Immanants and Total Positivity

Frank Lu, *Kevin Ren*, Dawei Shen, Siki Wang UMN REU Mentored by: Prof. Pavlo Pylyavskyy, Sylvester Zhang

2 August 2021

Maintain Content in the second sec

3 Total Positivity of %-Immanants

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

Maintain Content in the second sec

Total Positivity of %-Immanants

< □ > < 同 > < 回 > < 回 >

Immanants

Definition

For a function $f: S_n \to \mathbb{R}$, $\operatorname{Imm}_f = \sum_{w \in S_n} f(w) x_{1,w(1)} x_{2,w(2)} \cdots x_{n,w(n)}$.

Example

If $f(w) = \operatorname{sgn}(w)$, then Imm_f is just the determinant of the $n \times n$ matrix (x_{ij}) . If f(w) = 1, then Imm_f is just the permanant.

イロト 不得 トイラト イラト 一日

Skew Tableaux

Definition

For two tableaux $\mu \subset \lambda$, the skew tableau λ/μ consists of all boxes in λ but not in μ . (Here, we align λ, μ to share the same upper left corner.)

Example

The skew tableau (3,2)/(1) is

(日) (四) (日) (日) (日)

%-Immanants

Definition

For a skew tableau
$$\lambda/\mu$$
, $\operatorname{Imm}_{\lambda/\mu}^{\%} = \sum_{\sigma \in A} \operatorname{sgn}(\sigma) x_{1,\sigma(1)} x_{2,\sigma(2)} \cdots x_{n,\sigma(n)}$, where $\sigma \in A$ iff. $\forall i, (i, \sigma(i)) \in \lambda/\mu$.

Example

$$\operatorname{Imm}_{(4,4,3,3)/(2,1,1)}^{\%} = \begin{vmatrix} 0 & 0 & x_{13} & x_{14} \\ 0 & x_{22} & x_{23} & x_{24} \\ 0 & x_{32} & x_{33} & 0 \\ x_{41} & x_{42} & x_{43} & 0 \end{vmatrix}$$

< □ > < □ > < □ > < □ > < □ >

%-immanant generated by a permutation

Any permutation w generates a %-immanant, by tracing out the skew tableau marked out by all (i,w(i)).

Example										
$\mathrm{Imm}_{2413}^\% =$	0	*	*	*		0	x	*	*	
	0	*	*	*	is generated by 2112.	0	*	*	x	
	*	*	*	0	is generated by 2415:	x	*	*	0	
	*	*	*	0		*	*	x	0	

Complementary Minors

We will define Temperley-Lieb immanants as a basis for \mathcal{V} , the vector space spanned by all products of complementary minors.

(日) (四) (日) (日) (日)

Complementary Minors

We will define Temperley-Lieb immanants as a basis for \mathcal{V} , the vector space spanned by all products of complementary minors.

Definition

For an $n \times n$ matrix (x_{ij}) and subsets $I, J \subset \{1, 2, \dots, n\}$ with |I| = |J|, define $\Delta_{I,J}$ as the determinant of the minor with rows indexed by I and columns indexed by J.

A product of complementary minors is a product $\Delta_{I,J}\Delta_{\overline{I},\overline{J}}$ for some I, J.

Example

If
$$I = \{1\}, J = \{3\}$$
, then $\Delta_{I,J} \Delta_{\overline{I},\overline{J}} = x_{13} \begin{vmatrix} x_{21} & x_{22} \\ x_{31} & x_{32} \end{vmatrix} = \begin{vmatrix} 0 & 0 & x_{13} \\ x_{21} & x_{22} & 0 \\ x_{31} & x_{32} & 0 \end{vmatrix}$.

(日) (四) (日) (日) (日)

321-avoiding permutations and Non-crossing matchings

Our TL immanants will be indexed by 321-avoiding permutations in S_n .

Proposition

321-avoiding permutations of $\{1, 2, \dots, n\}$ are in bijection with non-crossing matchings of 2n vertices (and there are C_n of them).

Example

The non-crossing matching corresponding to the 321-avoiding permutation 2341.

Compatible Matching

Definition

A black or white coloring of vertices 1, 2, ..., n, 1', 2', ..., n' is *compatible* with a non-crossing matching if every black vertex is matched with a white vertex.

イロト イポト イヨト イヨト 二日

TL-immanants

Definition

A black or white coloring of vertices 1, 2, ..., n, 1', 2', ..., n' is *compatible* with a non-crossing matching if every black vertex is matched with a white vertex.

