## Immanants and Total Positivity

Frank Lu, *Kevin Ren*, Dawei Shen, Siki Wang UMN REU

Mentored by: Prof. Pavlo Pylyavskyy, Sylvester Zhang

2 August 2021

## Table of Contents

(1) \%-Immanants and TL Immanants
(2) TL as a Sum of \%-Immanants
(3) Total Positivity of \%-Immanants

## Table of Contents

(1) \%-Immanants and TL Immanants

## (3) Total Positivity of $\%$-Immanants

## Immanants

## Definition

For a function $f: S_{n} \rightarrow \mathbb{R}, \operatorname{Imm}_{f}=\sum_{w \in S_{n}} f(w) x_{1, w(1)} x_{2, w(2)} \cdots x_{n, w(n)}$.

## Example

If $f(w)=\operatorname{sgn}(w)$, then $\operatorname{Imm}_{f}$ is just the determinant of the $n \times n$ matrix $\left(x_{i j}\right)$. If $f(w)=1$, then $\mathrm{Imm}_{f}$ is just the permanant.

## Skew Tableaux

## Definition

For two tableaux $\mu \subset \lambda$, the skew tableau $\lambda / \mu$ consists of all boxes in $\lambda$ but not in $\mu$. (Here, we align $\lambda, \mu$ to share the same upper left corner.)

## Example

The skew tableau $(3,2) /(1)$ is


## \%-Immanants

## Definition

For a skew tableau $\lambda / \mu, \operatorname{Imm}_{\lambda / \mu}^{\%}=\sum_{\sigma \in A} \operatorname{sgn}(\sigma) x_{1, \sigma(1)} x_{2, \sigma(2)} \cdots x_{n, \sigma(n)}$, where $\sigma \in A$ iff. $\forall i,(i, \sigma(i)) \in \lambda / \mu$.

## Example

$$
\operatorname{Imm}_{(4,4,3,3) /(2,1,1)}^{\%}=\left|\begin{array}{cccc}
0 & 0 & x_{13} & x_{14} \\
0 & x_{22} & x_{23} & x_{24} \\
0 & x_{32} & x_{33} & 0 \\
x_{41} & x_{42} & x_{43} & 0
\end{array}\right|
$$

## \%-immanant generated by a permutation

Any permutation $w$ generates a \%-immanant, by tracing out the skew tableau marked out by all $(i, w(i))$.

## Example

$\mathrm{Imm}_{2413}^{\%}=\left|\begin{array}{llll}0 & * & * & * \\ 0 & * & * & * \\ * & * & * & 0 \\ * & * & * & 0\end{array}\right|$ is generated by 2413: $\left|\begin{array}{cccc}0 & x & * & * \\ 0 & * & * & x \\ x & * & * & 0 \\ * & * & x & 0\end{array}\right|$

## Complementary Minors

We will define Temperley-Lieb immanants as a basis for $\mathcal{V}$, the vector space spanned by all products of complementary minors.

## Complementary Minors

We will define Temperley-Lieb immanants as a basis for $\mathcal{V}$, the vector space spanned by all products of complementary minors.

## Definition

For an $n \times n$ matrix $\left(x_{i j}\right)$ and subsets $I, J \subset\{1,2, \cdots, n\}$ with $|I|=|J|$, define $\Delta_{I, J}$ as the determinant of the minor with rows indexed by $I$ and columns indexed by $J$.
A product of complementary minors is a product $\Delta_{I, J} \Delta_{\bar{I}, \bar{J}}$ for some $I, J$.

## Example

If $I=\{1\}, J=\{3\}$, then $\Delta_{I, J} \Delta_{\bar{I}, \bar{J}}=x_{13}\left|\begin{array}{ll}x_{21} & x_{22} \\ x_{31} & x_{32}\end{array}\right|=\left|\begin{array}{ccc}0 & 0 & x_{13} \\ x_{21} & x_{22} & 0 \\ x_{31} & x_{32} & 0\end{array}\right|$.

