} d_{k}^{-1}\right)^{i}\left(c_{k^{\prime}} d_{k^{\prime}}^{-1}\right)^{i^{\prime}} d_{k}^{i} D_{k}^{i} d_{k^{\prime}}^{i^{\prime}} D_{k^{\prime}}^{-i^{\prime}}\right] \\
& =\sum_{\left(k, k^{\prime}\right) \in S_{j}}(-1)^{i+i^{\prime}} \eta_{i, i^{\prime}, k,-k^{\prime}} b_{k}^{i} c_{k^{\prime}}^{i^{\prime}} \frac{D_{k}^{i}}{D_{k^{\prime}}^{i^{\prime}}}
\end{aligned}
$$

Further, we can say a lot about which terms $b_{k} c_{k^{\prime}}$ appear in some v_{j}. We have that
Proposition 3.10. For type $A_{n},\left(k, k^{\prime}\right) \in S_{j}$ for some j if and only if $\gamma_{k^{\prime}}$ covers γ_{k} in the poset on Φ^{+}.

Proof. First, we show the "only if" direction. Say $\left(k, k^{\prime}\right) \in S_{j}$, meaning $i^{\prime} \gamma_{k^{\prime}}-i \gamma_{k}=\alpha_{j}$ for $i, i^{\prime} \in \mathbb{Z}^{>0}$. By Proposition 3.7, we must have $i=i^{\prime}=1$, so $\gamma_{k^{\prime}}-\gamma_{k}=\alpha_{j}$. This says that $\gamma_{k^{\prime}}>\gamma_{k}$. Further, if we have some $\delta \in \Phi$ such that $\gamma_{k^{\prime}}>\delta>\gamma_{k}$, then

$$
\left(\gamma_{k^{\prime}}-\delta\right)+\left(\delta-\gamma_{k}\right)=\alpha_{j}
$$

presents α_{j} as a sum of two positive roots, a contradiction.
Now, we handle the "if" direction. say we have $\gamma_{k^{\prime}}$ covers γ_{k}. Then, we have $\gamma_{k^{\prime}}-\gamma_{k}=$ $\beta \in \Phi^{+}$. For contradiction say that β is not simple, so we can write $\beta=\beta_{1}+\beta_{2}$. However, then we have

$$
\gamma_{k^{\prime}}>\gamma_{k}+\beta_{1}>\gamma_{k}
$$

a contradiction. Thus, $\beta=\alpha_{j}$ for some j and $\left(k, k^{\prime}\right) \in S_{j}$.
However, recall that for the v corresponding to the removed root we have $v_{r}=t_{r} \frac{c_{N}}{d_{N}}$, so we need to ensure that we never have $\left(k, k^{\prime}\right) \in S_{r}$.

Lemma 3.11. For $\gamma, \gamma^{\prime} \in \Phi_{P}$,

$$
\gamma-\gamma^{\prime} \neq \alpha_{r}
$$

Proof. Say $\gamma=\alpha_{a}+\cdots+\alpha_{b-1}$ and $\gamma^{\prime}=\alpha_{c}+\cdots+\alpha_{d-1}$. Using the fact that α_{i} s are linearly independent, if

$$
\gamma-\gamma^{\prime}=\alpha_{r}
$$

were true, we would need $\alpha_{c}, \ldots, \alpha_{d-1}$ to omit α_{r}. However, this says that $\gamma^{\prime} \in \Phi_{M}$, a contradiction.
3.4. Divisibility Conditions. We know that $H(\mathbf{d}, \mathbf{t})$ is zero unless certain divisibility conditions on the d_{i} s hold. These conditions are instrumental in solving $H(\mathbf{d}, \mathbf{t})$ and in understanding its support.

Lemma 3.12 (Brubaker-Friedberg, BF15], Lemma 6.1). H(d,t) vanishes unless, for each simple root α_{j},

$$
t_{j} \prod_{i=1}^{N} d_{i}^{-\left\langle\alpha_{j}, \gamma_{i}^{\vee}\right\rangle} \in \mathbb{Z}
$$

We now re-interpret these conditions in terms of rows and columns in the matrix of $\gamma_{j} \mathrm{~s}$.
Proposition 3.13. Let

$$
R(a)=\{I(a, b): r+1 \leq b \leq n+1\}, C(b)=\{I(a, b): 1 \leq a \leq r\}
$$

which are the indices of $\gamma_{j} s$ in a given row or column. Then, the divisibility conditions hold if and only if for each $a, 1 \leq a \leq r-1$ and $b, r+1 \leq b \leq n$, we have
(1) $\prod_{i \in R(a)} d_{i} \mid t_{a} \prod_{i \in R(a+1)} d_{i}$
(2) $\prod_{i \in C(b+1)} d_{i} \mid t_{b} \prod_{i \in C(b)} d_{i}$

Remark. $R(a)$ corresponds to the roots in the a th row, and $C(b)$ corresponds to roots in the b th column. If we fill the matrix of $\gamma_{j} \mathrm{~s}$ with their corresponding $d_{j} \mathrm{~s}$, we can think about these conditions as relating the products of rows and columns.
Proof of Proposition 3.13. First, we need the following

Lemma 3.14.

$$
\left\{\alpha_{j} \mid \text { there exist } \gamma, \gamma^{\prime} \in \Phi_{P} \text { such that } \gamma-\gamma^{\prime}=\alpha_{j}\right\}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\} \backslash\left\{\alpha_{r}\right\}
$$

Proof. We know \subset from Lemma 3.11. For the other direction, let $\alpha_{i}, i \neq r$ arbitrary. When $i<r$, let

$$
\gamma=e_{i}-e_{n+1}, \quad \gamma^{\prime}=e_{i+1}-e_{n+1}
$$

When $i>r$, let

$$
\gamma=e_{1}-e_{i+1}, \quad \gamma^{\prime}=e_{1}-e_{i} .
$$

In both cases, Proposition 3.3 shows that $\gamma, \gamma^{\prime} \in \Phi_{P}$.
We now transform each of the conditions in Lemma 3.12 to one of our conditions. First, consider $j \leq r-1$ and we'll show (1) holds. Then, using Lemma 3.14, let $\gamma=e_{j}-e_{n+1}, \gamma^{\prime}=$ $e_{j+1}-e_{n+1}$, and we have $\gamma-\gamma^{\prime}=\alpha_{j}$. Then, we have

$$
\begin{align*}
\mathbb{Z} \ni t_{j} \prod_{i=1}^{N} d_{i}^{-\left\langle\alpha_{j}, \gamma_{i}\right\rangle} & =t_{j} \prod_{i=1}^{N} d_{i}^{\left\langle\gamma^{\prime}-\gamma, \gamma_{i}\right\rangle} \\
& =t_{j} \frac{\prod_{i=1}^{N} d_{i}^{\left\langle\gamma^{\prime}, \gamma_{i}\right\rangle}}{\prod_{i=1}^{N} d_{i}^{\left\langle\gamma, \gamma_{i}\right\rangle}} \tag{4}
\end{align*}
$$

In light of Lemma 3.4, this is

$$
\begin{aligned}
(4) & =t_{j} \frac{\prod_{i \in R(j+1)} d_{i} \prod_{i \in C(n+1)} d_{i}}{\prod_{i \in R(j)} d_{i} \prod_{i \in C(n+1)} d_{i}} \\
& =t_{j} \frac{\prod_{i \in R(j+1)} d_{i}}{\prod_{i \in R(j)} d_{i}} \in \mathbb{Z},
\end{aligned}
$$

which is condition (1). For $j \geq r+1$, set $\gamma=e_{1}-e_{i+1}, \gamma^{\prime}=e_{1}-e_{i}$, and using the same method we get the condition

$$
t_{j} \frac{\prod_{i \in C(j)} d_{i}}{\prod_{i \in C(j+1)} d_{i}} \in \mathbb{Z},
$$

We have described how each one of the conditions in Lemma 3.12 is equivalent to each of our conditions. Thus, this is an if and only if.

Example 3.15. In Example 3.1, these conditions are

$$
\begin{gathered}
d_{1} d_{2} d_{3} d_{4} \mid d_{5} d_{6} d_{7} d_{8} t_{1} \\
d_{3} d_{7} \mid d_{4} d_{8} t_{3} \\
d_{2} d_{6} \mid d_{3} d_{7} t_{4} \\
d_{1} d_{5} \mid d_{2} d_{6} t_{5}
\end{gathered}
$$

3.5. The Dependency Graph. In order to better model the exponential sum, we associate it to a graph which we call the "dependency graph". Our exponential sum takes the form

$$
\begin{equation*}
H(\mathbf{d} ; \mathbf{t})=\sum_{c_{i} \bmod D_{i}} \underbrace{\varphi\left(\sum_{i} t_{i} v_{i}\right)}_{\text {exponential part }} \overbrace{\prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right)_{2}^{q_{k}}}^{\text {quadratic residues }} \tag{6}
\end{equation*}
$$

In the A_{n} case, we can capture the exponential part of this sum in a directed graph. The argument of the exponential part (the "exponent") will look like

$$
\sum_{i} t_{i} v_{i}=t_{r} \frac{c_{N}}{d_{N}}+\text { terms of the form } \frac{b_{i} c_{j} D}{D^{\prime}} \text { with } i>j \text { and } D, D^{\prime} \text { integers, }
$$

where r is the index of the root we remove. Then, for N the number of roots in the unipotent radical of the chosen parabolic, create a graph on vertex set $[N]$ with an edge $i \rightarrow j$ if the term $\frac{b_{i} c_{j} D}{D^{\prime}}$ appears in the sum. We call this graph the "dependency graph". The A_{5} in the case where we remove the second root ($r=2$), we get the dependency graph

The graph captures every time in the exponent, except for the term $t_{2} \frac{c_{8}}{d_{8}}$. We have circled the vertex 8 in order to indicate this, although this circle is not formally a part of our graph. This graph lets us visually understand the terms appearing in the sum.

We want to use this graph to re-index the sum by assigning variables to some edges. However, as written, it is insufficient. Define the weight of an edge $i \rightarrow j$ as $\mathrm{wt}(i \rightarrow j)$ and define the weight of a path through the complete graph on $[N]$ as the product of it's edges. Our hope would be that for a path from a to b that $\mathrm{wt}(P)=\mathrm{wt}(a \rightarrow b)$. For example, given the path $7 \rightarrow 3 \rightarrow 6$, it's weight is $b_{7} c_{3} b_{3} c_{6}$ which we might expect to equal $b_{7} c_{6}$ since we think about b_{3}, c_{3} as being inverses (we know that $b_{3} c_{3} \equiv-1 \bmod d_{3}$). However, nuance in the sum prevents this from being exactly true. First, we notice that b_{7}, c_{3}, c_{6} all run over different moduli. Further, if $d_{3}=0$, there are no conditions on needing $\left(c_{3}, p\right)=1$. In this case, we no longer have $b_{3} c_{3}=1$. We later explore a more complicated graph that will capture this nuance and allow us to do such a reindexing.
3.6. Reparametrizing the Exponential Sum. In our exponential sum, if $d_{i}=1$, there there is no condition on c_{i} being relatively prime to p. As we saw in the previous section, this can cause issues when we try to use our dependency graph for re-indexing. Then, we want to be able to rewrite the sum in some way that removes this dependence on whether individual $d_{i}=1$. Here, we reparametrize the sum in a way that will support later re-indexing through an augmented dependency graph.

Given input data $\mathbf{d}=\left(d_{1}, \ldots, d_{N}\right), \mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$, the sum we desire to compute is

$$
\begin{equation*}
H(\mathbf{d} ; \mathbf{t})=\sum_{c_{i} \bmod D_{i}} \varphi\left(\sum_{i} t_{i} v_{i}\right) \prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right)_{2}^{q_{k}} \tag{7}
\end{equation*}
$$

with $\varphi(z)=e^{2 \pi i z}$ and where the notation $c_{i} \bmod D_{i}$ means summing over vectors $\left(c_{1}, \ldots, c_{N}\right)$ with each $c_{i} \in \mathbb{Z} / D_{i} \mathbb{Z}$. To define $H(\mathbf{d}, \mathbf{t})$ we perform the following procedure:

- Compute the D_{i} 's in terms of the d_{i} 's.
- For each i, choose mappings $a_{i}, b_{i}, c_{i}: \mathbb{Z} / D_{i} \mathbb{Z} \rightarrow \mathbb{Z}$ such that for a residue s in $\mathbb{Z} / D_{i} \mathbb{Z}$, $c_{i}(s) \equiv s \bmod D_{i}$, and the matrix $\left(\begin{array}{cc}a_{i}(s) & b_{i}(s) \\ c_{i}(s) & d_{i}\end{array}\right)$ is in $\mathrm{SL}_{2}(\mathbb{Z})$, i.e. $a_{i} d_{i}-b_{i} c_{i}=1$. We denote this matrix by $g_{i}(s)$.
- Then

$$
H(d ; t)=\sum_{\left(s_{1}, \ldots, s_{N}\right) \in \mathbb{Z} / D_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / D_{N} \mathbb{Z}} \prod\left(\frac{c_{j}\left(s_{j}\right)}{d_{j}}\right)_{2} e^{2 \pi i \sum_{i=1}^{n} v_{i} t_{i}}
$$

where v_{i} is a function in the c_{j} 's and b_{j} 's.

In particular, any valid mappings will give the same exponential sum [BF15, Prop. 5.9]. As discussed at the beginning of the section, we work in the case where each d_{i} is a power of a prime p, and write $d_{i}=p^{l_{i}}$.