We now define a basis for \mathcal{V} called Imm_w , where w ranges over non-crossing matchings (equivalently over 321-avoiding permutations).

Theorem-Definition (Rhoades-Skandera)

Let $I, J \subseteq [n]$. Color I black, \overline{I} white on the left and J white, \overline{J} black on the right, then

$$\Delta_{I,J}\Delta_{\bar{I},\bar{J}} = \sum \qquad \text{Imm}_u$$

w compatible with coloring

イロト イボト イヨト イヨト

TL-immanants

Example

For $I = \{1\}$ and $J = \{1\}$, we have:

$$\begin{aligned} x_{11} \begin{vmatrix} x_{22} & x_{23} \\ x_{32} & x_{33} \end{vmatrix} &= \Delta_{1,1} \Delta_{23,23} \\ 1 \bullet & \circ 1' \\ 2 \circ & \bullet 2' \\ 3 \circ & \bullet 3' \end{aligned}$$

1	RS	V	V

- 2

<ロト < 四ト < 三ト < 三ト

TL-immanants

Example

For $I = \{1\}$ and $J = \{1\}$, we have:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Example

We can compute

	x_{11}	x_{12}	x_{13}			0	x_{12}	x_{13}	
$Imm_{123} =$	x_{21}	x_{22}	x_{23}	,	$\mathrm{Imm}_{213} = -$	x_{21}	x_{22}	x_{23}	•
	x_{31}	x_{32}	x_{33}			x_{31}	x_{32}	x_{33}	

э

< □ > < □ > < □ > < □ > < □ >

Example

We can compute

	x_{11}	x_{12}	x_{13}			0	x_{12}	x_{13}	
$Imm_{123} =$	x_{21}	x_{22}	x_{23}	,	$\mathrm{Imm}_{213} = -$	x_{21}	x_{22}	x_{23}	•
	x_{31}	x_{32}	x_{33}			x_{31}	x_{32}	x_{33}	

Question

• When is a TL-immanant equal to \pm %-immanant?

(日) (四) (日) (日) (日)

Example

We can compute

	x_{11}	x_{12}	x_{13}			0	x_{12}	x_{13}	
$Imm_{123} =$	x_{21}	x_{22}	x_{23}	,	$\mathrm{Imm}_{213} = -$	x_{21}	x_{22}	x_{23}	•
	x_{31}	x_{32}	x_{33}			x_{31}	x_{32}	x_{33}	

Question

- When is a TL-immanant equal to \pm %-immanant?
- When is Imm_w equal to the sum of two \pm %-immanants?

(日) (四) (日) (日) (日)

Example

We can compute

	x_{11}	x_{12}	x_{13}			0	x_{12}	x_{13}	
$Imm_{123} =$	x_{21}	x_{22}	x_{23}	,	$\mathrm{Imm}_{213} = -$	x_{21}	x_{22}	x_{23}	•
	x_{31}	x_{32}	x_{33}			x_{31}	x_{32}	x_{33}	

Question

- When is a TL-immanant equal to \pm %-immanant?
- When is Imm_w equal to the sum of two \pm %-immanants?
- Can we compute Imm_w ?

< □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

(日) (四) (日) (日) (日)

Theorem (Chepuri-Sherman-Bennett \leftarrow , LRSW \Rightarrow)

Let w be a 321-avoiding permutation. Then Imm_w is a %-immanant up to sign if and only if w avoids both 1324 and 2143. In that case, $\text{Imm}_w = \text{sgn}(w) \text{Imm}_w^{\%}$.

Example					
	0	0	0	x_{14}	x_{15}
Ŧ	x_{21}	x_{22}	x_{23}	x_{24}	x_{25}
$Imm_{41523} =$	x_{31}	x_{32}	x_{33}	x_{34}	x_{35}
	x_{41}	x_{42}	x_{43}	0	0
	$ x_{51} $	x_{52}	x_{53}	0	0

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Chepuri-Sherman-Bennett \leftarrow , LRSW \Rightarrow)

Let w be a 321-avoiding permutation. Then Imm_w is a %-immanant up to sign if and only if w avoids both 1324 and 2143. In that case, $\text{Imm}_w = \text{sgn}(w) \text{Imm}_w^{\%}$.