## 321-avoiding permutations and Non-crossing matchings

Our TL immanants will be indexed by 321-avoiding permutations in $S_{n}$.

## Proposition

321-avoiding permutations of $\{1,2, \cdots, n\}$ are in bijection with non-crossing matchings of $2 n$ vertices (and there are $C_{n}$ of them).

## Example

The non-crossing matching corresponding to the 321 -avoiding permutation 2341.


## Compatible Matching

## Definition

A black or white coloring of vertices $1,2, \ldots, n, 1^{\prime}, 2^{\prime}, \ldots, n^{\prime}$ is compatible with a non-crossing matching if every black vertex is matched with a white vertex.


## TL-immanants

## Definition

A black or white coloring of vertices $1,2, \ldots, n, 1^{\prime}, 2^{\prime}, \ldots, n^{\prime}$ is compatible with a non-crossing matching if every black vertex is matched with a white vertex.

We now define a basis for $\mathcal{V}$ called $\mathrm{Imm}_{w}$, where $w$ ranges over non-crossing matchings (equivalently over 321-avoiding permutations).

## Theorem-Definition (Rhoades-Skandera)

Let $I, J \subseteq[n]$. Color I black, $\bar{I}$ white on the left and $J$ white, $\bar{J}$ black on the right, then

$$
\Delta_{I, J} \Delta_{\bar{I}, \bar{J}}=\sum_{w \text { compatible with coloring }} \operatorname{Imm}_{w}
$$

## TL-immanants

## Example

For $I=\{1\}$ and $J=\{1\}$, we have:

$$
\begin{aligned}
x_{11}\left|\begin{array}{ll}
x_{22} & x_{23} \\
x_{32} & x_{33}
\end{array}\right| & =\Delta_{1,1} \Delta_{23,23} \\
1 \bullet & \circ 1^{\prime} \\
2 \circ & \bullet 2 \\
3 \circ & \bullet 3
\end{aligned}
$$

## TL-immanants

## Example

For $I=\{1\}$ and $J=\{1\}$, we have:

$$
\begin{aligned}
& x_{11}\left|\begin{array}{ll}
x_{22} & x_{23} \\
x_{32} & x_{33}
\end{array}\right|=\Delta_{1,1} \Delta_{23,23}=\operatorname{Imm}_{123}+\operatorname{Imm}_{213} \\
& 20-2 \text { ' } \\
& 30-3^{\prime}
\end{aligned}
$$

## A curious observation

## Example

We can compute

$$
\operatorname{Imm}_{123}=\left|\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right|, \quad \quad \operatorname{Imm}_{213}=-\left|\begin{array}{ccc}
0 & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right| .
$$

## A curious observation

## Example

We can compute

$$
\operatorname{Imm}_{123}=\left|\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right|, \quad \quad \operatorname{Imm}_{213}=-\left|\begin{array}{ccc}
0 & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right| .
$$

## Question

- When is a TL-immanant equal to $\pm \%$-immanant?


## A curious observation

## Example

We can compute

$$
\operatorname{Imm}_{123}=\left|\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right|, \quad \quad \operatorname{Imm}_{213}=-\left|\begin{array}{ccc}
0 & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right| .
$$

## Question

- When is a TL-immanant equal to $\pm \%$-immanant?
- When is $\mathrm{Imm}_{w}$ equal to the sum of two $\pm \%$-immanants?


## A curious observation

## Example

We can compute

$$
\operatorname{Imm}_{123}=\left|\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right|, \quad \quad \operatorname{Imm}_{213}=-\left|\begin{array}{ccc}
0 & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right| .
$$

## Question

- When is a TL-immanant equal to $\pm \%$-immanant?
- When is $\mathrm{Imm}_{w}$ equal to the sum of two $\pm \%$-immanants?
- Can we compute $\mathrm{Imm}_{w}$ ?