In the above sum, if $l_{i}>0$, then the summand is 0 if $p \mid c_{i}$, so we can assume that always $\left(c_{i}, p\right)=1$. However, if $l_{i}=0$, then there is no such condition. We'd like to be able to say that always $\left(c_{i}, p\right)=1$, but in order to do so we'd need to do cases on each l_{i}. Instead, we will perform a re-indexing of the sum that takes care of this for us. Choose functions $x_{i}, y_{i}: \mathbb{Z} / D_{i} \mathbb{Z} \rightarrow \mathbb{Z}$ such that $c_{i}=x_{i}+d_{i} y_{i}$. The advantage is that

$$
\left(\frac{c_{i}}{d_{i}}\right)_{2}=\left(\frac{x_{i}+d_{i} y_{i}}{d_{i}}\right)_{2}=\left(\frac{x_{i}}{d_{i}}\right)_{2},
$$

and this holds even in the case $l_{i}=0$ since we define $\left(\frac{0}{1}\right)_{2}=1$. Then, we can in every case assume $\left(x_{i}(s), p\right)=1$. We would like to be able to take the modulus of each s_{i} to the same power. To do this, take M to be a sufficiently large power of p ($M=D_{1} \cdots D_{8}$ works), and fix some function $W: \mathbb{Z} / M \mathbb{Z} \rightarrow \mathbb{Z}$ which sends elements of $\mathbb{Z} / M \mathbb{Z}$ to a chosen integer representative (we require $W(a) \equiv a \bmod M$).
Proposition 3.16. Let C be the number of l_{i} which are 0 . Then,

$$
H(\mathbf{d}, \mathbf{t})=\frac{d_{1} \cdots d_{N}}{M^{N}}\left(\frac{p}{p-1}\right)^{C} \sum_{x_{j} \bmod M:\left(x_{j}, p\right)=1, y_{j} \bmod D_{j} / d_{j}} \varphi\left(\sum_{j} t_{j} v_{j}\right) \prod_{k=1}^{N}\left(\frac{x_{k}}{d_{k}}\right)_{2}^{q_{k}}
$$

where v_{j} depends on c_{j}, b_{j} and we set $c_{j}=W\left(x_{j}+d_{j} y_{j}\right)$ and $b_{j}=-W\left(x_{j}^{-1}\right)$
Proof. For each $d=p^{l}$ such that $d \mid M$, fix a map $W_{d}: \mathbb{Z} / d \mathbb{Z} \rightarrow \mathbb{Z} / M \mathbb{Z}$ where $W_{d}(s) \equiv$ $s \bmod d$. Define $W_{1} \equiv 0$. Consider the index set

$$
S=\left\{\left(m_{1}, \ldots, m_{N} \mid 0 \leq m_{j}<M / d_{i},\left(m_{j}, p\right)=1 \text { if } d_{i}=1\right\}\right.
$$

For each tuple $\left(m_{1}, \ldots, m_{N}\right) \in S$, construct the tuple of mappings $a_{j, m_{j}}, b_{j, m_{j}}, c_{j, m_{j}}: \mathbb{Z} / D_{i} \mathbb{Z} \rightarrow$ $\mathbb{Z}, x_{j, m_{j}}: \mathbb{Z} / d_{i} \mathbb{Z} \rightarrow \mathbb{Z} / M \mathbb{Z}, y_{j}: \mathbb{Z} /\left(D_{i} / d_{i}\right) \mathbb{Z} \rightarrow \mathbb{Z} / M \mathbb{Z}, 1 \leq j \leq N$ via

$$
\begin{aligned}
x_{j, m_{j}}(s) & =W_{d_{j}}(s)+d_{j} m_{j} \\
y_{j}(s) & =\frac{1}{d_{j}}\left(W_{D_{j}}(s)-x_{j, m_{j}}(s)\right) \\
c_{j, m_{j}}(s) & =W\left(x_{j, m_{j}}(s)+d_{j} y_{j}(s)\right) \\
b_{j, m_{j}}(s) & =-W\left(x_{j, m_{j}}^{-1}(s)\right) \\
a_{j, m_{j}}(s) & =\frac{1+b_{j, m_{j}}(s) c_{j, m_{j}}(s)}{d_{j}},
\end{aligned}
$$

where we can assume that $\left(s_{i}, p\right)>1$ where $l_{i}>0$. We argue that a, b, c are valid mappings. By inspection, we see that $c_{j, m_{j}}(s) \equiv s \bmod D_{j}$ since $D_{j}<=M$. Further, $x_{j, m_{j}}(s)^{-1}$ is welldefined since if $l_{i}>0$ then $\left(x_{j, m_{j}}(s), p\right)=1$ since $(s, p)=1$ and if $l_{i}=0$ then $\left(x_{j, m_{j}}(s), p\right)=1$ since in this case $\left(m_{j}, p\right)=1$. Then, $b_{j, m_{j}}$ is well-defined and $b_{j, m_{j}}(s) c_{j, m_{j}}(s) \equiv-1 \bmod d_{j}$, so $a_{j, m_{j}}(s)$ is an integer. By construction $a_{j, m_{j}}(s) d_{j}-b_{j, m_{j}}(s) c_{j, m_{j}}(s)=1$.

Then, for any $\left(m_{1}, \ldots, m_{N}\right)$, we get the same sum. Consider the sum

$$
H^{\prime}(\mathbf{d}, \mathbf{t})=\sum_{\left(m_{1}, \ldots, m_{N}\right) \in S} \sum_{s_{i} \bmod D_{i}} \varphi\left(\sum_{i} t_{i} v_{i}\right) \prod_{k=1}^{N}\left(\frac{c_{k, m_{k}}\left(s_{k}\right)}{d_{k}}\right)_{2}^{q_{k}}
$$

which we will compute two ways. By independence of the sum for different choices of $\left(m_{1}, \ldots, m_{N}\right)$,

$$
H^{\prime}(\mathbf{d}, \mathbf{t})=|S| H(\mathbf{d}, \mathbf{t})
$$

Further, observe that the cardinality of S is

$$
|S|=\prod_{d_{j}: d_{j}=1} \frac{M(p-1)}{p} \prod_{d_{j}: d_{j}>1} \frac{M}{d_{j}}=\left(\frac{p-1}{p}\right)^{C} \frac{M^{N}}{d_{1} \cdots d_{N}}
$$

Now, write $x_{j}=x_{j, m_{j}}(s), y_{j}=y_{j}(s)$. Considering this as a sum over all variables simultaneously, we see that x_{j} ranges over all values of $(\mathbb{Z} / M \mathbb{Z})^{\times}$exactly once and that y_{j} ranges over all values of $\mathbb{Z} /\left(D_{j} / d_{j}\right) \mathbb{Z}$ exactly once. Justifying the second part requires using Proposition 3.9 to notice that every term in our sum involving a y_{j} looks like

$$
\pm t_{k} \frac{x_{i}^{-1} y_{j} D_{j} D_{i}}{D_{j}}
$$

Then, if we chose a different representative for y_{j} in $\mathbb{Z} /\left(D_{j} / d_{j}\right) \mathbb{Z}$, this term would change by an integer. Since the term is in $e^{2 \pi i(\cdots)}$, this does not cause the sum to change.

Under the re-indexing, we have

$$
H^{\prime}(\mathbf{d}, \mathbf{t})=\sum_{x_{j} \bmod M:\left(x_{j}, p\right)=1, y_{j} \bmod D_{j} / d_{j}} \varphi\left(\sum_{k} t_{k} v_{k}\right) \prod_{k=1}^{N}\left(\frac{x_{k}}{d_{k}}\right)_{2}^{q_{k}}
$$

where in each v_{k} we have $c_{j}=W\left(x_{j}+d_{j} y_{j}\right), b_{j}=W\left(x_{j}^{-1}\right)$. Setting the two ways of computing $H^{\prime}(\mathbf{d}, \mathbf{t})$ equal proves the claim.

Remark. We can choose M to be large enough such that it is bigger than any denominator we see in any term in the exponential sum. Then, if we take $x_{i}+M$ instead of x_{i}, this will only add an integer to the exponent, which will not change the value of $e^{2 \pi i(\cdots)}$.
3.7. The augmented dependency graph. We now describe how to associate an exponential sum to a directed graph in the A_{n} case. Refer to the input to $\varphi(\cdot)$ as the "exponent". Using Proposition 3.9, and in light of Proposition 3.7, we know that always $i=i^{\prime}=1$ in this case. Then, the exponent is of the form:

$$
\sum_{k} t_{k} v_{k}=t_{R} \frac{c_{N}}{d_{N}}+\text { terms of the form } \frac{b_{i} c_{j} D}{D^{\prime}} \text { with } i>j \text { and } D, D^{\prime} \in \mathbb{Z}
$$

Under our reparameterization into x_{i}, y_{i} and in light of Proposition 3.9, terms in the sum other than $t_{r} \frac{x_{N}+d_{8} y_{N}}{d_{8}}$ take one of the following two forms:

$$
\begin{equation*}
\pm 1 \cdot t_{k} \frac{x_{i}^{-1} x_{j} D_{i}}{D_{j}}, \quad \pm 1 \cdot t_{k} \frac{x_{i}^{-1} y_{j} D_{i} d_{j}}{D_{i}} \quad \text { where } i>j \tag{8}
\end{equation*}
$$

Then, let G be the augmented dependency graph on vertices $V(G)=\left\{x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{N}\right\}$ with a directed edge $u \rightarrow v \in E(G)$ if there is a $u^{-1} v$ term in the sum. Further, we define the maps wt, t, ν on $E(G)$. Define $\mathrm{wt}(u \rightarrow v)=u^{-1} v$.

The map t sends an edge to its corresponding t_{k} and ν to it's corresponding structure constant such that for an edge $e=x_{i} \rightarrow x_{j}, \nu(e) t(e) \operatorname{wt}(e) \frac{D_{i}}{D_{j}}$ is the term in 88, and for $e=x_{i} \rightarrow y_{j}, \nu(e) t(e) \operatorname{wt}(e) \frac{D_{i} d_{j}}{D_{j}}$ is the term.

Example 3.17. For Example 3.1 the augmented dependency graph is

We have circled the x_{N} node to indicate the $t_{r} \frac{x_{N}}{d_{N}}$ term which is not otherwise represented in the exponent. In fact, the exponent is just this first term plus the terms represented by each edge in the graph.

Further, note that we have laid the graph out to correspond to the geometry in Proposition 3.6. and using this we can visually compute the D_{j} 's given the d_{j} 's.

Remark. We can verify that the terms corresponding to the variables on the left and bottom edges of the graph $\left(y_{4}, y_{8}, y_{7}, y_{6}, y_{5}\right)$ are in fact all integers. Thus, the sum is independent of the values of these variables. Thus, after removing them, we can write

where the factor added to the front of the graph is the number of copies we have of the simplified graph after removing $y_{4}, y_{5}, y_{6}, y_{7}, y_{8}$.
3.8. Reindexing the sum. Loosely, the sum as written is hard to work with for two reasons: 1) we must deal with x_{i}^{-1} terms and 2) the structure of the dependency graph is relatively complicated, i.e. the degree of each x_{i} node is at least 2 . Also, we desire to have a graph with multiple connected components, which would allow us to factor the sum.

We will use the graph to reindex the sum. First, we need some definitions.
Definition 5. A directed (rooted) tree T is a tree (as an undirected graph) with the additional requirement that for each vertex $v \in V(T)$, there exists at most one edge $u \rightarrow v \in E(T)$. The root of the tree is the unique node $x \in T$ such that there exist no $u \rightarrow x \in E(T)$ for any $u \in V(T)$.

Proof. We must justify that a unique root exists. We know that $|E(T)|=|V(T)|-1$. Since each vertex has at most 1 edge going into it, we then have $|V(T)|-1$ vertices with an edge going into them, leaving exactly one vertex with no edge going into it. This is our root.

To facilitate such a reindexing, draw a directed tree T on vertex set $V(T)=x_{1}, \ldots, x_{N}$. Say the T has root node x_{r}. Let $e_{i}=x_{j_{i}} \rightarrow x_{k_{i}}, 1 \leq i \leq N-1$, be the edges of T in some order. Then, consider the change of variables

$$
\begin{aligned}
& a_{0}=x_{r} \\
& a_{j}=\operatorname{wt}\left(e_{j}\right)=x_{j_{i}}^{-1} x_{k_{i}}
\end{aligned}
$$

We take $a_{j} \bmod M$ and $\left(a_{j}, p\right)=1$, so that the cardinality of the set of $a_{j} \mathrm{~S}$ and of $x_{j} \mathrm{~s}$ are the same.

Proposition 3.18. Such a reindexing is always a bijection between the set of $a_{j} s$ and the set of $x_{j} s$. Further, we can write any edge in our dependency graph as a product of $a_{j} s$, $1 \leq j \leq N-1$ and their inverses.

Proof. We prove this second part of the claim first. For this we need
Lemma 3.19. Let $P=x_{i_{1}} \rightarrow \cdots \rightarrow x_{i_{m}}, i_{1}=a, i_{m}=b$ be a (directed) path in the complete graph on x_{1}, \ldots, x_{N} from x_{a} to x_{b}. Define the weight of a path, $\mathrm{wt}(P)$, as the product of the weights of its edges. Then, $w t(P) \equiv w t\left(x_{a} \rightarrow x_{b}\right) \bmod M$.
Proof. We prove this by induction on $|P|$ (number of edges in the path). If $|P|=1, P=$ $x_{a} \rightarrow x_{b}$ and we are done. If $|P|>1$ and $P=x_{a} \rightarrow \cdots \rightarrow x_{t} \rightarrow x_{b}$, we know by induction

$$
\mathrm{wt}(P) \equiv \mathrm{wt}\left(x_{a} \rightarrow x_{t}\right) \mathrm{wt}\left(x_{t} \rightarrow x_{b}\right) \bmod M
$$

However, we then have

$$
\begin{aligned}
& \mathrm{wt}\left(x_{a} \rightarrow x_{t}\right) \mathrm{wt}\left(x_{t} \rightarrow x_{b}\right) \equiv x_{a}^{-1} x_{t} x_{t}^{-1} x_{b} \bmod M \\
& \quad \equiv x_{a}^{-1} x_{b} \bmod M \equiv \mathrm{wt}\left(x_{a} \rightarrow x_{b}\right) \bmod M
\end{aligned}
$$

Then, let $x_{a} \rightarrow x_{b}$ an arbitrary edge. We can find some path P from $x_{a} \rightarrow x_{b}$ with all edges in T. Then, the weight of P will be a product of a_{j} s and their inverses, depending on the orientation of the edges in $T, 1 \leq j \leq N-1$. From here, we can construct the inverse map

$$
x_{i}= \begin{cases}a_{0} & i=r \\ \operatorname{wt}\left(x_{r} \rightarrow x_{i}\right) a_{0} & i \neq r\end{cases}
$$

This proves the change of variables is injective, and since both sets have the same cardinality, it is a bijection.

We have described how to write the terms of the exponential sum in terms of our new reindexing, and now describe what the quadratic residues look like with the new $a_{j} \mathrm{~s}$.

Proposition 3.20. For edges $(i \rightarrow j) \in T$ define

$$
S(i \rightarrow j)=\left\{k \in[N]: x_{k} \text { is a successor node of } x_{j} \text { in } T\right\} \cup\{j\}
$$

Then,

$$
\prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right)_{2}^{q_{k}}=\left(\prod_{k=1}^{N}\left(\frac{a_{0}}{d_{k}}\right)_{2}^{q_{k}}\right)\left(\prod_{e_{j} \in T} \prod_{k \in S\left(e_{j}\right)}\left(\frac{a_{j}}{d_{k}}\right)_{2}^{q_{k}}\right)
$$

Proof. We use the inverse map defined in Proposition 3.18. Then, we see that

$$
\begin{equation*}
\prod_{k=1}^{N}\left(\frac{c_{k}}{d_{k}}\right)_{2}^{q_{k}}=\left(\frac{a_{0}}{d_{N}}\right)_{2}^{q_{N}} \prod_{k \neq r}\left(\frac{\mathrm{wt}\left(x_{r} \rightarrow x_{k}\right) a_{0}}{d_{k}}\right)_{2}^{q_{k}} \tag{9}
\end{equation*}
$$

Using the multiplicativity of of the quadratic residue, we see that

$$
(9)=\left(\prod_{k=1}^{N}\left(\frac{a_{0}}{d_{k}}\right)_{2}^{q_{k}}\right)\left(\prod_{(j, k) \in Q}\left(\frac{a_{j}}{d_{k}}\right)_{2}^{q_{k}}\right)
$$

where

$$
Q=\left\{(j, k) \mid e_{j} \text { is in the path from } x_{r} \rightarrow x_{k}\right\}
$$

If we can show the following, it will prove our claim:

Lemma 3.21.

$$
Q=\left\{(j, k) \mid k \in S\left(e_{j}\right)\right\}
$$

Proof. First, let $(j, k) \in Q$. Then e_{j} is in the path from $x_{r} \rightarrow x_{k}$. Say $e_{j}=\left(x_{a} \rightarrow x_{b}\right)$. If $k=b$, by definition $k \in S\left(e_{j}\right)$. If $k \neq b$, then x_{k} comes after x_{b} in a path and thus is a successor of x_{b}, so $k \in S\left(e_{j}\right)$.

Now, say we have $k \in S\left(e_{j}\right)$, with $e_{j}=\left(x_{a} \rightarrow x_{b}\right)$. If $k=b$, take a path from x_{r} to x_{a} and append $x_{a} \rightarrow x_{b}$ to get a path from x_{r} to x_{k} containing e_{j}. If $k \neq b$, then x_{k} is a successor of x_{b}, meaning there is some path from x_{k} to x_{b}. Prepend the path from x_{r} to x_{b} onto this path and we get a path from x_{r} to x_{k}, which necessarily contains the edge e_{j} since it goes through x_{b}.