Example					
	0	0	0	x_{14}	x_{15}
.	x_{21}	x_{22}	x_{23}	x_{24}	x_{25}
$\mathrm{Imm}_{41523} =$	x_{31}	x_{32}	x_{33}	x_{34}	x_{35}
	x_{41}	x_{42}	x_{43}	0	0
	$ x_{51} $	x_{52}	x_{53}	0	0

Now what about two %-immanants?

通 ト イ ヨ ト イ ヨ ト

If a permutation w avoids the patterns 321, 1324, 24153, 31524, 231564, and 312645, then w can be written as the sum of at most two % immanants.

・ 何 ト ・ ヨ ト ・ ヨ ト

If a permutation w avoids the patterns 321, 1324, 24153, 31524, 231564, and 312645, then w can be written as the sum of at most two % immanants.

Proof Sketch.

• Characterize the structure of w.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

If a permutation w avoids the patterns 321, 1324, 24153, 31524, 231564, and 312645, then w can be written as the sum of at most two % immanants.

Proof Sketch.

- Characterize the structure of w.
- Compute the immanant coefficients $f_w(u)$, for $u \in S_n$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

If a permutation w avoids the patterns 321, 1324, 24153, 31524, 231564, and 312645, then w can be written as the sum of at most two % immanants.

Proof Sketch.

- Characterize the structure of w.
- Compute the immanant coefficients $f_w(u)$, for $u \in S_n$.
- Guess a candidate sum of two %-immanants, and show it works by comparing $f_w(u)$ to the coefficient of $x_{1u(1)}x_{2u(2)}\cdots x_{nu(n)}$ in $\%_1 + \%_2$.

< □ > < 同 > < 回 > < 回 > < 回 >

${\rm Structure} \,\, {\rm of} \,\, w$

Proposition

Suppose that w is a permutation that avoids 1324 and 321, but not 2143. Then one of the following holds:

э

(日) (四) (日) (日) (日)

${\rm Structure} \,\, {\rm of} \,\, w$

Proposition

Suppose that w is a permutation that avoids 1324 and 321, but not 2143. Then one of the following holds:

• w's one line notation has at most five ascending strings of consecutive integers in [2][1][3][5][4] block form, e.g. [345][12][67][9][8]

(日) (四) (日) (日) (日)

Structure of w

Proposition

Suppose that w is a permutation that avoids 1324 and 321, but not 2143. Then one of the following holds:

- w's one line notation has at most five ascending strings of consecutive integers in [2][1][3][5][4] block form, e.g. [345][12][67][9][8]
- w consists of at most six ascending strings of consecutive integers in [3][5][1][6][2][4] block form, e.g. [34][78][1][9][2][56].

イロト 不得下 イヨト イヨト

Structure of w

Proposition

Suppose that w is a permutation that avoids 1324 and 321, but not 2143. Then one of the following holds:

- w's one line notation has at most five ascending strings of consecutive integers in [2][1][3][5][4] block form, e.g. [345][12][67][9][8]
- w consists of at most six ascending strings of consecutive integers in [3][5][1][6][2][4] block form, e.g. [34][78][1][9][2][56].

Furthermore, if w avoids 24153 and 31524, then the second case can't hold, and we must be in the first case.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Computing the Immanant Coefficients

For a given w, we explicitly construct a set A of pairs $I, J \subset \{1, 2, \cdots, n\}$ such that for some function f,

$$\operatorname{Imm}_{w} = \sum_{(I,J)\in A} \Delta_{I,J} \Delta_{\overline{I},\overline{J}} (-1)^{f(I,J)}.$$

Extracting the coefficient of $x_{1u(1)}x_{2u(2)}\cdots x_{nu(n)}$ from both sides, we get:

Theorem (LRSW)

Define the intervals
$$I_1 = [1, w^{-1}(1) - 1], I_2 = [w^{-1}(n) + 1, n], J_1 = [1, w(1) - 1], J_2 = [w(n) + 1, n].$$

Let
 $A = |u(I_1) \cap J_2|, B = |u(I_2) \cap J_1|, C = |u(I_1) \cap J_1|, D = |u(I_2) \cap J_2|.$
Then
$$\int_{A} (u(I_1) \cap J_2|, B = |u(I_2) \cap J_1|, C = |u(I_1) \cap J_1|, D = |u(I_2) \cap J_2|.$$

$$f_w(u) = \begin{cases} \operatorname{sgn}(w) \operatorname{sgn}(u) \binom{A+B}{A}, & C = D = 0; \\ 0, & \text{otherwise.} \end{cases}$$

w = 2136745. Suppose we want to find $f_w(u)$. First, create the %-immanant cut out by w. Then, label the upper-right corner a's and the lower-left corner b's.