## Table of Contents

## (1) \%-Immanants and TL Immanants

(2) TL as a Sum of \%-Immanants

## (3) Total Positivity of $\%$-Immanants

## Theorem (Chepuri-Sherman-Bennett $\Leftarrow$, LRSW $\Rightarrow$ )

Let $w$ be a 321-avoiding permutation. Then $\operatorname{Imm}_{w}$ is a \%-immanant up to sign if and only if $w$ avoids both 1324 and 2143. In that case, $\operatorname{Imm}_{w}=\operatorname{sgn}(w) \operatorname{Imm}_{w}^{\%}$.

## Example

$\operatorname{Imm}_{41523}=\left|\begin{array}{ccccc}0 & 0 & 0 & x_{14} & x_{15} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\ x_{41} & x_{42} & x_{43} & 0 & 0 \\ x_{51} & x_{52} & x_{53} & 0 & 0\end{array}\right|$

## Theorem (Chepuri-Sherman-Bennett $\Leftarrow$, LRSW $\Rightarrow$ )

Let $w$ be a 321-avoiding permutation. Then $\mathrm{Imm}_{w}$ is a \%-immanant up to sign if and only if $w$ avoids both 1324 and 2143. In that case, $\operatorname{Imm}_{w}=\operatorname{sgn}(w) \operatorname{Imm}_{w}^{\%}$.

## Example

$\operatorname{Imm}_{41523}=\left|\begin{array}{ccccc}0 & 0 & 0 & x_{14} & x_{15} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\ x_{41} & x_{42} & x_{43} & 0 & 0 \\ x_{51} & x_{52} & x_{53} & 0 & 0\end{array}\right|$

Now what about two \%-immanants?

## Theorem (LRSW)

If a permutation $w$ avoids the patterns $321,1324,24153,31524,231564$, and 312645 , then $w$ can be written as the sum of at most two $\%$ immanants.

## Theorem (LRSW)

If a permutation $w$ avoids the patterns 321, 1324, 24153, 31524, 231564, and 312645 , then $w$ can be written as the sum of at most two $\%$ immanants.

## Proof Sketch.

- Characterize the structure of $w$.


## Theorem (LRSW)

If a permutation $w$ avoids the patterns 321, 1324, 24153, 31524, 231564, and 312645 , then $w$ can be written as the sum of at most two $\%$ immanants.

## Proof Sketch.

- Characterize the structure of $w$.
- Compute the immanant coefficients $f_{w}(u)$, for $u \in S_{n}$.


## Theorem (LRSW)

If a permutation $w$ avoids the patterns 321, 1324, 24153, 31524, 231564, and 312645 , then $w$ can be written as the sum of at most two $\%$ immanants.

## Proof Sketch.

- Characterize the structure of $w$.
- Compute the immanant coefficients $f_{w}(u)$, for $u \in S_{n}$.
- Guess a candidate sum of two \%-immanants, and show it works by comparing $f_{w}(u)$ to the coefficient of $x_{1 u(1)} x_{2 u(2)} \cdots x_{n u(n)}$ in $\%_{1}+\%_{2}$.


## Structure of $w$

## Proposition

Suppose that $w$ is a permutation that avoids 1324 and 321, but not 2143 . Then one of the following holds:

## Structure of $w$

## Proposition

Suppose that $w$ is a permutation that avoids 1324 and 321, but not 2143 . Then one of the following holds:

- $w$ 's one line notation has at most five ascending strings of consecutive integers in $[2][1][3][5][4]$ block form, e.g. [345][12][67][9][8]


## Structure of $w$

## Proposition

Suppose that $w$ is a permutation that avoids 1324 and 321, but not 2143 . Then one of the following holds:

- $w$ 's one line notation has at most five ascending strings of consecutive integers in $[2][1][3][5][4]$ block form, e.g. [345][12][67][9][8]
- $w$ consists of at most six ascending strings of consecutive integers in $[3][5][1][6][2][4]$ block form, e.g. [34][78][1][9][2][56].


## Structure of $w$

## Proposition

Suppose that $w$ is a permutation that avoids 1324 and 321, but not 2143 . Then one of the following holds:

- $w$ 's one line notation has at most five ascending strings of consecutive integers in $[2][1][3][5][4]$ block form, e.g. [345][12][67][9][8]
- $w$ consists of at most six ascending strings of consecutive integers in $[3][5][1][6][2][4]$ block form, e.g. $[34][78][1][9][2][56]$.
Furthermore, if $w$ avoids 24153 and 31524 , then the second case can't hold, and we must be in the first case.


## Computing the Immanant Coefficients

For a given $w$, we explicitly construct a set $A$ of pairs $I, J \subset\{1,2, \cdots, n\}$ such that for some function $f$,

$$
\operatorname{Imm}_{w}=\sum_{(I, J) \in A} \Delta_{I, J} \Delta_{\bar{I}, \bar{J}}(-1)^{f(I, J)}
$$

Extracting the coefficient of $x_{1 u(1)} x_{2 u(2)} \cdots x_{n u(n)}$ from both sides, we get:

## Theorem (LRSW)

Define the intervals $I_{1}=\left[1, w^{-1}(1)-1\right], I_{2}=\left[w^{-1}(n)+1, n\right], J_{1}=$ $[1, w(1)-1], J_{2}=[w(n)+1, n]$.
Let
$\left.\left.A=\left|u\left(I_{1}\right) \cap J_{2}\right|, B=\left|u\left(I_{2}\right) \cap J_{1}\right|, C=\mid u\left(I_{1}\right) \cap J_{1}\right)|, D=| u\left(I_{2}\right) \cap J_{2}\right) \mid$.
Then

$$
f_{w}(u)= \begin{cases}\operatorname{sgn}(w) \operatorname{sgn}(u)\binom{A+B}{A}, & C=D=0 \\ 0, & \text { otherwise }\end{cases}
$$

## Example

$w=2136745$. Suppose we want to find $f_{w}(u)$. First, create the $\%$-immanant cut out by $w$. Then, label the upper-right corner $a$ 's and the lower-left corner $b$ 's.

$$
\left|\begin{array}{lllllll}
0 & * & * & * & * & a & a \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
b & * & * & * & * & 0 & 0 \\
b & * & * & * & * & 0 & 0
\end{array}\right|
$$

## Example

$w=2136745$. Suppose we want to find $f_{w}(u)$. First, create the $\%$-immanant cut out by $w$. Then, label the upper-right corner $a$ 's and the lower-left corner $b$ 's.

$$
\left|\begin{array}{lllllll}
0 & * & * & * & * & a & a \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
b & * & * & * & * & 0 & 0 \\
b & * & * & * & * & 0 & 0
\end{array}\right|
$$

Rule: mark all $(i, u(i))$ red. If a zero is red, then $f_{w}(u)=0$. Otherwise, let $A$ be the number of $a$ 's marked, and $B$ be the number of $b$ 's marked. Then $\left|f_{w}(u)\right|=\binom{A+B}{A}$.

## Example

$$
w=2136745, u=3524716
$$

$$
\left|\begin{array}{lllllll}
0 & * & * & * & * & a & a \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
b & * & * & * & * & 0 & 0 \\
b & * & * & * & * & 0 & 0
\end{array}\right|
$$

$f_{w}(u)=0$

## Example

$w=2136745, u=6243751$

$$
\left|\begin{array}{lllllll}
0 & * & * & * & * & a & a \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
b & * & * & * & * & 0 & 0 \\
b & * & * & * & * & 0 & 0
\end{array}\right|
$$

$A=1, B=1, f_{w}(u)=\binom{2}{1}=2$

## Sum of two \%-immanants

We can now show for $w=2136745$,

$$
-\operatorname{Imm}_{w}=\left|\begin{array}{lllllll}
0 & * & * & * & * & a & a \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
b & * & * & * & * & 0 & 0 \\
b & * & * & * & * & 0 & 0
\end{array}\right|+\left|\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & a & a \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
b & * & * & * & * & 0 & 0 \\
b & * & * & * & * & 0 & 0
\end{array}\right|
$$

## Sum of two \%-immanants

We can now show for $w=2136745$,

$$
-\operatorname{Imm}_{w}=\left|\begin{array}{lllllll}
0 & * & * & * & * & a & a \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
b & * & * & * & * & 0 & 0 \\
b & * & * & * & * & 0 & 0
\end{array}\right|+\left|\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & a & a \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
b & * & * & * & * & 0 & 0 \\
b & * & * & * & * & 0 & 0
\end{array}\right|
$$

## Example

$u=6243751$
LHS: $\binom{2}{1}=2$ using the rule
RHS: $u$ fits in both \%-immanants, so $1+1=2$

## The converse

## Theorem (LRSW)

Given a 321-avoiding permutation $w, \operatorname{Imm}_{w}$ is a linear combination of $\%$-immanants if and only if $w$ avoids the patterns $1324,24153,31524,231564,312645$.

## Proof Sketch for $w=51324$.

Let $w=51324$ and $w^{\prime}=51234$. Then $f_{w}\left(w^{\prime}\right)=0$ and $f_{w}(w)=1$. However, the coefficient of $w$ and $w^{\prime}$ in any \%-immanant must be negatives of each other. This must also be true in any linear combination of $\%$-immanants, contradiction.

$$
\left|\begin{array}{lllll}
0 & 0 & * & * & x \\
x & * & * & * & * \\
* & * & x & * & * \\
* & x & * & * & * \\
* & * & * & x & *
\end{array}\right|
$$

## Table of Contents

## (1) \%-Immanants and TL Immanants

(2) TL as a Sum of $\%$-Immanants
(3) Total Positivity of \%-Immanants

## Totally non-negative

## Definition

A matrix is totally non-negative if all of its minors are non-negative.

## Totally non-negative

## Definition

A matrix is totally non-negative if all of its minors are non-negative.

## Example

$A=\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right)$ are not TNN, but $C=\left(\begin{array}{ccc}1 & 2 & 4 \\ 1 & 4 & 16 \\ 1 & 8 & 64\end{array}\right)$ is
TNN.

## Totally non-negative

## Definition

A matrix is totally non-negative if all of its minors are non-negative.

$$
\begin{aligned}
& \text { Example } \\
& A=\left(\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
1 & -2 \\
3 & 4
\end{array}\right) \text { are not TNN, but } C=\left(\begin{array}{ccc}
1 & 2 & 4 \\
1 & 4 & 16 \\
1 & 8 & 64
\end{array}\right) \text { is }
\end{aligned}
$$

TNN.

## Definition

An immanant is TNN if it is always non-negative when evaluated on TNN matrices.

## Totally non-negative

## Definition

A matrix is totally non-negative if all of its minors are non-negative.

## Example

$A=\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right)$ are not TNN, but $C=\left(\begin{array}{ccc}1 & 2 & 4 \\ 1 & 4 & 16 \\ 1 & 8 & 64\end{array}\right)$ is
TNN.

## Definition

An immanant is TNN if it is always non-negative when evaluated on TNN matrices.

## Question

For a permutation $w$, when will one of $\operatorname{Imm}_{w}^{\%}$ or $-\operatorname{Imm}_{w}^{\%}$ be TNN?

## Our conjecture

## Proposition

If $w$ contains one of $1324,24153,31524,426153$, there exist TNN matrices $A, B$ such that $\operatorname{Imm}_{w}^{\%}(A)>0$ and $\operatorname{Imm}_{w}^{\%}(B)<0$.

## Our conjecture

## Proposition

If $w$ contains one of $1324,24153,31524,426153$, there exist TNN matrices $A, B$ such that $\operatorname{Imm}_{w}^{\%}(A)>0$ and $\operatorname{Imm}_{w}^{\%}(B)<0$.

## Conjecture

If $w$ avoids $1324,24153,31524,426153$, then either $\operatorname{Imm}_{w}^{\%}$ or $-\operatorname{Imm}_{w}^{\%}$ is TNN.

## Our conjecture

## Proposition

If $w$ contains one of $1324,24153,31524,426153$, there exist TNN matrices $A, B$ such that $\operatorname{Imm}_{w}^{\%}(A)>0$ and $\operatorname{Imm}_{w}^{\%}(B)<0$.

## Conjecture

If $w$ avoids $1324,24153,31524,426153$, then either $\operatorname{Imm}_{w}^{\%}$ or $-\mathrm{Imm}_{w}^{\%}$ is TNN.

Verified for $n \leq 7$ using computer.

## A partial result

## Proposition

If $w$ avoids 321, 1324, 24153, 31524, 34127856, then either $\operatorname{Imm}_{w}^{\%}$ or $-\mathrm{Imm}_{w}^{\%}$ is TNN.

## A partial result

## Proposition

If $w$ avoids 321, 1324, 24153, 31524, 34127856, then either $\operatorname{Imm}_{w}^{\%}$ or $-\mathrm{Imm}_{w}^{\%}$ is TNN.

## Proof Sketch.

We can express $\mathrm{Imm}_{w}^{\%}$ as the sum of the TL immanant $\mathrm{Imm}_{w}$ and another Kazhdan-Lusztig immanant $K L_{u}$ for some $u$, and it's known that KL immanants and TL immanants are TNN.

## A partial result

## Proposition

If $w$ avoids $321,1324,24153,31524,34127856$, then either $\operatorname{Imm}_{w}^{\%}$ or $-\mathrm{Imm}_{w}^{\%}$ is TNN.

## Proof Sketch.

We can express $\mathrm{Imm}_{w}^{\%}$ as the sum of the TL immanant $\mathrm{Imm}_{w}$ and another Kazhdan-Lusztig immanant $K L_{u}$ for some $u$, and it's known that KL immanants and TL immanants are TNN.

## Remark

$\operatorname{Imm}_{34127856}^{\%}$ is actually a sum of a TL immanant and two KL immanants.

## Summary

- We found necessary and sufficient conditions for a TL-immanant to be a sum of one or two \%-immanants.
- We found an explicit combinatorial formula for the coefficients $f_{w}(u)$ of a TL-immanant if $w$ avoids 321 and 1324 .
- We showed that if $w$ avoids a certain family of patterns, then $\operatorname{Imm}_{w}^{\%}$ is TNN.


## Acknowledgments

We would like to thank:

## Acknowledgments

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;


## Acknowledgments

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;
- Vic Reiner and staff, for organizing the UMN REU;


## Acknowledgments

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;
- Vic Reiner and staff, for organizing the UMN REU;
- UMN, for giving us food, lodging, music, and wild turkeys during our stay;


## Acknowledgments

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;
- Vic Reiner and staff, for organizing the UMN REU;
- UMN, for giving us food, lodging, music, and wild turkeys during our stay;
- Swapnil Garg and Brian Sun, for algorithms/coding assistance during this project;


## Acknowledgments

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;
- Vic Reiner and staff, for organizing the UMN REU;
- UMN, for giving us food, lodging, music, and wild turkeys during our stay;
- Swapnil Garg and Brian Sun, for algorithms/coding assistance during this project;
- The superior computer language Sage, for computing a gazillion different things for us.


## Acknowledgments

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;
- Vic Reiner and staff, for organizing the UMN REU;
- UMN, for giving us food, lodging, music, and wild turkeys during our stay;
- Swapnil Garg and Brian Sun, for algorithms/coding assistance during this project;
- The superior computer language Sage, for computing a gazillion different things for us.
For those patiently waiting: The end of this presentation is immanant!