Now, we show the conditions under which the reindexing from our tree T is favorable.

Proposition 3.22. We can write every edge of of our dependency graph as a product of $a_{j} s$, $1 \leq j \leq N$, without inverses, if and only if
(1) T is a path
(2) The path respects the ordering on the roots, meaning if γ_{j} covers γ_{i} then i must come before j in the path.

Proof. We will make use of the following
Lemma 3.23. There is an edge $x_{i} \rightarrow x_{j}$ if and only if γ_{j} covers γ_{i} in the usual ordering on Φ^{+}.

Proof. Corollary of Proposition 3.10
First, let T satisfy (1) and (2). Let $x_{i} \rightarrow x_{j}$ be an arbitrary edge. By Lemma 3.23, this means γ_{j} covers γ_{i}, so since the path respects the ordering on the roots, i must come before j in the path. Then, our path looks something like

$$
c_{N} \rightarrow \cdots \rightarrow x_{i} \rightarrow \cdots \rightarrow x_{j} \rightarrow \cdots
$$

so we have that

$$
\operatorname{wt}\left(x_{i} \rightarrow x_{j}\right)=\operatorname{wt}\left(x_{i} \rightarrow \cdots \rightarrow x_{j}\right)
$$

is a product of $a_{k} \mathrm{~s}$.
Now, assume for contradiction that T does not satisfy (1). This means we have at least two x_{i} s that are leaves. Since A_{n} has a unique maximal root, we can choose i such that γ_{i} is not maximal, and we have some edge $e_{k}=\left(x_{s} \rightarrow x_{i}\right)$. Then, there is some γ_{j} covering γ_{i}, so by Lemma 3.23 we have an edge $x_{i} \rightarrow x_{j}$. Then, let P be the path in T from $x_{i} \rightarrow x_{j}$. However, since x_{i} is a leaf, this path must go $x_{i} \rightarrow x_{s} \rightarrow \cdots \rightarrow x_{j}$, meaning that

$$
\mathrm{wt}\left(x_{i} \rightarrow x_{j}\right)=\mathrm{wt}\left(x_{i} \rightarrow x_{s}\right) \mathrm{wt}\left(x_{s} \rightarrow \cdots \rightarrow x_{j}\right)=a_{k}^{-1} \mathrm{wt}\left(x_{s} \rightarrow \cdots \rightarrow x_{j}\right),
$$

which is a contradiction.
Now, assume T does not satisfy (2). Let γ_{j} cover γ_{i}. By Lemma 3.23 we have an edge $x_{i} \rightarrow x_{j}$. Since T is a path, it either looks like one of the following cases

Case 1: $T=x_{s} \rightarrow \cdots \rightarrow x_{i} \rightarrow \cdots \rightarrow x_{j} \rightarrow \cdots$
Case 2: $T=x_{s} \rightarrow \cdots \rightarrow x_{j} \rightarrow \cdots \rightarrow x_{i} \rightarrow \cdots$

In case $2, \mathrm{wt}\left(x_{i} \rightarrow x_{j}\right)$ is a product of inverses of $a_{k} \mathrm{~s}$, which is a contradiction. Then, we are in case 1 , so we see that i comes before j in the path.

Example 3.24. In Example 3.1, we can re-index as follows:

This means, perform the following re-indexing:

$$
a_{0}=x_{8}, a_{1}=x_{8}^{-1} x_{7}, a_{2}=x_{7}^{-1} x_{4}, \ldots, a_{7}=x_{5}^{-1} x_{1}
$$

and we see that the remaining edges become

$$
x_{8}^{-1} x_{7}=a_{1} a_{2}, x_{4}^{-1} x_{3}=a_{2} a_{3}, \ldots, x_{2}^{-1} x_{1}=a_{6} a_{7}
$$

We also want to consider re-indexing the y_{i} s. Fixing x_{1}, \ldots, x_{8}, we consider the re-indexing

$$
y_{1}^{\prime}:=x_{7}^{-1} y_{1}, y_{2}^{\prime}:=x_{6}^{-1} y_{2}, y_{3}^{\prime}:=x_{5}^{-1} y_{3} .
$$

This re-indexing is injective, thus bijective, since x_{5}, x_{6}, x_{7} are invertible $\bmod p$. Then, we for the full augmented depenendency graph, the re-indexing looks like

4. Removing the Second Root in A_{5}

We can perform a similar computation to what we did above, but now we remove the second root in A_{5}. In this case, this corresponds to the following M :

$$
\left(\begin{array}{llllll}
* & * & 0 & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 & 0 \\
0 & 0 & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & * & * & * & *
\end{array}\right) .
$$

Our goal is to compute the exponential sum

$$
H(d ; t)=\sum_{c_{1} \bmod D_{1}} \cdots \sum_{c_{8} \bmod D_{8}} \prod\left(\frac{c_{j}}{d_{j}}\right)_{2} e^{\sum_{i=1}^{5} v_{i} t_{i}}
$$

(in the case where t is all 1).
We now find the v_{i} s and D_{i}. We see that $w_{M}=s_{1} s_{3} s_{4} s_{3} s_{5} s_{4} s_{3}$, the longest word in the Weyl group associated to this subgroup M. Note that the one line notation of this permutation is 216543 . This means that the longest word for S_{6}, the Weyl group associated to A_{5}, can be written as the following reduced word decomposition:

$$
w_{0}=s_{1} s_{3} s_{5} s_{4} s_{5} s_{3} s_{4} s_{2} s_{3} s_{4} s_{5} s_{1} s_{2} s_{3} s_{4}
$$

In particular, we have that $w^{P}=s_{2} s_{3} s_{4} s_{5} s_{1} s_{2} s_{3} s_{4}$. From here, we compute our ordering on the roots by computing $\gamma_{1}=w_{M}\left(\alpha_{2}\right), \gamma_{2}=w_{M} s_{2}\left(\alpha_{3}\right), \ldots, \gamma_{7}=w_{M} s_{2} s_{3} s_{4} s_{5} s_{1} s_{2}\left(\alpha_{3}\right), \gamma_{8}=$ $w_{M} s_{2} s_{3} s_{4} s_{5} s_{1} s_{2} s_{3}\left(\alpha_{4}\right)$. This yields us with the following computation:
(1) $\gamma_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}$,
(2) $\gamma_{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$,
(3) $\gamma_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}$,
(4) $\gamma_{4}=\alpha_{1}+\alpha_{2}$,
(5) $\gamma_{5}=\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}$,
(6) $\gamma_{6}=\alpha_{2}+\alpha_{3}+\alpha_{4}$,
(7) $\gamma_{7}=\alpha_{2}+\alpha_{3}$,
(8) $\gamma_{8}=\alpha_{2}$.

The positions of the $\gamma_{i} \mathrm{~S}$ in a matrix is then

$$
\left[\begin{array}{cccccc}
* & * & \gamma_{4} & \gamma_{3} & \gamma_{2} & \gamma_{1} \\
* & * & \gamma_{8} & \gamma_{7} & \gamma_{6} & \gamma_{5} \\
& & * & * & * & * \\
& & * & * & * & * \\
& & * & * & * & * \\
& * & * & * & *
\end{array}\right]
$$

From these positions, we use Proposition 3.6 to compute the $D_{j} \mathrm{~s}$. The relevant positions of the d_{j} s are

d_{4}	d_{3}	d_{2}	d_{1}
d_{8}	d_{7}	d_{6}	d_{5}

so we get
(1) $D_{1}=d_{1} d_{2} d_{3} d_{4} d_{5}$,
(2) $D_{2}=d_{2} d_{3} d_{4} d_{6}$,
(3) $D_{3}=d_{3} d_{4} d_{7}$,
(4) $D_{4}=d_{4} d_{8}$,
(5) $D_{5}=d_{5} d_{6} d_{7} d_{8}$,
(6) $D_{6}=d_{6} d_{7} d_{8}$,
(7) $D_{7}=d_{7} d_{8}$,
(8) $D_{8}=d_{8}$.

Now, we compute the v_{j} s. We compute S_{j} as defined in (3) for $j=1,3,4,5$. In light of Proposition 3.7, we always have $i=i^{\prime}=1$. We see that
(1) $S_{1}=\{((5,1),(6,2),(7,3),(8,4)\}$,
(2) $S_{3}=\{(4,3),(8,7)\}$,
(3) $S_{4}=\{(3,2),(7,6)\}$,
(4) $S_{5}=\{(2,1),(6,5)\}$.

Then, using Proposition 3.9 and Corollary 3.8, we get

$$
\begin{aligned}
& v_{1}=-\frac{b_{5} c_{1} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}-\frac{b_{6} c_{2} d_{7} d_{8}}{d_{2} d_{3} d_{4}}-\frac{b_{7} c_{3} d_{8}}{d_{3} d_{4}}-\frac{b_{8} c_{4}}{d_{4}} \\
& v_{2}=\frac{c_{8}}{d_{8}} \\
& v_{3}=\frac{b_{4} c_{3} d_{8}}{d_{3} d_{7}}+\frac{b_{8} c_{7}}{d_{7}} \\
& v_{4}=\frac{b_{3} c_{2} d_{7}}{d_{2} d_{6}}+\frac{b_{7} c_{6}}{d_{6}} \\
& v_{5}=\frac{b_{2} c_{1} d_{6}}{d_{1} d_{5}}+\frac{b_{6} c_{5}}{d_{5}} .
\end{aligned}
$$

Note that we initially take $b_{i} c_{i} \equiv-1 \bmod d_{i}$. Here, for simplicity, we instead take $b_{i} c_{i} \equiv$ $1 \bmod d_{i}$. For this reason, the signs of $v_{1}, v_{3}, v_{4}, v_{5}$ are the opposite of what Corollary 3.8 gives us directly.

We impose certain domain restrictions on d_{i}. We have the following lemma:
Lemma 4.1 (Brubaker-Friedberg, [BF15], Lemma 6.1). H(d,t) vanishes unless, for each simple root α_{j},

$$
t_{j} \prod_{i=1}^{N} d_{i}^{-\left\langle\alpha_{j}, \gamma_{i}^{\vee}\right\rangle} \in \mathbb{Z}
$$

We call these the divisibility conditions, which in our case are

$$
\begin{aligned}
\ell_{4}+\ell_{8} & \geq \ell_{3}+\ell_{7} \geq \ell_{2}+\ell_{6} \geq \ell_{1}+\ell_{5} \\
\ell_{8}+\ell_{7}+\ell_{6}+\ell_{5} & \geq \ell_{4}+\ell_{3}+\ell_{2}+\ell_{1}
\end{aligned}
$$

4.1. The Comb Reparametrization. Recall our exponential sum

$$
H\left(d_{1}, \ldots, d_{8}\right)=\sum_{c_{i} \bmod D_{i}} e^{2 \pi i \sum_{j=1}^{5} v_{j}} \prod_{i=1}^{8}\left(\frac{c_{i}}{d_{i}}\right)_{2} .
$$

For convenience we call $\sum_{j=1}^{5} v_{j}$ the exponent. Note that we can ignore any integer part of $\sum_{j=1}^{5} v_{j}$, since $e^{2 \pi i n}=1$ for $n \in \mathbb{Z}$. We claim that if $4 \leq i \leq 8$, then the summand in H does not depend on c_{i}. Indeed, if $\ell_{i}=0$ for a general i, then d_{i} is 1 . In this case, we can set $b_{i}=0$ so that all terms in the exponent with a b_{i} disappear. Furthermore, every term in the exponent with a factor c_{i} is a fraction over d_{i} for $4 \leq i \leq 8$, so these terms become integers and can be ignored.

Since c_{i} does not affect the summand if $\ell_{i}=0$ for $4 \leq i \leq 8$, in the case that such an ℓ_{i} is 0 , we can calculate H by only summing over c_{i} not divisible by p, and then multiply by $\frac{p}{p-1}$. For $1 \leq i \leq 3$, if $\ell_{i} \neq 0$, we sum over c_{i} relatively prime to p, since otherwise the $\left(\frac{c_{i}}{d_{i}}\right)_{2}$ term gives 0 . However if $\ell_{i}=0$, then we must sum over all c_{i} modulo D_{i}.

We can therefore rewrite H as

$$
H\left(d_{1}, \ldots, d_{8}\right)=\sum_{\substack{c_{i} \bmod D_{i} \\ \text { pभc.i} \\ 4 \leq i \leq 8}} \sum_{\substack{c_{i} \bmod D_{i} \\ p \nmid c_{i} \text { if } \ell_{i} \neq 0 \\ 1 \leq i \leq 3}}\left(\frac{p}{p-1}\right)^{C} e^{2 \pi i \sum_{j=1}^{5} v_{j}} \prod_{i=1}^{8}\left(\frac{c_{i}}{d_{i}}\right)_{2},
$$

where C is the number of $i \in\{4,5,6,7,8\}$ with $\ell_{i}=0$.
For a large power of p that we denote M, we perform the "raise to M " trick on all the c_{i} : we sum over c_{i} modulo M rather than modulo D_{i}, and average by using a $\frac{D_{1} \cdots D_{8}}{M^{8}}$ scaling factor, as explained in Section 3.6. For any $\ell_{i}=0$ with $1 \leq i \leq 3$, we set b_{i} to 0 ; for other i in $\{1,2,3\}$ and for all $i \in\{4,5,6,7,8\}$, we set b_{i} to the inverse of c_{i} modulo M. We can then write

$$
H\left(d_{1}, \ldots, d_{8}\right)=\frac{D_{1} \cdots D_{8}}{M^{8}} \sum_{c_{i} \bmod M} e^{2 \pi i \sum_{j=1}^{5} v_{j}} \prod_{i=1}^{8}\left(\frac{c_{i}}{d_{i}}\right)_{2} .
$$

Consider the following reparametrization:

$$
\left(c_{1}, c_{2}, \ldots, c_{8}\right) \mapsto\left(b_{5} c_{1}, b_{6} c_{2}, b_{7} c_{3}, b_{8} c_{4}, b_{6} c_{5}, b_{7} c_{6}, b_{8} c_{7}, c_{8}\right)=:\left(a_{1}, \ldots, a_{8}\right)
$$

We call this reparametrization the comb reparametrization because besides a_{8}, the a_{i} form 7 edges of the dependency graph described in Section 3.5, forming a comb shape. This reparametrization is actually a bijection from the set of possible $\left(c_{1}, c_{2}, \ldots, c_{8}\right)$ (a subset of $\left.(\mathbb{Z} / M \mathbb{Z})^{8}\right)$ to itself. We can write the summand in H in terms of the a_{i}, noting that it changes based on the cases of $\ell_{1}, \ell_{2}, \ell_{3}$ being 0 due to the presence of certain $b_{i} \mathrm{~s}$ or lack thereof with $1 \leq i \leq 3$.

We first consider the simplest case, which is $\ell_{1}=\ell_{2}=\ell_{3}=0$. Then all the b_{1}, b_{2}, b_{3} terms disappear, and using the comb reparametrization, we get

$$
\begin{gathered}
H=\frac{D_{1} D_{2} \cdots D_{8}}{M^{8}} \sum_{a_{i} \bmod M}^{p \nmid a_{i}}\left(\frac{p}{p-1}\right)^{C}\left(\frac{a_{8}}{d_{8}}\right)_{2}\left(\frac{a_{8} a_{7}}{d_{7}}\right)_{2}\left(\frac{a_{8} a_{4}}{d_{4}}\right)_{2}\left(\frac{a_{8} a_{7} a_{6}}{d_{6}}\right)_{2}\left(\frac{a_{8} a_{7} a_{6} a_{5}}{d_{5}}\right)_{2} \\
\left(\frac{a_{8} a_{7} a_{3}}{d_{3}}\right)_{2}\left(\frac{a_{8} a_{7} a_{6} a_{2}}{d_{2}}\right)_{2}\left(\frac{a_{8} a_{7} a_{6} a_{5} a_{1}}{d_{1}}\right)_{2} e^{2 \pi i\left(\frac{a_{8}}{d_{8}}-\frac{a_{4}}{d_{4}}+\frac{a_{7}}{d_{7}}-\frac{a_{3} d_{8}}{d_{3} d_{4}}+\frac{a_{6}}{d_{6}}-\frac{a_{2} d_{7} d_{8}}{d_{2} d_{3} d_{4}}+\frac{a_{5}}{d_{5}}-\frac{a_{1} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}+a_{4}^{-1} a_{7} a_{3} \frac{d_{8}}{d_{3} d_{7}}\right.},
\end{gathered}
$$

where C is the number of $\ell_{4}, \ldots, \ell_{8}$ that are 0 . Note that since b_{5}, \ldots, b_{8} are all relatively prime to p, the variable c_{i} being divisible by p is equivalent to a_{i} being divisible by p, so the domain which we sum a_{i} over is the same as which we sum c_{i} over. Furthermore, a_{i}^{-1} is the residue that is the inverse of a_{i} modulo M. Then $a_{4}^{-1} a_{7} a_{3} \equiv\left(b_{8} c_{4}\right)^{-1}\left(b_{8} c_{7}\right)\left(b_{7} c_{3}\right) \equiv$ $\left(b_{4} c_{8}\right)\left(b_{8} c_{7}\right)\left(b_{7} c_{3}\right) \equiv b_{4} c_{3} \bmod M$, so $a_{4}^{-1} a_{7} a_{3} \frac{d_{8}}{d_{3} d_{7}}$ corresponds to $\frac{b_{4} c_{3} d_{8}}{d_{3} d_{7}}$. We have modifications if $\ell_{i}=0$ for $i \in\{1,2,3\}$, which are as follows.

- If $\ell_{3} \neq 0$, then we must add the $b_{3} c_{2}$ term to the summand. Note that in this case, we sum over c_{3} not divisible by p, so b_{3} is also relatively prime to p and modulo M, we have $b_{3} c_{2}=a_{3}^{-1} a_{6} a_{2}$. In the sense of the comb graph, we are adding the "notch" going along vertices $3,7,6,2$. Then the exponent has an extra term $a_{3}^{-1} a_{6} a_{2} \frac{d_{7}}{d_{2} d_{6}}$. We sum over all a_{3} modulo M (instead of just those relatively prime to p).
- If $\ell_{2} \neq 0$, then we add the "notch" going along vertices $2,6,5,1$, giving an extra term in the exponent $a_{2}^{-1} a_{5} a_{1} \frac{d_{6}}{d_{1} d_{5}}$. We sum over all a_{2} modulo M (instead of just those relatively prime to p).
- If $\ell_{1} \neq 0$, then since there is no b_{1} term, the summand does not change. We sum over all a_{i} modulo M (instead of just those relatively prime to p).
These modifications are all independent, i.e., they stack.
Using this reparametrization, we first demonstrate bounds on the support of H. Note that we continually make use of a method where we "sum over all roots of unity," as shown in Example 2.1 in Section 2. This method allows us to conclude that H is 0 in a wide variety of cases, when we have a reduced fraction in the exponent with denominator divisible by p^{2}. For convenience we refer to this method as the root of unity method. We will not be able to rule out the case $\left(\ell_{3}, \ell_{4}, \ell_{7}, \ell_{8}\right)=(2,1,0,1)$, for which we write $\left(d_{1}, \ldots, d_{8}\right) \in \alpha$.

We first demonstrate a more in-depth example of this method. For convenience, we denote $v_{p}(a)$ as the largest power of p that divides an integer a; for example, $v_{3}(18)=2$. We also write $v_{p}(a / b)=v_{p}(a)-v_{p}(b)$.
Example 4.2. The exponent in our exponential sum H has an a_{3}-dependent part

$$
a_{3}\left(\frac{a_{4}^{-1} a_{7} d_{8}}{d_{3} d_{7}}-\frac{d_{8}}{d_{3} d_{4}}\right) .
$$

Suppose that we can write this expression as a fraction $a_{3} \frac{k}{p^{\ell}}$ for ℓ an integer at least 2 , and k relatively prime to p; in other words, $v_{p}\left(\frac{a_{4}^{-1} a_{7} d_{8}}{d_{3} d_{7}}-\frac{d_{8}}{d_{3} d_{4}}\right) \leq-2$. Then if we write $a_{3}=x+p y$, any quadratic residue symbols dependent on a_{3} only depend on x, not y. So, we have

$$
H=\sum_{\cdots} \sum_{x}(\cdots) \sum_{0 \leq y<M / p} e^{2 \pi i(x+p y) \frac{k}{p^{\ell}}},
$$

where the \cdots indicate expressions not dependent on y. But

$$
\sum_{0 \leq y<M / p} e^{2 \pi i(x+p y) \frac{k}{p^{\ell}}}=e^{2 \pi i x} \sum_{0 \leq y<M / p} e^{2 \pi i \frac{y k}{p^{\ell-1}}}=0,
$$

since we sum over all $p^{\ell-1}$ th roots of unity multiple times, and $p^{\ell-1}>1$. Then H is 0 .
In general, if we can show that the a_{i}-dependent part of the exponent, when reduced, is a fraction over p^{ℓ} for $\ell \geq 2$, and there is no a_{i}^{-1} term in the exponent, then H is 0 . In other words, if there is no a_{i}^{-1} in the exponent and a_{i} is multiplied by a fraction with v_{p} at most -2 , then H is 0 ; this is the essence of the root of unity method.
Example 4.3. If we have two fractions $\frac{a}{p^{k}}$ and $\frac{c}{p^{\ell}}$, then their sum can be written as a fraction over $p^{\max (k, \ell)}$, meaning $v_{p}\left(\frac{a}{p^{k}}+\frac{c}{p^{\ell}}\right) \geq \min \left(v_{p}\left(\frac{a}{p^{k}}\right), v_{p}\left(\frac{c}{p^{\ell}}\right)\right)$. In fact, this inequality must be an equality for $k \neq \ell$. So in Example 4.2, $v_{p}\left(\frac{d_{8}}{d_{3} d_{4}}\right) \neq v_{p}\left(\frac{d_{8}}{d_{3} d_{7}}\right)$, or $\ell_{8}-\ell_{3}-\ell_{4} \neq \ell_{8}-\ell_{3}-\ell_{7}$,
implies that as long as either $\ell_{3}+\ell_{4}-\ell_{8}$ or $\ell_{3}+\ell_{4}-\ell_{7}$ is at least 2 , then summing over a_{3} yields 0 by the root of unity method. This observation essentially will force many ℓ_{i} to be equal to save H from being 0 , e.g. in 4.6 below.

In some cases, we can use the root of unity method even when there is an a_{i}^{-1} in the exponent.

Example 4.4. The a_{4}-dependent part of the exponent is

$$
a_{4}^{-1} a_{7} a_{3} \frac{d_{8}}{d_{3} d_{7}}-\frac{a_{4}}{d_{4}} .
$$

Suppose that $\ell_{4} \geq 2$, but $\ell_{3}+\ell_{7}-\ell_{8} \leq 1$. If we write $a_{4}=x+p y$, the expression $a_{4}^{-1} a_{7} a_{3} \frac{d_{8}}{d_{3} d_{7}}$ is not dependent on y, since it only depends on a_{4}^{-1} modulo p, which is determined by a_{4} modulo p. Then like in Example 4.2, we have

$$
H=\sum_{\cdots} \sum_{x}(\cdots) \sum_{0 \leq y<M / p} e^{2 \pi i(x+p y) \frac{1}{p^{\ell}}}
$$

with

$$
\sum_{0 \leq y<M / p} e^{2 \pi i(x+p y) \frac{1}{p^{p_{4}}}}=e^{2 \pi i x} \sum_{0 \leq y<M / p} e^{2 \pi i \frac{y}{p^{2}-1}}=0 .
$$

In fact, this method works as long as ℓ_{4} is strictly greater than $\ell_{3}+\ell_{7}-\ell_{8}-v_{p}\left(a_{3}\right)$, since we can write $a_{4}=x+p^{\ell_{4}-1} y$ and perform the same calculation.

We now use the above examples to bound the support of H. Inspired by the geometric nature of the dependency graph in 3.5, we informally call vertices $3,4,7,8$ and associated parameters the left box, and vertices $1,2,5,6$ and associated parameters the right box. We first focus on the left box, and show that ℓ_{8}, ℓ_{3} are generally small, though we might have ℓ_{4} or ℓ_{7} large if $\ell_{4}=\ell_{7}$. We then prove a similar result for the right box, showing that ℓ_{1}, ℓ_{6} are generally small, though we might have ℓ_{2} or ℓ_{5} large if $\ell_{2}=\ell_{5}$.

Proposition 4.5. For $\left(d_{1}, \ldots, d_{8}\right) \notin \alpha$ in the support of H, we have $\ell_{8} \leq 1$.
Proof. Note that in the comb reparametrization, the a_{8}-dependent term is $\frac{a_{8}}{d_{8}}$. If $\ell_{8} \geq 2$, then summing over a_{8} yields 0 by the root of unity method.

Proposition 4.6. For $\left(d_{1}, \ldots, d_{8}\right) \notin \alpha$ in the support of H, if $\ell_{7} \geq 2$ or $\ell_{7}+\ell_{3}-\ell_{8} \geq 2$, we have $\ell_{3}=\ell_{8}$.

Proof. In the comb reparametrization, the a_{7} exponent term is $a_{7}\left(\frac{1}{d_{7}}+a_{4}^{-1} a_{3} \frac{d_{8}}{d_{3} d_{7}}\right)$. Since a_{4}^{-1} is not divisible by p, we have $v_{p}\left(\frac{1}{d_{7}}\right)=-\ell_{7}$ and $v_{p}\left(a_{4}^{-1} a_{3} \frac{d_{8}}{d_{3} d_{7}}\right)=-\ell_{7}-\ell_{3}+\ell_{8}+v_{p}\left(a_{3}\right)$. As in 4.3. if these two are not equal, then the sum of the fractions has v_{p} equal to $\min \left(-\ell_{7},-\ell_{7}-\right.$ $\left.\ell_{3}+\ell_{8}+v_{p}\left(a_{3}\right)\right)$. We need this value to be at least -1 for H to be nonzero.

If $k \neq 0$, then $\ell_{3}=0$ so $\ell_{7}-\ell_{8}-k$ is strictly less than ℓ_{7} anyway, implying that ℓ_{7} and $\ell_{7}+\ell_{3}-\ell_{8}-k$ cannot be equal, and neither ℓ_{7} nor $\ell_{7}+\ell_{3}-\ell_{8}$ can be at least 2 for $\left(d_{1}, \ldots, d_{8}\right)$ in the support of H. So if H is nonzero and $\ell_{7} \geq 2$ or $\ell_{7}+\ell_{3}-\ell_{8} \geq 2$, we must have $k=0$, implying that $-\ell_{7}=-\ell_{7}-\ell_{3}+\ell_{8}+v_{p}\left(a_{3}\right)=-\ell_{7}-\ell_{3}+\ell_{8}$, so $\ell_{3}=\ell_{8}$.
Proposition 4.7. For $\left(d_{1}, \ldots, d_{8}\right) \notin \alpha$ in the support of H, if $\ell_{4} \geq 2$, we need $\ell_{4}=\ell_{7}$.

Proof. In the comb reparametrization, the a_{4}-dependent exponent term is $a_{4} \frac{1}{d_{4}}+a_{4}^{-1} a_{7} a_{3} \frac{d_{8}}{d_{3} d_{7}}$. If the denominators of the two fractions are not equal, and the larger has exponent ℓ at least 2 , then H is zero by the root of unity method as the sum of the fractions can be written as a reduced fraction over p^{ℓ} (see Example 4.3). Then $\ell_{3}+\ell_{7}-\ell_{8}=\ell_{4} \geq 2$. But then by Proposition 4.6, we have $\ell_{3}=\ell_{8}$, so $\ell_{4}=\ell_{7}$.

Corollary 4.8. For $\left(d_{1}, \ldots, d_{8}\right) \notin \alpha$ in the support of H, if $\ell_{7} \geq 2$ then $\ell_{7}=\ell_{4}$. If $\ell_{4} \geq 2$ then $\ell_{4}=\ell_{7}$. In both cases, we have $\ell_{3}=\ell_{8}$.

Proof. If $\ell_{7} \geq 2$, then by 4.6 we get $\ell_{3}=\ell_{8}$, so by the divisibility conditions we get $\ell_{4} \geq \ell_{7}$, which implies $\ell_{4}=\ell_{7}$ by 4.7. The second part of the corollary follows from 4.7 and 4.6 .

Corollary 4.9. For $\left(d_{1}, \ldots, d_{8}\right) \notin \alpha$ in the support of H, if $\ell_{3}+\ell_{7} \geq 2$, then $\ell_{4}+\ell_{8}=\ell_{3}+\ell_{7}$ and $\ell_{3}+\ell_{4}=\ell_{7}+\ell_{8}$. In particular, this implies $\ell_{4}=\ell_{7}$ and $\ell_{3}=\ell_{8}$.

Proof. We first show the first equality. By divisibility conditions, we get $\ell_{4}+\ell_{8} \geq \ell_{3}+\ell_{7} \geq 2$. But if $\ell_{4}+\ell_{8}=2$ then we are done, and if $\ell_{4}+\ell_{8} \geq 3$ then $\ell_{4} \geq 2$, and we are done by Corollary 4.8 .

Now we show the second equality. If $\ell_{3}, \ell_{4}, \ell_{7}, \ell_{8}$ are all at most 1 , then they all equal 1 and we are done. If $\ell_{4} \geq 2$ or $\ell_{7} \geq 2$, then we are done by Corollary 4.8. We cannot have $\ell_{8} \geq 2$ by Proposition 4.5. The final case is if $\ell_{3} \geq 2$. Then since $\ell_{8} \leq 1$ by Proposition 4.5, we must have $\ell_{4}, \ell_{7} \leq 1$ (since otherwise Corollary 4.8 implies $\ell_{3}=\ell_{8} \leq 1$. The divibility condition $\ell_{4}+\ell_{8} \geq \ell_{3}+\ell_{7}$ implies that the only possibility is $\ell_{3}=2, \ell_{4}=\ell_{8}=1, \ell_{7}=0$. But this case is in α so we are done.

We now focus on the right box.
Proposition 4.10. For $\left(d_{1}, \ldots, d_{8}\right) \notin \alpha$ in the support of H, we have $\ell_{6} \leq 1$.
Proof. Suppose $\ell_{6}+\ell_{2}-\ell_{7} \leq 1$. Then if $\ell_{6} \geq 2$, the $\frac{a_{6}}{d_{6}}$ term gives 0 by the root of unity method, so $\ell_{6} \leq 1$.

Otherwise, suppose $\ell_{6}+\ell_{2}-\ell_{7} \geq 2$. Since $\ell_{7}+\ell_{3} \geq \ell_{2}+\ell_{6}$, we need $\ell_{3} \geq 2$, so by 4.9 we get $\ell_{4}+\ell_{8} \geq 2$, so $\ell_{4} \geq 1$ since $\ell_{8} \leq 1$ by 4.5 .

If $\ell_{7} \geq 2$, we would get $\ell_{3}=\ell_{8} \leq 1$ by Proposition 4.6, so we need $\ell_{7} \leq 1$ and therefore $\ell_{4} \leq 1$ by 4.7, giving $\ell_{4}=\ell_{8}=1, \ell_{3}=2, \ell_{7}=0$. Then $\ell_{6}+\ell_{2}=2$. If ℓ_{6} is not at most 1 , we get $\ell_{2}=0, \ell_{6}=2$, so $\left(d_{1}, \ldots, d_{8}\right) \in \alpha$ and we are done.

Corollary 4.11. For $\left(d_{1}, \ldots, d_{8}\right) \notin \alpha$ in the support of H, if $\ell_{5} \geq 2$ then $\ell_{5}=\ell_{2}$. If $\ell_{2} \geq 2$ then $\ell_{2}=\ell_{5}$. In both cases, we have $\ell_{1}=\ell_{6}$.
Proof. Suppose $\ell_{5} \geq 2$. Consider the a_{5} term in the exponent, which is $a_{5}\left(\frac{1}{d_{5}}-\frac{a_{2}^{-1} a_{5} a_{1} d_{6}}{d_{1} d_{5}}\right)$, or just $\frac{a_{5}}{a_{5}}$ if $\ell_{2}=0$. Then summing over a_{5} yields 0 by the root of unity method unless $\left(\frac{1}{d_{5}}-\frac{a_{2}^{-1} a_{5} d_{6}}{d_{1} d_{5}}\right)$ can be written as a fraction over p (in particular, this implies $\ell_{2} \neq 0$). So, we need $v_{p}\left(\frac{1}{d_{5}}\right)=v_{p}\left(\frac{a_{2}^{-1} a_{5} d_{6}}{d_{1} d_{5}}\right)$, or $d_{1}=d_{6}$. But then the a_{1} term in the exponent is $a_{1}\left(a_{2}^{-1} a_{5} \frac{d_{6}}{d_{1} d_{5}}-\frac{d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}\right)=a_{1}\left(a_{2}^{-1} a_{5} \frac{1}{d_{5}}-\frac{1}{d_{2}}\right)$ by Corollary 4.9 , so for the summation over a_{1} to not be 0 , we need $d_{5}=d_{2}$.

Now suppose $\ell_{2} \geq 2$. By the divisibility conditions, Corollary 4.9 applies, so the $\frac{a_{2} d_{7} d_{8}}{d_{2} d_{3} d_{4}}$ term becomes $\frac{a_{2}}{d_{2}}$.

If $\ell_{6}>\ell_{1}$, then $\ell_{6} \geq 1$ so $\ell_{4}+\ell_{8} \geq \ell_{2}+\ell_{6} \geq 3$, implying that $\ell_{4}=\ell_{7} \geq 2$ and $\ell_{3}=\ell_{8} \leq 1$. We would then get that the $a_{3}^{-1} a_{6} a_{2} \frac{d_{7}}{d_{2} d_{6}}$ term can be written as a fraction over p. Then the remaining a_{2} terms, namely $\frac{a_{2}}{d_{2}}$ and $a_{2}^{-1} a_{5} a_{1} \frac{d_{6}}{d_{1} d_{5}}$, need to have the same power of p in the denominator when simplified, as otherwise summing over a_{2} yields 0 by the root of unity method. So $\frac{1}{d_{2}}=\frac{1}{d_{2}} \frac{d_{2} d_{6}}{d_{1} d_{5}}$, which implies $\ell_{5}>\ell_{2}$ since $\ell_{6}>\ell_{1}$. But then $\ell_{5} \geq 3$, which by the above implies $\ell_{5}=\ell_{2}$, which is a contradiction.

Therefore $\ell_{6} \leq \ell_{1}$. The a_{1} terms are $a_{1} \frac{d_{6}}{d_{1} d_{2}}$ and $a_{2}^{-1} a_{5} a_{1} \frac{d_{6}}{d_{1} d_{5}}$, so for summing over a_{1} to not yield 0 , we need $d_{5}=d_{2}$, in which case we are done by the $\ell_{5} \geq 2$ case above.

Proposition 4.12. For $\left(d_{1}, \ldots, d_{8}\right) \notin \alpha$ in the support of H, we have $\ell_{1} \leq 1$.
Proof. Note that the a_{1}-dependent term in the exponent is

$$
a_{1}\left(\frac{d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}+\frac{a_{2}^{-1} a_{5} d_{6}}{d_{1} d_{5}}\right),
$$

or just $\frac{a_{1} d_{6} d_{7} d_{8}}{d_{1} d_{2} d_{3} d_{4}}$ if $\ell_{2}=0$. Suppose $\ell_{1} \geq 2$. Then by the divisibility conditions, we get $\ell_{3}+\ell_{7} \geq 2$, so 4.9 implies that $\ell_{3}+\ell_{4}=\ell_{7}+\ell_{8}$, and we can write the a_{1}-dependent term as

$$
a_{1}\left(\frac{d_{6}}{d_{1} d_{2}}+\frac{a_{2}^{-1} a_{5} d_{6}}{d_{1} d_{5}}\right) .
$$

Since Proposition 4.10 implies $\ell_{6} \leq 1$, we cannot have $\ell_{2}=\ell_{5}=0$ by divisibility conditions (since $\ell_{1}=2$). Then $\min \left(v_{p}\left(\frac{d_{6}}{d_{1} d_{2}}\right), v_{p}\left(\frac{d_{6}}{d_{1} d_{5}}\right)\right) \leq-2$. For H not to be 0 , we must then have that $\frac{d_{6}}{d_{1} d_{2}}=\frac{d_{6}}{d_{1} d_{5}}$, or $d_{2}=d_{5}$. But $d_{2}=d_{5} \leq 1$ is not possible by divisibility conditions, and $d_{2}=d_{5} \geq 2$ implies $d_{1}=d_{6}$ by Corollary 4.11. So we must have $\ell_{1} \leq 1$.

We summarize our results in the following theorem.
Theorem 4.13. For $\left(d_{1}, \ldots, d_{8}\right) \notin \alpha$ in the support of H, if H is not 0 , we either have all $\ell_{i} \leq 1$; or $\ell_{4}=\ell_{7}, \ell_{3}=\ell_{8} \leq 1$, all other $\ell_{i} \leq 1$; or $\ell_{1}=\ell_{6} \leq 1, \ell_{7}=\ell_{8} \leq 1, \ell_{2}=\ell_{5} \leq$ $\ell_{4}+1=\ell_{7}+1$.

Proof. If some ℓ_{i} is greater than 1 , then that ℓ_{i} must be $\ell_{2}, \ell_{3}, \ell_{4}, \ell_{5}$, or ℓ_{7} by Propositions 4.10, 4.5 , and 4.12. By Corollary 4.9, we cannot have $\ell_{3} \geq 2$, since it would imply $\ell_{8} \geq 2$ which is not possible. The Corollaries 4.11 and 4.8 in conjunction with the divisibility conditions force $\left(\ell_{1}, \ldots, \ell_{8}\right)$ to then satisfy $\ell_{4}=\ell_{7}$ and $\ell_{3}=\ell_{8}$, with $\ell_{2}, \ell_{5} \leq \ell_{4}+1$, and if ℓ_{2} or $\ell_{5} \geq 2$, then $\ell_{2}=\ell_{5}$ and $\ell_{1}=\ell_{6}$.

Note that the case $\ell_{2}=\ell_{5}=\ell_{4}+1=\ell_{7}+1$ is only possible if $\ell_{1}=\ell_{6}=0, \ell_{3}=\ell_{8}=1$ by the divisibility conditions; this case is Case 2 of 4.2.1.
4.2. Solving H. We focus on solving the cases with $\ell_{7} \geq 2$, since otherwise there are a small number of finite cases due to divisibility cases and Proposition 4.5; we call these the infinite support cases. If $\ell_{3}=0$, then calculating H is much easier, as there is no interaction between a_{i} and a_{j} for $i \in\{1,2,5,6\}, j \in\{3,4,7,8\}$ (since the only possible exponent term that contains a_{i} from both sets, namely $a_{3}^{-1} a_{6} a_{2} \frac{d_{7}}{d_{2} d_{6}}$, is not actually in the exponent). If $\ell_{3} \geq 0$, but $\ell_{2}+\ell_{6} \leq \ell_{7}$, then there is also no such interaction since $a_{3}^{-1} a_{6} a_{2} \frac{d_{7}}{d_{2} d_{6}}$ is an integer. We first tackle the non-interaction case, and we then solve the other infinite support cases
(the cases with interaction). Note that we use many of the results on Gauss sums from Section 2.

We formalize the non-interaction in the following theorem. We first recall the definition of the exponential sum when removing the second root in the A_{3} case.

Definition 6. For $e_{1}, e_{2}, e_{3}, e_{4}$ powers of a prime p with $\frac{e_{3} e_{4}}{e_{2} e_{1}}$ and $\frac{e_{2} e_{4}}{e_{3} e_{1}}$ integers (the A_{3} divisibility conditions), we define

$$
H_{A_{3}}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=\sum_{\substack{c_{1} \bmod e_{1} e_{2} e_{3} \\ c_{2} \text { mod } e_{4} \\ c_{3} \text { mod } e_{3} e_{4} \\ c_{4} \bmod e_{4}}} \prod_{i=1}^{4}\left(\frac{c_{i}}{e_{i}}\right)_{2} e^{2 \pi i\left(\frac{c_{4}}{e_{4}}+\frac{b_{4} c_{2}}{e_{2}}-\frac{b_{4} c_{3}}{e_{3}}+\frac{b_{3} c_{1} e_{4} e_{4}}{e_{1} e_{2}}-\frac{b_{2} c_{1} e_{4}}{e_{1} e_{3}}\right)} .
$$

We have a mini comb reparametrization $\left(b_{2} c_{1}, b_{4} c_{2}, b_{4} c_{3}, c_{4}\right)=:\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. Then, for M a large power of p, and $E_{1}=e_{1} e_{2} e_{3}, E_{2}=e_{2} e_{4}, E_{3}=e_{3} e_{4}, E_{4}=e_{3}$, we can write
$H_{A_{3}}=\frac{E_{1} E_{2} E_{3} E_{4}}{M^{4}}\left(\frac{p}{p-1}\right)^{C} \sum_{a_{i} \bmod M}\left(\frac{a_{4}}{e_{4}}\right)_{2}\left(\frac{a_{4} a_{3}}{e_{3}}\right)_{2}\left(\frac{a_{4} a_{2}}{e_{2}}\right)_{2}\left(\frac{a_{4} a_{2} a_{1}}{e_{1}}\right)_{2} e^{2 \pi i\left(\frac{a_{4}}{e_{4}}+\frac{a_{2}}{e_{2}}-\frac{a_{3}}{e_{3}}-\frac{a_{1} e_{4}}{e_{2} e_{3}}+\frac{a_{3}^{-1} a_{2} a_{1} e_{4}}{e_{1} e_{2}}\right)}$,
where C is the number of $i \in\{1,3,4\}$ with $e_{i}=1$.
Theorem 4.14. Suppose $\ell_{7} \geq \ell_{2}+\ell_{6}$ (in particular, this holds if $\ell_{3}=0$ by the divisibility conditions), and that $\ell_{7}+\ell_{8}=\ell_{3}+\ell_{4}$ hold. Then we have

$$
H_{A_{5}}\left(d_{1}, \ldots, d_{8}\right)=H_{A_{3}}\left(d_{1}, d_{5}, d_{2}, d_{6}\right) H_{A_{3}}\left(d_{3}, d_{7}, d_{4}, d_{8}\right)\left(d_{3} d_{4} d_{7} d_{8}\right)^{2}
$$

Proof. Note that the assumptions of the theorem statement imply that there is no relevant $a_{3}^{-1} a_{6} a_{2} \frac{d_{7}}{d_{2} d_{6}}$ term in $H_{A_{5}}$. Also crucially, if $\ell_{2}=0$, then the sum is not dependent on c_{2}, so when calculating $H_{A_{5}}$ in the left hand side of the theorem statement, we can add the $a_{2}^{-1} a_{5} a_{1} \frac{d_{6}}{d_{1} d_{5}}$ term to the exponent and only sum over a_{2} relatively prime to p, scaling by a $\frac{p}{p-1}$ factor. We multiply the two $H_{A_{3}}$ functions, using the mini comb reparametrizations

$$
\left(b_{5} c_{1}, b_{6} c_{5}, b_{6} c_{2}, c_{6}\right)=:\left(a_{1}, a_{5}, a_{2}, a_{6}\right)
$$

and

$$
\left(b_{7} c_{3}, b_{8} c_{7}, b_{8} c_{4}, c_{8}\right)=:\left(a_{3}, a_{7}, a_{4}, a_{8}\right),
$$

giving exactly $H_{A_{5}}\left(d_{1}, \ldots, d_{8}\right)$ (with the above modification) except for a missing factor $\left(d_{3} d_{4} d_{7} d_{8}\right)^{2}$.

To calculate a common $H_{A_{3}}$ case, we will make use of the following proposition.
Proposition 4.15. For $m \in\{0,1\}, \ell \geq 2$, we have

$$
\sum_{x, y, z \in\left(\mathbb{Z} / p^{\ell} \mathbb{Z}\right)} e^{2 \pi i \frac{-x+y-z+x^{-1} y z}{p^{\ell}}}\left(\frac{x}{p^{\ell}}\right)_{2}\left(\frac{y}{p^{\ell+m}}\right)_{2}\left(\frac{z}{p^{m}}\right)_{2}=(p-1) p^{2 \ell-1}\left(\frac{-1}{p}\right)_{2}^{m} .
$$

Remark. The value x^{-1} is shorthand for the inverse of $x \bmod p^{\ell}$. The sum is well-defined because if p divides x, then the summand is 0 due to the $\left(\frac{x}{p^{\ell}}\right)_{2}$ term.

Proof. First suppose $m=0$. Then we are summing $e^{2 \pi i z \frac{x^{-1} y-1}{p^{\ell}}}$ for all $z \bmod p^{\ell}$, which is 0 unless $\frac{x^{-1} y-1}{p^{\ell}}$ is an integer. So we can set $y=x$, which cancels out the whole exponent and quadratic residues and makes the summand simply equal 1 (assuming $p \nmid x)$. There are $(p-1) p^{\ell-1}$ choices for x and p^{ℓ} choices for z, giving a sum $(p-1) p^{2 \ell-1}$.

Now suppose $m=1$. Then summing over z yields 0 by the root of unity method unless $x^{-1} y-1$ is divisible by $p^{\ell-1}$. Then we can set $y=x+k x p^{\ell-1}$, and sum over $0 \leq k \leq p-1$. The sum becomes

$$
\begin{aligned}
\sum_{x, z \in\left(\mathbb{Z} / p^{\ell} \mathbb{Z}\right), k \in \mathbb{Z} / p \mathbb{Z}} e^{2 \pi i \frac{k x+k z}{p}}\left(\frac{x}{p}\right)_{2}\left(\frac{z}{p}\right)_{2} & =p^{2 \ell-2} \sum_{k \in \mathbb{Z} / p \mathbb{Z}} j_{1}(k, p)^{2} \\
& =p^{2 \ell-2}(p-1)\left(\frac{-1}{p}\right)_{2} p \\
& =(p-1) p^{2 \ell-1}\left(\frac{-1}{p}\right)_{2}
\end{aligned}
$$

Corollary 4.16. We have

$$
H_{A_{3}}\left(p^{m}, p^{\ell}, p^{\ell}, p^{m}\right)=p^{3 \ell+3 m-1}(-1)^{m}\left(\frac{-1}{p}\right)_{2}^{m}(p-1)
$$

for $\ell \geq 2$ and $m \in\{0,1\}$.
Proof. Consider the mini comb reparametrization. We can factor out the a_{4} part; summing over a_{4} yields M for this part if $m=0$, and $-M / p$ if $m=1$. Then the rest of the sum, by Proposition 4.15, is $\left(\frac{M}{p^{\ell}}\right)^{3}$ times $(p-1) p^{2 \ell-1}\left(\frac{-1}{p}\right)_{2}^{m}$. We then get

$$
\begin{aligned}
H_{A_{3}}\left(p^{m}, p^{\ell}, p^{\ell}, p^{m}\right) & =\frac{M^{4}}{p^{3 \ell+m}}(-1)^{m}\left(\frac{-1}{p}\right)_{2}^{m}(p-1) p^{2 \ell-1} \frac{p^{4 m+4 \ell}}{M^{4}} \\
& =p^{3 \ell+3 m-1}(-1)^{m}\left(\frac{-1}{p}\right)_{2}^{m}(p-1) .
\end{aligned}
$$

Remark. This calculation demonstrates an error in Proposition 10.3 of BF15] (which uses Lemma 2.4 of the supplementary calculations) which implies that

$$
H_{A_{3}}\left(p^{0}, p^{\ell}, p^{\ell}, p^{0}\right)+H_{A_{3}}\left(p^{1}, p^{\ell-1}, p^{\ell-1}, 1\right)=0
$$

this equality only holds for $p \equiv 1 \bmod 4$. Thus for $p \equiv 3 \bmod 4$, the infinite cases do not actually cancel, likely leading to a Dirichlet series with infinite support in both the A_{3} and A_{5} cases.
4.2.1. Solving the infinite support infinite support. Case 1: Suppose $2 \leq \ell=\ell_{7}=\ell_{4}, 2 \leq$ $\ell^{\prime}=\ell_{2}=\ell_{5}, \ell_{1}=\ell_{6}=m^{\prime} \in\{0,1\}, \ell_{3}=\ell_{8}=m \in\{0,1\}$ with $\ell \geq \ell^{\prime}+m^{\prime}$.

In this case, we can factor the sum using Theorem 4.14! Since $\left(d_{3} d_{4} d_{7} d_{8}\right)^{2}=p^{4 \ell+4 m}$, we get

$$
H_{A_{5}}\left(d_{1}, \ldots, d_{8}\right)=p^{7 \ell+7 m+3 \ell^{\prime}+3 m^{\prime}-2}(p-1)^{2}(-1)^{m+m^{\prime}}\left(\frac{-1}{p}\right)_{2}^{m+m^{\prime}}
$$

Case 1.5: Suppose $2 \leq \ell=\ell_{7}=\ell_{4}, \ell_{3}=\ell_{8}=m \in\{0,1\}$, with $\ell_{1}, \ell_{2}, \ell_{5}, \ell_{6} \leq 1$. Then we can factor out the left box as above to get a factor

$$
p^{7 \ell+7 m-1}(p-1)(-1)^{m}\left(\frac{-1}{p}\right)_{2}^{m}
$$

and our sum reduces to the A_{3} case in $d_{1}, d_{2}, d_{5}, d_{6}$.
Case 2: Suppose $3 \leq \ell=\ell_{2}=\ell_{5}=\ell_{7}+1=\ell_{4}+1$, with $\ell_{3}=\ell_{8}=1$ and $\ell_{1}=\ell_{6}=0$.
We get

$$
\begin{aligned}
H= & \frac{D_{1} \cdots D_{8}}{M^{8}} \sum\left(\frac{p}{p-1}\right)^{C}\left(\frac{a_{7}}{p^{\ell}}\right)_{2}\left(\frac{a_{4}}{p^{\ell-1}}\right)_{2}\left(\frac{a_{5}}{p^{\ell}}\right)_{2}\left(\frac{a_{3}}{p}\right)_{2}\left(\frac{a_{2}}{p^{\ell}}\right)_{2} \\
& e^{2 \pi i\left(\frac{a_{8}}{p}-\frac{a_{4}}{p^{\ell}}+\frac{a_{7}}{p^{\ell-1}}-\frac{a_{3}}{p^{\ell-1}}+\frac{a_{6}}{p}-\frac{a_{2}}{p^{\ell}}+\frac{a_{5}}{\left.p^{\ell}-\frac{a_{1}}{p^{\ell}}+\frac{a_{4}^{-1} a_{7} a_{3}}{p^{\ell-1}}+\frac{a_{3}^{-1} a_{6} a_{2}}{p}+\frac{a_{2}^{-1} a_{a_{0} a_{1}}}{p^{\ell}}\right)} .\right.} .
\end{aligned}
$$

Summing over a_{8} gives $-M / p$. Summing over a_{1} gives 0 unless $a_{2}^{-1} a_{5}-1$ is divisible by p^{ℓ}, in which case it gives M. Then, we can pretend a_{5} is equal to a_{2}, and multiply by M / p^{ℓ} to compensate for the lack of generality in a_{5}. Simplifying gives

$$
\begin{gathered}
H=\frac{-D_{1} \cdots D_{8}}{p^{\ell+1} M^{5}} \sum_{a_{2}, a_{3}, a_{4}, a_{6}, a_{7}}\left(\frac{p}{p-1}\right)^{C}\left(\frac{a_{7}}{p^{\ell}}\right)_{2}\left(\frac{a_{4}}{p^{\ell-1}}\right)_{2}\left(\frac{a_{3}}{p}\right)_{2} \\
e^{2 \pi i\left(-\frac{a_{4}}{p^{\ell-1}}+\frac{a_{7}}{p^{\ell-1}}-\frac{a_{3}}{p^{\ell-1}}+\frac{a_{6}}{p}+\frac{a_{4}^{-1} a_{a_{7} a_{3}}}{p^{\ell-1}}+\frac{a_{3}^{-1} a_{6} a_{2}}{p}\right)} .
\end{gathered}
$$

Note that the a_{2} / p^{ℓ} and a_{5} / p^{ℓ} terms cancel. Summing over a_{2} gives $-M / p$. Then summing over a_{6} gives $-M / p$ again. We get

$$
\begin{gathered}
H=\frac{-D_{1} \cdots D_{8}}{p^{\ell+3} M^{3}} \sum_{a_{3}, a_{4}, a_{7}}\left(\frac{p}{p-1}\right)^{C}\left(\frac{a_{7}}{p^{\ell}}\right)_{2}\left(\frac{a_{4}}{p^{\ell-1}}\right)_{2}\left(\frac{a_{3}}{p}\right)_{2} \\
e^{2 \pi i\left(-\frac{a_{4}}{p^{\ell-1}}+\frac{a_{7}}{p^{\ell-1}}-\frac{a_{3}}{p^{\ell-1}}+\frac{a_{4}^{-1} a_{7} a_{3}}{p^{\ell-1}}\right)} .
\end{gathered}
$$

By Proposition 4.15 , summing over a_{3}, a_{4}, a_{7} gives a number $\left(M / p^{\ell-1}\right)^{3}$ times $(p-1) p^{2 \ell-3}\left(\frac{-1}{p^{\ell}}\right)_{2}$.
Then using $C=1$, we have

$$
H=\frac{-D_{1} \ldots D_{8}(p-1) p^{2 \ell-3}}{p^{4 \ell}}\left(\frac{-1}{p}\right)_{2} \frac{p}{p-1}=\frac{-D_{1} \cdots D_{8}}{p^{2 \ell+2}}\left(\frac{-1}{p}\right)_{2}=-p^{10 \ell-2}\left(\frac{-1}{p}\right)_{2} .
$$

Case 3: Suppose $2 \leq \ell=\ell_{7}=\ell_{4}=\ell_{2}=\ell_{5}$, with $1=\ell_{3}=\ell_{8}=\ell_{1}=\ell_{6}$.

We get

$$
\begin{gathered}
H=\frac{D_{1} \cdots D_{8}}{M^{8}} \sum\left(\frac{p}{p-1}\right)^{C}\left(\frac{a_{7}}{p^{\ell+1}}\right)_{2}\left(\frac{a_{4}}{p^{\ell}}\right)_{2}\left(\frac{a_{3}}{p}\right)_{2}\left(\frac{a_{5}}{p^{\ell+1}}\right)_{2}\left(\frac{a_{2}}{p^{\ell}}\right)_{2}\left(\frac{a_{1}}{p}\right)_{2} \\
e^{2 \pi i\left(\frac{a_{8}}{p}-\frac{a_{4}}{p^{\ell}}+\frac{a_{7}}{p^{\ell}}-\frac{a_{3}}{p^{\ell}}+\frac{a_{6}}{p}-\frac{a_{2}}{p^{\ell}}+\frac{a_{5}}{p^{\ell}}-\frac{a_{1}}{p^{\ell}}+\frac{a_{4}^{-1} a_{7} a_{3}}{p^{\ell}}+\frac{a_{3}^{-1} a_{6} a_{2}}{p}+\frac{a_{2}^{-1} a_{a_{5} a_{1}}}{p^{\ell}}\right)} .
\end{gathered}
$$

Note the presence of the $\frac{a_{3}^{-1} a_{6} a_{2}}{p}$ term linking the two boxes. We proceed in a manner similar to the proof of Proposition 4.15 in the left and right boxes. Summing over a_{8} yields
 to a fixed residue mod p yields 0 unless $a_{2}^{-1} a_{5}-1$ is divisible by $p^{\ell-1}$, so we can set $a_{5}=$ $a_{2}+k_{1} a_{2} p^{\ell-1}$ for $0 \leq k_{1} \leq p-1$, and multiply by a factor (M / p^{ℓ}) to compensate for the loss of generality in a_{5}. Similarly, by looking at the $\frac{a_{4}^{-1} a_{7} a_{3}}{p^{\ell}}$ and $\frac{a_{3}}{p^{\ell}}$ terms, summing over a_{3} tells us that we can set $a_{7}=a_{4}+k_{2} a_{4} p^{\ell-1}$ for $0 \leq k_{2} \leq p-1$, and multiply by a factor M / p^{ℓ}.

Our sum simplifies to

$$
\begin{aligned}
H= & \frac{-D_{1} \cdots D_{8}}{M^{5} p^{2 \ell+1}} \sum_{k_{1}, k_{2}, a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in(\mathbb{Z} / p \mathbb{Z})^{\times}}\left(\frac{p}{p-1}\right)^{C}\left(\frac{a_{4}}{p}\right)_{2}\left(\frac{a_{3}}{p}\right)_{2} \\
& \left(\frac{a_{2}}{p}\right)_{2}\left(\frac{a_{1}}{p}\right)_{2}\left(\frac{M}{p}\right)^{5} e^{2 \pi i\left(\frac{a_{6}}{p}+\frac{k_{2} a_{4}}{p}+\frac{k_{2} a_{3}}{p}+\frac{k_{1} a_{2}}{p}+\frac{k_{1} a_{1}}{p}+\frac{a_{3}^{-1} a_{6} a_{2}}{p}\right)} .
\end{aligned}
$$

Note that the $\left(\frac{M}{p}\right)^{5}$ term comes from the fact that we are now summing $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$ $\bmod p$ rather than $\bmod M$.

Summing over a_{1} gives $j_{1}\left(k_{1}, p\right)=\left(\frac{k_{1}}{p}\right)_{2} j_{1}(1, p)$, and summing over a_{4} gives $j_{1}\left(k_{2}, p\right)=$ $\left(\frac{k_{2}}{p}\right)_{2} j_{1}(1, p)$; note that these are 0 for k_{1} or k_{2} being 0 , so we can assume that they are not divisible by p. The product of these is $\left(\frac{-k_{1} k_{2}}{p}\right)_{2} p$. Then (using $C=0$) our sum becomes

$$
H=\frac{-D_{1} \cdots D_{8}}{p^{2 \ell+5}} \sum_{k_{1}, k_{2}, a_{2}, a_{3}, a_{6} \in(\mathbb{Z} / p \mathbb{Z})^{\times}}\left(\frac{-k_{1} k_{2} a_{3} a_{2}}{p}\right)_{2} e^{2 \pi i\left(\frac{a_{6}}{p}+\frac{k_{2} a_{3}}{p}+\frac{k_{1} a_{2}}{p}+\frac{a_{3}^{-1} a_{6} a_{2}}{p}\right)} .
$$

Summing over a_{6} yields $j_{0}\left(a_{3}^{-1} a_{2}+1, p\right)$, so letting $a_{2}=k_{3} a_{3}$ for $k_{3} \in[1, p-1]$, we get

$$
\begin{aligned}
H & =\frac{-D_{1} \cdots D_{8}}{p^{2 \ell+5}} \sum_{k_{1}, k_{2}, k_{3}, a_{3} \in(\mathbb{Z} / p \mathbb{Z})^{\times}}\left(\frac{-k_{1} k_{2} k_{3}}{p}\right)_{2} e^{2 \pi i\left(\frac{\left(k_{2}+k_{1} k_{3}\right) a_{3}}{p}\right)} j_{0}\left(k_{3}+1, p\right) \\
& =\frac{-D_{1} \cdots D_{8}}{p^{2 \ell+5}} \sum_{k_{3}, a_{3} \in[1, p-1]} j_{1}\left(a_{3}, p\right) j_{1}\left(k_{3} a_{3}, p\right) j_{0}\left(k_{3}+1, p\right)\left(\frac{-k_{3}}{p}\right)_{2} \\
& =\frac{-D_{1} \cdots D_{8}}{p^{2 \ell+5}} \sum_{k_{3}, a_{3} \in[1, p-1]} p j_{0}\left(k_{3}+1, p\right) \\
& =\frac{-D_{1} \cdots D_{8}}{p^{2 \ell+4}}(p-1) \\
& =-p^{10 \ell+8}(p-1)
\end{aligned}
$$

using

$$
\sum_{k_{3} \in[1, p-1]} j_{0}\left(k_{3}+1, p\right)=1
$$

Case 4 Suppose our ℓ_{i} s fall outside of the above cases.
Then for $\left(\ell_{1}, \ldots, \ell_{8}\right)$ to lie in the support of H, we need all $\ell_{i} \leq 1$, except for the case $(0,2,1,1,2,0,1,1)$, and the cases in α.

5. The Complete Dirichlet Series

Recall that the formula for our Whittaker coefficient for the maximal parabolic Eisenstein series, from [BF15, Theorem 4.1] is the following:

$$
\mathcal{W}_{f_{1}, f_{2}, s}(1) \sum_{\substack{d_{j} \in \mathfrak{o}_{S} / \mathcal{O}_{S}^{\times}, d_{j} \neq 0 \\ j=1,2, \ldots, N}} H\left(d_{1}, d_{2}, \ldots, d_{N} ; \mathbf{t}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D}) .
$$

So far our attention has been focused on the function $H\left(d_{1}, d_{2}, \ldots, d_{N} ; \mathbf{t}\right)$. Our goal is to now understand the rest of this Dirichlet series. This will be useful in understanding the connection our series has with that in Chi05.