0	*	*	*	*	a	a
*	*	*	*	*	*	*
*	*	*	*	*	*	*
*	*	*	*	*	*	*
*	*	*	*	*	*	*
b	*	*	*	*	0	0
b	*	*	*	*	0	0

3

(日)

w = 2136745. Suppose we want to find $f_w(u)$. First, create the %-immanant cut out by w. Then, label the upper-right corner a's and the lower-left corner b's.

0	*	*	*	*	a	a
*	*	*	*	*	*	*
*	*	*	*	*	*	*
*	*	*	*	*	*	*
*	*	*	*	*	*	*
b	*	*	*	*	0	0
b	*	*	*	*	0	0

Rule: mark all (i, u(i)) red. If a zero is red, then $f_w(u) = 0$. Otherwise, let A be the number of a's marked, and B be the number of b's marked. Then $|f_w(u)| = \binom{A+B}{A}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

w = 2136745, u = 3524716

0	*	*	*	*	a	a
*	*	*	*	*	*	*
*	*	*	*	*	*	*
*	*	*	*	*	*	*
*	*	*	*	*	*	*
b	*	*	*	*	0	0
b	*	*	*	*	0	0

 $f_w(u) = 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

w = 2136745, u = 6243751

$$A = 1, B = 1, f_w(u) = {\binom{2}{1}} = 2$$

イロト イヨト イヨト イヨト

Sum of two %-immanants

We can now show for w = 2136745,

	0	*	*	*	*	a	a		0	0	0	0	0	a	a
	*	*	*	*	*	*	*		0	*	*	*	*	*	*
	*	*	*	*	*	*	*		0	*	*	*	*	*	*
$-\operatorname{Imm}_w =$	*	*	*	*	*	*	*	+	0	*	*	*	*	*	*
	*	*	*	*	*	*	*		0	*	*	*	*	*	*
	b	*	*	*	*	0	0		b	*	*	*	*	0	0
	b	*	*	*	*	0	0		b	*	*	*	*	0	0

3

A D N A B N A B N A B N

Sum of two %-immanants

We can now show for w = 2136745,

Example

u = 6243751LHS: $\binom{2}{1} = 2$ using the rule RHS: u fits in both %-immanants, so 1 + 1 = 2

Immanants and Total Positivity

2 August 2021 24 / 31

э

イロト イポト イヨト イヨト

The converse

Theorem (LRSW)

Given a 321-avoiding permutation w, Imm_w is a linear combination of %-immanants if and only if w avoids the patterns 1324, 24153, 31524, 231564, 312645.

Proof Sketch for w = 51324.

Let w = 51324 and w' = 51234. Then $f_w(w') = 0$ and $f_w(w) = 1$. However, the coefficient of w and w' in any %-immanant must be negatives of each other. This must also be true in any linear combination of %-immanants, contradiction.

Table of Contents

3 Total Positivity of %-Immanants

э

(日) (四) (日) (日) (日)

Definition

A matrix is totally non-negative if all of its minors are non-negative.

(日) (四) (日) (日) (日)

Definition

A matrix is totally non-negative if all of its minors are non-negative.

Example

$$A = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \text{ are not TNN, but } C = \begin{pmatrix} 1 & 2 & 4 \\ 1 & 4 & 16 \\ 1 & 8 & 64 \end{pmatrix} \text{ is TNN.}$$

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

A matrix is totally non-negative if all of its minors are non-negative.

Example

$$A = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \text{ are not TNN, but } C = \begin{pmatrix} 1 & 2 & 4 \\ 1 & 4 & 16 \\ 1 & 8 & 64 \end{pmatrix} \text{ is }$$

TNN.

Definition

An immanant is TNN if it is always non-negative when evaluated on TNN matrices.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition

A matrix is totally non-negative if all of its minors are non-negative.

Example

$$A = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \text{ are not TNN, but } C = \begin{pmatrix} 1 & 2 & 4 \\ 1 & 4 & 16 \\ 1 & 8 & 64 \end{pmatrix} \text{ is }$$

TNN.

Definition

An immanant is TNN if it is always non-negative when evaluated on TNN matrices.

Question

For a permutation w, when will one of $\operatorname{Imm}_w^{\%}$ or $-\operatorname{Imm}_w^{\%}$ be TNN?