Our first goal is to compute the matrix \mathfrak{D}. From Proposition 5.9 from [BF15], we have the formula for $\tilde{\mathfrak{D}}$ the product of a section applied to elements of the diagonal subgroup, given by

$$
\begin{equation*}
\tilde{\mathfrak{D}}=\mathbf{s}\left(h_{\gamma_{1}}\left(d_{1}^{-1}\right)\right) \cdots \mathbf{s}\left(h_{\gamma_{N}}\left(d_{N}^{-1}\right)\right), \tag{10}
\end{equation*}
$$

where s: $G \rightarrow \tilde{G}$ is defined by $\mathbf{s}(g)=(g, 1)$,

$$
h_{\beta}(x)=e_{\beta}(x) e_{-\beta}\left(-x^{-1}\right) e_{\beta}(x)\left(e_{\beta}(1) e_{-\beta}(-1) e_{\beta}(1)\right)^{-1}
$$

and $\tilde{\mathfrak{D}}=\left(\mathfrak{D}, \zeta_{\mathfrak{D}}\right)$. Recall also that $N=8$ here.
The multiplication rule in \tilde{G} is given underneath [BF15, Theorem 2.1] as

$$
\left(g_{1}, \zeta_{1}\right)\left(g_{2}, \zeta_{2}\right)=\left(g_{1} g_{2}, \sigma_{v}\left(g_{1}, g_{2}\right) \zeta_{1} \zeta_{2}\right)
$$

Using this multiplication rule, we can transform equation 10 into the equation

$$
\begin{equation*}
\left(\mathfrak{D}, \zeta_{\mathfrak{D}}\right)=\left(h_{\gamma_{1}}\left(d_{1}^{-1}\right) h_{\gamma_{2}}\left(d_{2}^{-1}\right) \cdots h_{\gamma_{N}}\left(d_{N}^{-1}\right), \prod_{i=2}^{N} \sigma_{v}\left(\prod_{j=1}^{i-1} h_{\gamma_{i}}\left(d_{1}^{-1}\right), h_{\gamma_{j}}\left(d_{1}^{-1}\right)\right)\right) . \tag{11}
\end{equation*}
$$

Comparing the first coordinate yields us with the equation

$$
\mathfrak{D}=h_{\gamma_{1}}\left(d_{1}^{-1}\right) \cdots h_{\gamma_{N}}\left(d_{N}^{-1}\right) .
$$

To compute \mathfrak{D}, we will compute $h_{\alpha}(x)$ in general. To do this, recall from subsection 2.4 that if $\beta=e_{i}-e_{j}$ is a root, then $e_{\beta}(x)=I+x E_{i, j}$.

Performing the matrix multiplication, notice that the second matrix is a column operation on the first (adding $-x^{-1}$ times the j th column to the i th), meaning that our resulting matrix is the identity, but the (i, i) th entry is 0 , entry (j, i) is $-x^{-1}$, and entry (i, j) is x. Similarly, the third matrix tells us to add x times the i th column to the j th column, yielding us with a matrix that is the identity, except entry $(i, i),(j, j)$ are zero, entry (j, i) is $-x^{-1}$, and entry (i, j) is x.

Now, notice that the last three matrices are similar, but with $x=1$. We also want the inverse of this matrix; but notice that the resulting matrix is the matrix that swaps columns i and j when acting on the right, and that negates column j. Thus, its inverse negates column i before swapping columns i, j. But our final matrix is thus the diagonal matrix with 1 s along the diagonal, except with an x at (i, i) and x^{-1} at (j, j).

For instance, for $h_{\gamma_{1}}\left(d_{1}^{-1}\right)$, our process yields us with the matrix product

which evaluates to

$$
\left(\begin{array}{cccccc}
d_{1}^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & d_{1}
\end{array}\right) .
$$

Repeating this procedure yields us with

$$
\mathfrak{D}=\left(\begin{array}{cccccc}
\left(d_{1} d_{2} d_{3} d_{4}\right)^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & \left(d_{5} d_{6} d_{7} d_{8}\right)^{-1} & 0 & 0 & 0 & 0 \\
0 & 0 & d_{4} d_{8} & 0 & 0 & 0 \\
0 & 0 & 0 & d_{3} d_{7} & 0 & 0 \\
0 & 0 & 0 & 0 & d_{2} d_{6} & 0 \\
0 & 0 & 0 & 0 & 0 & d_{1} d_{5}
\end{array}\right) .
$$

Now recall that our goal is to find the Dirichlet series. Theorem 4.1 of [BF15] tells us that the Whittaker coefficient of the maximal parabolic Eisenstein series, which is what we are trying to find, is given by

$$
\mathcal{W}_{f_{1}, f_{2}, s}(1) \sum_{\substack{d_{j} \in \mathfrak{o}_{S} / 0_{S}^{\times}, d_{j} \neq 0 \\ j=1, \ldots, N}} H\left(d_{1}, \ldots, d_{N}\right) \delta_{P}^{s+1 / 2}(\mathfrak{D}) \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})
$$

We now evaluate what $\delta_{P}^{s+1 / 2}(\mathfrak{D})$ is here. We first review what the function δ_{P} is. For a block upper-triangular matrix with blocks A, B in our parabolic (which in this case demands $\left.A \in G L_{2}(\mathbb{C}), B \in G L_{4}(\mathbb{C})\right)$, δ_{P} is equal to $|\operatorname{det}(A)|^{2}|\operatorname{det}(B)|^{-1}$. Why is this true? Therefore, $\delta_{P}^{s+1 / 2}(\mathfrak{D})=\left(\left|d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}\right|^{-2}\left|d_{1} d_{5} d_{2} d_{6} d_{3} d_{7} d_{4} d_{8}\right|^{-1}\right)^{s+1 / 2}=\left|d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}\right|^{-3 s-3 / 2}$.

Our Dirichlet series for A_{5}, with our ordering of removal of the roots, is equal to

$$
\mathcal{W}_{f_{1}, f_{2}, s}(1) \sum_{\substack{d_{j} \in \mathfrak{o}_{S} / \mathfrak{o}_{S}^{\times}, d_{j} \neq 0 \\ j=1,2, \ldots, 8}} \frac{H_{\text {removing second root from } A_{5}}\left(d_{1}, d_{2}, \ldots, d_{8} ; t_{1}, \ldots, t_{5}\right)}{\left(d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}\right)^{3 s_{1}+3 / 2}} \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D}) .
$$

Note that the summand depends on the entries of \mathfrak{D}; we hope that the dependence is not too strong, so that we can get some cancellation.

We now compute what $c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})$ is. As defined in Section 4 of [BF15], $c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})$ comes from the computation of removing roots in the other two blocks, meaning that we just need what this coefficient would be in the example of A_{1} and A_{3}.

In particular, we can write

$$
c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})=\mathcal{W}_{f_{3}, f_{4}, s_{2}}(1) \sum_{\substack{d_{j} \in \mathfrak{o}_{S} / \mathfrak{o}_{S}^{\times}, d_{j} \neq 0 \\ j=1, \ldots, N}} H\left(d_{1}, \ldots, d_{N}^{\prime} ; \mathbf{t}^{\prime}\right) \delta_{P}^{s_{2}+1 / 2}\left(\mathfrak{D}^{\prime}\right) \Psi\left(\mathfrak{D}^{\prime}\right) \zeta_{\mathfrak{D}^{\prime}} c_{f_{3}, f_{4}}^{\psi^{\prime}}\left(\mathfrak{D}^{\prime}\right) .
$$

However, in this inductive piece, we are computing the coefficient at a different character. In our case, this corresponds to having a different \mathbf{t}^{\prime} in the exponential sum.

In particular, from Section 4 [BF15], the $c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})$ is equal to the Whittaker function evaluated at the character associated to the one sending u_{M} to $\psi\left(u_{M}^{\left(\mathfrak{D}^{w_{M}}\right)^{-1}}\right)$, where we have the exponent given as conjugation.

But

$$
u_{M}^{\left(\mathfrak{P}^{w_{M}}\right)^{-1}}=\left(\mathfrak{D}^{w_{M}}\right)^{-1} u_{M}\left(\mathfrak{D}^{w_{M}}\right)=w_{M}^{-1} \mathfrak{D}^{-1} w_{M} u_{M} w_{M}^{-1} \mathfrak{D} w_{M} .
$$

In this particular case, we have that u_{M}, the unipotent component of u corresponding to the Levi subgroup $M=G L_{2}(\mathbb{C}) \times G L_{4}(\mathbb{C})$. But

$$
u_{M}=\left(\begin{array}{cccccc}
1 & x_{12} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & x_{34} & x_{35} & x_{36} \\
0 & 0 & 0 & 1 & x_{45} & x_{46} \\
0 & 0 & 0 & 0 & 1 & x_{56} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

In this formula, when w_{M} is written, what is meant is the matrix corresponding to the permutation w_{M}, namely

$$
w_{M}=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

We can use Sage, as well as the value of \mathfrak{D} that we computed above, to yield us with the product

$$
\left(\begin{array}{cccccc}
1 & \frac{d_{5} d_{6} d_{7} d_{8} x_{12}}{d_{1} d_{2} d_{3} d_{4}} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & \frac{d_{2} d_{6} x_{34}}{d_{1} d_{5}} & \frac{d_{3} d_{7} x_{35}}{d_{1} d_{5}} & \frac{d_{4} d_{8} x_{36}}{d_{5} d_{5}} \\
0 & 0 & 0 & 1 & \frac{d_{3} d_{7} x_{45}}{d_{2} d_{6}} & \frac{d_{4} d_{8} x_{46}}{d_{6} d_{6}} \\
0 & 0 & 0 & 0 & 1 & \frac{d_{4} d_{8} x_{66}}{d_{3} d_{7}} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

To find the new \mathbf{t} vector, we look at the off-diagonal elements. The reason is that we care about a parametrization of upper-triangular matrices mod their commutator. Thus, when we evaluate the H coefficient on M, we evaluate with the new vector $\mathbf{t}^{\prime}=\left(\frac{d_{5} d_{6} d_{7} d_{8} t_{1}}{d_{1} d_{2} d_{3} d_{4}}, \frac{d_{2} d_{6} t_{3}}{d_{1} d_{5}}, \frac{d_{3} d_{7} t_{4}}{d_{2} d_{6}}, \frac{d_{4} d_{8} t_{5}}{d_{3} d_{7}}\right)$.

Notice that \mathbf{t}^{\prime} also consists of integers given that \mathbf{t} consists of integers due to the divisibility conditions given Lemma 6.1 in BF15.

Now, at this stage, we compute what the Whittaker function looks like for $A_{1} \times A_{3}$, since we've removed the second simple root from A_{5} already To do this, first recall that from Section 7 of [BF15], which we did in subsection 2.5, we have that the Whittaker coefficient for A_{3} is equal to

$$
\mathcal{W}_{f_{1}, f_{2}, s}(1) \sum_{\substack{d_{j} \in \mathfrak{o}_{S} / \mathfrak{o}_{\begin{subarray}{c}{\star \\
j=1, \ldots, N \\
j=1, \ldots, N} }}}\end{subarray}} H\left(d_{1}, \ldots, d_{4}\right)\left|d_{1} d_{2} d_{3} d_{4}\right|^{-(1+2 s)} \Psi(\mathfrak{D}) \zeta_{\mathfrak{D}} c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D}),
$$

where H is the series given by

$$
\sum_{c_{1}, c_{2}, c_{3}, c_{4}} \prod_{k=1}^{4}\left(\frac{c_{k}}{d_{k}}\right) \psi\left(t_{1}\left(\frac{b_{2} c_{1} d_{4}}{d_{1} d_{3}}+\frac{b_{4} c_{3}}{d_{3}}\right)+t_{2} \frac{c_{4}}{d_{4}}-t_{3}\left(\frac{c_{1} b_{3} d_{4}}{d_{1} d_{2}}+\frac{c_{2} b_{4}}{d_{2}}\right)\right) .
$$

Now, for the combined $M=G L_{2} \times G L_{4}$, our next parabolic comes from removing the fourth root. Notice here that w_{M} can be taken to be $s_{1} s_{3} s_{5}$, and $w^{P}=s_{4} s_{3} s_{5} s_{4}$, yielding us with the ordering of the roots being $\left(\alpha_{3}+\alpha_{4}+\alpha_{5}, \alpha_{4}+\alpha_{5}, \alpha_{3}+\alpha_{4}, \alpha_{4}\right)$, and so we end up with the evaluation of the coefficients as being

$$
c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})=\mathcal{W}_{f_{3}, f_{4}, s}(1) \sum_{\substack{d_{j} \in \mathfrak{o}_{S} / \mathfrak{o}_{\begin{subarray}{c}{x \\
j=d_{j} \neq 0} }}=1, \ldots, N}\end{subarray}} H\left(d_{9}, \ldots, d_{12} ; t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}, t_{4}^{\prime}\right) \delta_{P}^{s+1 / 2}\left(\mathfrak{D}^{\prime}\right) \Psi\left(\mathfrak{D}^{\prime}\right) \zeta_{\mathfrak{D}}^{\prime} c_{f_{3}, f_{4}}^{\psi}\left(\mathfrak{D}^{\prime}\right) .
$$

Notice, however, that the formula for \mathfrak{D} is the same as that in the $G L_{4}$ case, except where the positive roots that we are enumerating over are shifted by 2 . Therefore, we see that $\delta_{P}^{s+1 / 2}\left(\mathfrak{D}^{\prime}\right)=\left|d_{9} d_{10} d_{11} d_{12}\right|^{-(2 s+1)}$. As for H, we see that, similarly, the formulas all depend simply on the enumeration of the positive roots, again with the same shifting of indices. But our formula for H is thus

$$
\begin{aligned}
& H_{\text {removing third root from } A_{1} \times A_{3}}\left(d_{9}, \ldots, d_{12} ; t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}, t_{4}^{\prime}\right)=H_{\text {removing second root from } A_{3}}\left(d_{9}, \ldots, d_{12} ; t_{2}^{\prime}, t_{3}^{\prime}, t_{4}^{\prime}\right) \\
& \quad=\sum_{\substack{c_{9}\left(\bmod d_{9} d_{10} d_{11}\right) \\
c_{10}\left(\bmod d_{10} d_{12}\right)}} \prod_{\substack{ \\
c_{11}\left(\bmod d_{11} d_{12}\right)}}\left(\frac{c_{k}}{c_{k}}\right) \psi\left(t_{2}^{\prime}\left(\frac{b_{10} c_{9} d_{12}}{c_{9} d_{11}}+\frac{b_{12} c_{11}}{d_{11}}\right)+t_{3}^{\prime} \frac{c_{12}}{d_{12}}-t_{4}^{\prime}\left(\frac{c_{9} b_{11}}{d_{9} d_{10}}+\frac{d_{12}}{d_{10} b_{12}}\right)\right)
\end{aligned}
$$

Notice that the coefficient of t_{1}^{\prime} is zero because there are no positive roots in our enumeration whose difference is α_{1}.

Substituting in the value of t_{i}^{\prime} we previously computed yields us with

$$
\begin{gathered}
c_{f_{1}, f_{2}}^{\psi}(\mathfrak{D})=\mathcal{W}_{f_{3}, f_{4}, s}(1) \sum_{\substack{d_{j} \in \mathfrak{o}_{\boldsymbol{S}} / \mathfrak{o}_{\begin{subarray}{c}{\gtrless \\
j=d_{j} \neq 0 \\
j=1, \ldots, N} }}}\end{subarray}} H_{\text {removing second root from } A_{3}}\left(d_{9}, \ldots, d_{12} ; \frac{d_{2} d_{6} t_{3}}{d_{1} d_{5}}, \frac{d_{3} d_{7} t_{4}}{d_{2} d_{6}}, \frac{d_{4} d_{8} t_{5}}{d_{3} d_{7}}\right) \\
\quad \cdot\left|d_{9} d_{10} d_{11} d_{12}\right|^{-\left(2 s_{4}+1\right)} \Psi\left(\mathfrak{D}^{\prime}\right) \zeta_{\mathfrak{D}}^{\prime} c_{f_{3}, f_{4}}^{\psi}\left(\mathfrak{D}^{\prime}\right) .
\end{gathered}
$$

Here, we have that $c_{f_{3}, f_{4}}^{\psi}\left(\mathfrak{D}^{\prime}\right)$ is the coefficient when we treat the subgroup $G L_{2} \times G L_{2} \times G L_{2}$. At this point, however, using a similar logic to the above, removing any of the other three roots yields us with three products of Gauss sums.

Repeating the procedure above, and noting now that the three remaining roots that we have to remove have corresponding reflections that are orthogonal, we see that $c_{f_{3}, f_{4}}^{\psi}(\mathfrak{D})$ is proportional to $\frac{g\left(t_{1}^{\prime \prime}, d_{13}\right) g\left(t_{2}^{\prime \prime}, d_{14}\right) g\left(t_{3}^{\prime \prime}, d_{15}\right)}{d_{13}^{5+1+2} d_{14}^{4+1 / 2} d_{15}^{s 5+1 / 2}}$. To compute what $t_{1}^{\prime \prime}, t_{2}^{\prime \prime}, t_{3}^{\prime \prime}$, we repeat the procedure that we've done above. Notice that \mathfrak{D} with $G L_{4}$ is equal to

$$
\tilde{\mathfrak{D}^{\prime}}=\mathbf{s}\left(h_{\gamma_{1}}\left(d_{9}^{-1}\right)\right) \cdots \mathbf{s}\left(h_{\gamma_{4}}\left(d_{12}^{-1}\right)\right),
$$

which using a similar procedure to the above yields

$$
\mathfrak{D}^{\prime}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & d_{9}^{-1} d_{11}^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & d_{10}^{-1} d_{12}^{-1} & 0 & 0 \\
0 & 0 & 0 & 0 & d_{11} d_{12} & 0 \\
0 & 0 & 0 & 0 & 0 & d_{9} d_{10}
\end{array}\right) .
$$

Now, to find the new character, we again compute

$$
w_{M}^{-1} \mathfrak{D}^{\prime-1} w_{M} u_{M} w_{M}^{-1} \mathfrak{D}^{\prime} w_{M},
$$

this time with

$$
w_{M}=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right), u_{M}=\left(\begin{array}{cccccc}
1 & x_{12} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & x_{34} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & x_{56} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Again, computations with Sage allow us to see that

$$
w_{M}^{-1} \mathfrak{D}^{\prime-1} w_{M} u_{M} w_{M}^{-1} \mathfrak{D}^{\prime} w_{M}=\left(\begin{array}{cccccc}
1 & x_{12} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & \frac{d_{10} d_{12} x_{34}}{d_{9} d_{11}} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \frac{d_{11} d_{12} x_{56}}{d_{9} d_{10}} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Hence, $\left(t_{1}^{\prime \prime}, t_{2}^{\prime \prime}, t_{3}^{\prime \prime}\right)$ corresponds to the off-diagonal entries $(1,2),(3,4)$ and $(5,6)$ in the matrix, since we are removing the root corresponding to t_{3}^{\prime}. In other words, our inputs for the \mathbf{t}-vector are now $\left(\frac{d_{5} d_{6} d_{7} d_{8} t_{1}}{d_{1} d_{2} d_{3} d_{4}}, \frac{d_{2} d_{6} d_{10} d_{12} t_{3}}{d_{1} d_{5} d_{9} d_{11}}, \frac{d_{4} d_{8} d_{11} d_{12} t_{5}}{d_{3} d_{7} d_{9} d_{10}}\right)$, so our final c-value that we need to compute has
$c_{f_{3}, f_{4}}^{\psi}\left(\mathfrak{D}^{\prime}\right)=\frac{g\left(\frac{d_{5} d_{6} d_{7} d_{8} t_{1}}{d_{1} d_{2} d_{3} d_{4}}, d_{13}\right) g\left(\frac{d_{2} d_{6} d_{0} d_{12} t_{3}}{d_{1} d_{5} d_{9} d_{11}}, d_{14}\right) g\left(\frac{d_{4} d_{8} d_{11} d_{12} t_{5}}{d_{3} d_{7} d_{9} d_{10}}, d_{15}\right)}{d_{13}^{s_{1}+1 / 2} d_{14}^{s_{3}+1 / 2} d_{15}^{s_{5}+1 / 2}} \zeta_{d_{13}} \zeta_{d_{14}} \zeta_{d_{15}} \Psi\left(d_{13}\right) \Psi\left(d_{14}\right) \Psi\left(d_{15}\right)$.
Now, we need to compute the value of the ζ that appear in the coefficients. We recall the formula for $\zeta_{\mathfrak{D}}$ that we found way back in equation 11, by comparing the second coordinates
this time. This yields us with the equation

$$
\zeta_{\mathfrak{O}}=\prod_{i=2}^{N} \sigma_{v}\left(\prod_{j=1}^{i-1} h_{\gamma_{i}}\left(d_{1}^{-1}\right), h_{\gamma_{j}}\left(d_{1}^{-1}\right)\right) .
$$

We now evaluate this for each \mathfrak{D} coming out of each root removal step.
Notice that for $\zeta_{d_{13}}, \zeta_{d_{14}}, \zeta_{d_{15}}$ we see that these will all be 1 . To see this, after removing the first two roots we only have the positive roots $\alpha_{1}, \alpha_{3}, \alpha_{5}$; this means that removing each of the last three roots yields that our corresponding \mathfrak{D} is just a matrix of the form $h_{\gamma}\left(d_{i}\right)$; but as $\tilde{\mathfrak{D}}=\left(h_{\gamma}\left(d_{i}\right), 1\right)$, we have $\zeta_{d_{i}}$ is 1 for those three values of i. From BF15], we have that $\zeta_{\mathfrak{D}^{\prime}}$ is equal to $\left(d_{10}, d_{9}\right)_{S}\left(d_{10} d_{12}, d_{11}\right)_{S}$. We just need to compute the first step, when we were removing \mathfrak{D}. To do this, we revisit the multiplication rule from [BF15], Section 1.

In order to compute $\prod_{i=2}^{N} \sigma_{v}\left(\prod_{j=1}^{i-1} h_{\gamma_{i}}\left(d_{1}^{-1}\right), h_{\gamma_{j}}\left(d_{1}^{-1}\right)\right)$, we work one at a time. First, we begin with the matrices that we listed before. We start with $h_{\gamma_{1}}\left(d_{1}^{-1}\right)$ and $h_{\gamma_{1}}\left(d_{2}^{-1}\right)$. Here, we are considering the product of

$$
h_{\gamma_{1}}\left(d_{1}^{-1}\right)=\left(\begin{array}{cccccc}
d_{1}^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & d_{1}
\end{array}\right)
$$

and

$$
h_{\gamma_{2}}\left(d_{2}^{-1}\right)=\left(\begin{array}{cccccc}
d_{2}^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & d_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

per the formula given in [BF15], we get

$$
\zeta_{h_{\gamma_{1}}\left(d_{1}^{-1}\right) h_{\gamma_{2}}\left(d_{2}^{-1}\right)}=\left(d_{1}^{-1}, d_{2}^{-1}\right)_{S}\left(d_{1}^{-1}, 1\right)_{S}^{4}\left(d_{1}^{-1}, d_{2}\right)_{S}(1,1)_{S}^{10}\left(1, d_{2}\right)_{S}^{4}\left(d_{1}, 1\right)_{S},
$$

where the symbol $(a, b)_{S}$ denotes the Hilbert symbol.
From here, we use properties of this Hilbert symbol, such as in [Ser93]. For instance, Proposition 2 from [Ser93], part (i) tells us that anything with a 1 yields us with a 1, as $1^{2}=1$, giving the simplification

$$
\zeta_{h_{\gamma_{1}}\left(d_{1}^{-1}\right) h_{\gamma_{2}}\left(d_{2}^{-1}\right)}=\left(d_{1}^{-1}, d_{2}^{-1}\right)_{S}\left(d_{1}^{-1}, d_{2}\right)_{S} .
$$

Parts (v) and (i) then tell us that $\sigma_{v}\left(h_{\gamma_{1}}\left(d_{1}^{-1}\right), h_{\gamma_{2}}\left(d_{2}^{-1}\right)\right)=1$. We next evaluate the product

$$
\left(h_{\gamma_{1}}\left(d_{1}^{-1}\right) h_{\gamma_{2}}\left(d_{2}^{-1}\right) h_{\gamma_{3}}\left(d_{3}^{-1}\right), \sigma_{v}\left(h_{\gamma_{1}}\left(d_{1}^{-1}\right), h_{\gamma_{2}}\left(d_{2}^{-1}\right)\right) \sigma_{v}\left(h_{\gamma_{1}}\left(d_{1}^{-1}\right) h_{\gamma_{2}}\left(d_{2}^{-1}\right), h_{\gamma_{1}}\left(d_{3}^{-1}\right)\right)\right)
$$

For the other products, we see that continuing our process of multiplication, which picks up these cocycle coefficients σ_{v} between our partial product and the next term, yields us
with

$$
\zeta_{\mathfrak{D}}=\left(d_{4} d_{3} d_{2} d_{1}, d_{5}\right)_{S}\left(d_{4} d_{3} d_{2}, d_{6}\right)_{S}\left(d_{4} d_{3}, d_{7}\right)_{S}\left(d_{4}, d_{8}\right)_{S}
$$

6. Littelman inequalities and the crystal basis

It turns out that yet another way of determining the $H s^{\prime}$ in the Whittaker coefficients as Dirichlet series in several complex variables, is to attach a product of Gauss sums to each vertex in a crystal graph. These Gauss sums depend on some quantities called "string data" as mentioned in Littelmann Lit98].

Given a specific factorization of the long Weyl group element into simple reflections, these data are the lengths of segments in a path from the given vertex to the vertex of lowest weight. In this section, we will borrow Littelmann's formulation of the adapted strings to understand the vertices of the polytope. We suspect that there is a correspondence between the support of the exponential sums in the Whittaker functions and the polytope obtained by the inequalities that define a rational polytope C_{w}^{λ} in Lit98. To this end, we explicitly computed the polytope using the following definition from Littelmann.

Given a dominant weight λ the bounds on the 15 -dimensional rational polytope C_{w}^{λ} is defined by $a_{p} \leq\left\langle\lambda, \alpha_{i_{p}}\right\rangle, a_{p-1} \leq\left\langle\lambda-a_{p} \alpha_{i_{p}}, \alpha_{i_{p-1}}\right\rangle, \ldots, a_{1} \leq\left\langle\lambda-a_{p} \alpha_{i_{p}}-\ldots-a_{2} \alpha_{i_{2}}, \alpha_{i_{1}}\right\rangle$. For $p=15$, the inequalities are inductively computed as follows:

$$
\begin{aligned}
& a_{15} \leq \lambda_{4}-\lambda_{5} \\
& a_{14} \leq \lambda_{3}-\lambda_{4}+a_{15} \\
& a_{13} \leq \lambda_{2}-\lambda_{3}+a_{14} \\
& a_{12} \leq \lambda_{1}-\lambda_{2}+a_{13} \\
& a_{11} \leq \lambda_{5}-\lambda_{6}+a_{15} \\
& a_{10} \leq \lambda_{4}-\lambda_{5}-2 a_{15}+a_{14}+a_{11} \\
& a_{9} \leq \lambda_{3}-\lambda_{4}-2 a_{14}+a_{15}+a_{13}+a_{10} \\
& a_{8} \leq \lambda_{2}-\lambda_{3}-2 a_{13}+a_{14}+a_{12}+a_{9} \\
& a_{7} \leq \lambda_{4}-\lambda_{5}-2 a_{15}-2 a_{10}+a_{14}+a_{11}+a_{9} \\
& a_{6} \leq \lambda_{3}-\lambda_{4}-2 a_{9}-2 a_{14}+a_{15}+a_{13}+a_{10}+a_{8}+a_{7} \\
& a_{5} \leq \lambda_{5}-\lambda_{6}-2 a_{11}+a_{15}+a_{10}+a_{7} \\
& a_{4} \leq \lambda_{4}-\lambda_{5}-2 a_{15}-2 a_{10}-2 a_{7}+a_{14}+a_{11}+a_{9}+a_{6}+a_{5} \\
& a_{3} \leq \lambda_{5}-\lambda_{6}-2 a_{11}-2 a_{5}+a_{15}+a_{10}+a_{7}+a_{4} \\
& a_{2} \leq \lambda_{3}-\lambda_{4}-2 a_{14}-2 a_{9}-2 a_{6}+a_{15}+a_{13}+a_{10}+a_{8}+a_{7}+a_{4} \\
& a_{1} \leq \lambda_{1}-\lambda_{2}-2 a_{12}+a_{13}+a_{8}
\end{aligned}
$$

Using Sage, we computed the polytope to have 12,624 exterior vertices. Connections between the support of the H-functions and the vertices of this polytope still need to be established. We expect that the H-function is supported on a subset of all vertex points (both interior and exterior) of the polytope.

7. Sage Computations

I did some computations for $p=3$.

$\left(\ell_{1}, \ldots, \ell_{8}\right)$	value
$(0,0,0,1,0,0,1,0)$	$2 \cdot 3^{6}$
$(0,1,0,1,1,0,1,0)$	$2^{2} \cdot 3^{8}$
$(0,0,0,1,0,0,1,0)$	$2 \cdot 3^{6}$
$(0,0,0,2,0,0,2,0)$	$2 \cdot 3^{13}$
$(0,0,0,0,0,0,0,1)$	$3^{4} i \sqrt{3}$
$(0,0,0,0,0,0,0,2)$	0
$(0,0,1,1,1,1,0,0)$	0

8. Future Directions

For one future direction, we would like to figure out a method for a change of variables so that we can compare the Whittaker coefficient with the Chinta polynomial. To develop this method, it might help us if we could understand the 15 zeta functions which got pulled out from the Chinta series when the denominator is multiplied by $(1+x)(1+y)(1+z)(1+w)(1+v)$, and how they coincide with the normalizing zeta factor of the Eisenstein series. This is suggested in the paper of Chinta [Chi05].

In addition, there exists another description of the same polynomial through "string data" defined in Littelmann Lit98. However, we have yet to find a connection between the support of the exponential sums and the Littelmann's inequalities. As such, another direction we could take would be to figure out how Littelmann's inequalities relate to our exponential sum H.

Acknowledgements

This project was partially supported by RTG grant NSF/DMS-1148634 and DMS-1949896. It was supervised as part of the University of Minnesota School of Mathematics Summer 2021 REU program. The authors would like to thank Professor Ben Brubaker for introducing the problem and guidance on the project, as well as Emily Tibor, Kayla Wright, and Meagan Kenney for their mentorship, support on the project, and helpful feedback on drafts of this paper.

References

[BB05] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York, 2005.
[BBF11] Ben Brubaker, Daniel Bump, and Solomon Friedberg. Weyl group multiple Dirichlet series, Eisenstein series and crystal bases. Ann. of Math. (2), 173(2):1081-1120, 2011.
[BF15] Benjamin Brubaker and Solomon Friedberg. Whittaker coefficients of metaplectic Eisenstein series. Geom. Funct. Anal., 25(4):1180-1239, 2015.
[Chi05] Gautam Chinta. Mean values of biquadratic zeta functions. Invent. Math., 160(1):145-163, 2005.
[Lit98] P. Littelmann. Cones, crystals, and patterns. Transform. Groups, 3(2):145-179, 1998.
[Ser93] Jean-Pierre Serre. A course in arithmetic. Springer, 1993.
[Ste16] Robert Steinberg. Lectures on Chevalley groups, volume 66 of University Lecture Series. American Mathematical Society, Providence, RI, 2016. Notes prepared by John Faulkner and Robert Wilson,

Revised and corrected edition of the 1968 original [MR0466335], With a foreword by Robert R. Snapp.