LRSW

Our conjecture

Proposition

If w contains one of 1324, 24153, 31524, 426153, there exist TNN matrices A, B such that $\text{Imm}_w^{\%}(A) > 0$ and $\text{Imm}_w^{\%}(B) < 0$.

- A IB (A IB)

Our conjecture

Proposition

If w contains one of 1324, 24153, 31524, 426153, there exist TNN matrices A, B such that $\text{Imm}_w^{\%}(A) > 0$ and $\text{Imm}_w^{\%}(B) < 0$.

Conjecture

If w avoids 1324, 24153, 31524, 426153, then either $\text{Imm}_w^{\%}$ or $-\text{Imm}_w^{\%}$ is TNN.

通 ト イ ヨ ト イ ヨ ト

Our conjecture

Proposition

If w contains one of 1324, 24153, 31524, 426153, there exist TNN matrices A, B such that $\text{Imm}_w^{\%}(A) > 0$ and $\text{Imm}_w^{\%}(B) < 0$.

Conjecture

If w avoids 1324, 24153, 31524, 426153, then either $\text{Imm}_w^{\%}$ or $-\text{Imm}_w^{\%}$ is TNN.

Verified for $n \leq 7$ using computer.

< 同 ト < 三 ト < 三 ト

A partial result

Proposition

If w avoids 321, 1324, 24153, 31524, 34127856, then either $\text{Imm}_w^{\%}$ or $-\text{Imm}_w^{\%}$ is TNN.

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A partial result

Proposition

If w avoids 321, 1324, 24153, 31524, 34127856, then either $\text{Imm}_w^{\%}$ or $-\text{Imm}_w^{\%}$ is TNN.

Proof Sketch.

We can express $\text{Imm}_w^{\%}$ as the sum of the TL immanant Imm_w and another Kazhdan-Lusztig immanant KL_u for some u, and it's known that KL immanants and TL immanants are TNN.

< 同 ト < 三 ト < 三 ト

A partial result

Proposition

If w avoids 321, 1324, 24153, 31524, 34127856, then either $\text{Imm}_w^{\%}$ or $-\text{Imm}_w^{\%}$ is TNN.

Proof Sketch.

We can express $\operatorname{Imm}_{w}^{\%}$ as the sum of the TL immanant Imm_{w} and another Kazhdan-Lusztig immanant KL_{u} for some u, and it's known that KL immanants and TL immanants are TNN.

Remark

 $\mathrm{Imm}_{34127856}^\%$ is actually a sum of a TL immanant and two KL immanants.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

- We found necessary and sufficient conditions for a TL-immanant to be a sum of one or two %-immanants.
- We found an explicit combinatorial formula for the coefficients $f_w(u)$ of a TL-immanant if w avoids 321 and 1324.
- We showed that if w avoids a certain family of patterns, then ${\rm Imm}_w^\%$ is TNN.

We would like to thank:

3

<ロト <問ト < 目と < 目と

We would like to thank:

• Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;

< □ > < 同 > < 回 > < 回 > < 回 >

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;
- Vic Reiner and staff, for organizing the UMN REU;

(日) (四) (日) (日) (日)

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;
- Vic Reiner and staff, for organizing the UMN REU;
- UMN, for giving us food, lodging, music, and wild turkeys during our stay;

< □ > < □ > < □ > < □ > < □ > < □ >

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;
- Vic Reiner and staff, for organizing the UMN REU;
- UMN, for giving us food, lodging, music, and wild turkeys during our stay;
- Swapnil Garg and Brian Sun, for algorithms/coding assistance during this project;

< □ > < □ > < □ > < □ > < □ > < □ >

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;
- Vic Reiner and staff, for organizing the UMN REU;
- UMN, for giving us food, lodging, music, and wild turkeys during our stay;
- Swapnil Garg and Brian Sun, for algorithms/coding assistance during this project;
- The superior computer language Sage, for computing a gazillion different things for us.

< ロ > < 同 > < 回 > < 回 > < 回 > <

We would like to thank:

- Prof. Pavlo Pylyavskyy and Sylvester Zhang, for providing generous support and references throughout this project;
- Vic Reiner and staff, for organizing the UMN REU;
- UMN, for giving us food, lodging, music, and wild turkeys during our stay;
- Swapnil Garg and Brian Sun, for algorithms/coding assistance during this project;
- The superior computer language Sage, for computing a gazillion different things for us.

For those patiently waiting: The end of this presentation is immanant!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >