Shelling AugBerg and the Weak Lefschetz Property

Elisabeth Bullock, Gahl Shemy, Dawei Shen

joint with Aidan Kelley, Kevin Ren, Brian Sun, Amy Tao, Joy Zhang
mentored by Prof. Vic Reiner, Trevor Karn, Sasha Pevzner

Twin Cities REU in Algebra, Combinatorics, and Representation Theory
University of Minnesota

August 2, 2021

What is AugBerg?

- At a glance: AugBerg is an object that arises from a matroid.

What is AugBerg?

- At a glance: AugBerg is an object that arises from a matroid.
- Okay... what are matroids?

What is AugBerg?

- At a glance: AugBerg is an object that arises from a matroid.
- Okay... what are matroids?
- Intuitively: a matroid is an object that stores information about a set of vectors and their dependencies.

What is AugBerg?

- At a glance: AugBerg is an object that arises from a matroid.
- Okay... what are matroids?
- Intuitively: a matroid is an object that stores information about a set of vectors and their dependencies.
- Independent sets: sets of linearly independent vectors. Flats: closed under linear span

What is AugBerg?

- At a glance: AugBerg is an object that arises from a matroid.
- Okay... what are matroids?
- Intuitively: a matroid is an object that stores information about a set of vectors and their dependencies.
- Independent sets: sets of linearly independent vectors. Flats: closed under linear span
- A matroid can be equiv. defined by its independent sets or by its flats

For a matroid M, we have two important objects associated with it:

$I(M)$ and $\operatorname{Berg}(M)$

For a matroid M, we have two important objects associated with it:
(1) $\operatorname{Berg}(\mathcal{M})$ is a simplicial complex in which faces correspond to chains of flats (excluding \emptyset and E)

$I(M)$ and $\operatorname{Berg}(M)$

For a matroid M, we have two important objects associated with it:
(1) $\operatorname{Berg}(\mathcal{M})$ is a simplicial complex in which faces correspond to chains of flats (excluding \emptyset and E)
(2) $I(\mathcal{M})$ is a simplicial complex in which faces correspond to independent sets of \mathcal{M}

What is AugBerg?

- Start with a matroid \mathcal{M} on ground set $E=\{1, \ldots, n\}$, with independent sets $\mathcal{I}(\mathcal{M})$ and flats $\mathcal{F}(\mathcal{M})$.

What is AugBerg?

- Start with a matroid \mathcal{M} on ground set $E=\{1, \ldots, n\}$, with independent sets $\mathcal{I}(\mathcal{M})$ and flats $\mathcal{F}(\mathcal{M})$.
- augmented Bergman complex $\operatorname{AugBerg}(\mathcal{M})$ is a simplicial complex on vertices $\left\{y_{1}, \ldots, y_{n}\right\} \cup\left\{x_{F}\right\}_{F \in \mathcal{F}(\mathcal{M})-\{E\}}$

What is AugBerg?

- Start with a matroid \mathcal{M} on ground set $E=\{1, \ldots, n\}$, with independent sets $\mathcal{I}(\mathcal{M})$ and flats $\mathcal{F}(\mathcal{M})$.
- augmented Bergman complex $\operatorname{AugBerg}(\mathcal{M})$ is a simplicial complex on vertices $\left\{y_{1}, \ldots, y_{n}\right\} \cup\left\{x_{F}\right\}_{F \in \mathcal{F}(\mathcal{M})-\{E\}}$
- Simplices are given by $\left\{y_{i}\right\}_{i \in I} \cup\left\{x_{F_{1}}, \ldots x_{F_{k}}\right\}$ where $I \in \mathcal{I}(\mathcal{M})$ and $I \subseteq F_{1} \subset F_{2} \subset \ldots \subset F_{k}$

AugBerg Example

AugBerg Example

AugBerg Example

$\operatorname{Berg}(\mathcal{M})$

AugBerg Example

$\operatorname{Berg}(\mathcal{M})$

$\operatorname{AugBerg}(\mathcal{M}) \backslash \mathcal{B} \backslash\left\{x_{\emptyset}\right\}$

Our question

- Already well known that the independent set and Bergman complexes of a matroid are shellable

Our question

- Already well known that the independent set and Bergman complexes of a matroid are shellable
- we can order facets in such a way that these complexes are very connected
- Already well known that the independent set and Bergman complexes of a matroid are shellable
- we can order facets in such a way that these complexes are very connected
- Also known that AugBerg is gallery connected, a weaker property than shellable [1]

Our question

- Already well known that the independent set and Bergman complexes of a matroid are shellable
- we can order facets in such a way that these complexes are very connected
- Also known that AugBerg is gallery connected, a weaker property than shellable [1]

A Natural Question

Is AugBerg shellable?

Theorem

AugBerg(M) is shellable. Furthermore, we have

- a shelling that shells Cone(Berg(M)) first and $I(M)$ last.
- a shelling that shells $I(M)$ first and Cone $(\operatorname{Berg}(M))$ last.

Shelling AugBerg

Theorem

AugBerg(M) is shellable. Furthermore, we have

- a shelling that shells Cone(Berg (M)) first and $I(M)$ last.
- a shelling that shells $I(M)$ first and $\operatorname{Cone}(\operatorname{Berg}(M))$ last.

Idea

We leverage the following two well-known facts.

- For the "base case," apply the lexicographic shelling of I(M)
- For the "inductive step," apply the lexicographic shelling of Berg(M^{\prime}) for some "quotient" of M

Shelling AugBerg: Cone to I(M)

The Shelling Order

Shell in increasing order based on rank of independent set.

Shelling AugBerg: Cone to I(M)

The Shelling Order

Shell in increasing order based on rank of independent set.
Consider facets of AugBerg(M) given by
$T_{i}=I \subseteq F_{1}^{i} \subsetneq \cdots \subsetneq F_{m}^{i}$
$T_{j}=J \subseteq F_{1}^{j} \subsetneq \cdots \subsetneq F_{n}^{j}$

Shelling AugBerg: Cone to I(M)

The Shelling Order

Shell in increasing order based on rank of independent set.
Consider facets of AugBerg(M) given by
$T_{i}=I \subseteq F_{1}^{i} \subsetneq \cdots \subsetneq F_{m}^{i}$
$T_{j}=J \subseteq F_{1}^{j} \subsetneq \cdots \subsetneq F_{n}^{j}$
(1) If $\# I<\# J$, order T_{i} before T_{j}.

Shelling AugBerg: Cone to I(M)

The Shelling Order

Shell in increasing order based on rank of independent set.
Consider facets of AugBerg(M) given by
$T_{i}=I \subseteq F_{1}^{i} \subsetneq \cdots \subsetneq F_{m}^{i}$
$T_{j}=J \subseteq F_{1}^{j} \subsetneq \cdots \subsetneq F_{n}^{j}$
(1) If $\# I<\# J$, order T_{i} before T_{j}.
(2) If $\# I=\# J$ but $l \neq J$,

Apply the lexicographic order on I and J.

Shelling AugBerg: Cone to I(M)

The Shelling Order

Shell in increasing order based on rank of independent set.
Consider facets of AugBerg(M) given by
$T_{i}=I \subseteq F_{1}^{i} \subsetneq \cdots \subsetneq F_{m}^{i}$
$T_{j}=J \subseteq F_{1}^{j} \subsetneq \cdots \subsetneq F_{n}^{j}$
(1) If $\# I<\# J$, order T_{i} before T_{j}.
(2) If $\# I=\# J$ but $l \neq J$,

Apply the lexicographic order on I and J.
(3) If $I=J$, then $F_{1}^{i}=F_{1}^{j}=\operatorname{span}\{I\}=: F$

Define the contraction matroid
$M / F=(E \backslash F,\{I: I \cup F \in I(M)\})$.
Then $\{$ Flats in M containing $F\} \leftrightarrow\{$ Flats in $M / F\}$.
Apply the shelling order on $\operatorname{Berg}(M / F)$.

Shelling AugBerg: I(M) to Cone

The Shelling Order

Shell in decreasing order based on rank of independent set!

Homotopy Type of AugBerg

Let M be a matroid of rank $r(M)$. Recall the Tutte Polynomial:

$$
T_{M}(x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}
$$

Homotopy Type of AugBerg

Let M be a matroid of rank $r(M)$. Recall the Tutte Polynomial:

$$
T_{M}(x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}
$$

- $I(M)$ is homotopy equiv. to a wedge of $T_{M}(0,1)$ spheres of dimension $r(M)-1$ (Provan and Billera [3]).

Homotopy Type of AugBerg

Let M be a matroid of rank $r(M)$. Recall the Tutte Polynomial:

$$
T_{M}(x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}
$$

- $I(M)$ is homotopy equiv. to a wedge of $T_{M}(0,1)$ spheres of dimension $r(M)-1$ (Provan and Billera [3]).
- $\operatorname{Cone}(\operatorname{Berg}(M))$ is homotopy equiv. to a wedge of $T_{M}(1,0)$ spheres of dimension $r(M)-2$ (Garsia [2])

Homotopy Type of AugBerg

Let M be a matroid of rank $r(M)$. Recall the Tutte Polynomial:

$$
T_{M}(x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}
$$

- $I(M)$ is homotopy equiv. to a wedge of $T_{M}(0,1)$ spheres of dimension $r(M)-1$ (Provan and Billera [3]).
- $\operatorname{Cone}(\operatorname{Berg}(M))$ is homotopy equiv. to a wedge of $T_{M}(1,0)$ spheres of dimension $r(M)-2$ (Garsia [2])

Our Result

$\operatorname{Aug} \operatorname{Berg}(M)$ is homotopy equiv. to a wedge of $T_{M}(1,1)$ spheres of dimension $r(M)-1$.

At this point in the research we switched gears:

At this point in the research we switched gears:

Now introducing:

 the Weak Lefschetz Property
Some Background (Stanley-Reisner Ring)

- Δ is simplicial complex with vertices $\{1, \ldots, n\}$
- I_{Δ} is the ideal generated by monomials supported on non-faces of Δ

Some Background (Stanley-Reisner Ring)

- Δ is simplicial complex with vertices $\{1, \ldots, n\}$
- I_{Δ} is the ideal generated by monomials supported on non-faces of Δ
- the Stanley-Reisner ring is $K[\Delta]:=K\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$
- the Stanley-Reisner ring is isomorphic to the K-span of monomials whose support is a face of Δ

Some Background (Stanley-Reisner Ring)

- Δ is simplicial complex with vertices $\{1, \ldots, n\}$
- I_{Δ} is the ideal generated by monomials supported on non-faces of Δ
- the Stanley-Reisner ring is $K[\Delta]:=K\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$
- the Stanley-Reisner ring is isomorphic to the K-span of monomials whose support is a face of Δ

Example

Some Background (Stanley-Reisner Ring)

- Δ is simplicial complex with vertices $\{1, \ldots, n\}$
- I_{Δ} is the ideal generated by monomials supported on non-faces of Δ
- the Stanley-Reisner ring is $K[\Delta]:=K\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$
- the Stanley-Reisner ring is isomorphic to the K-span of monomials whose support is a face of Δ

Example

Taking Δ to be the boundary of a tetrahedron, we have
$K[\Delta]=$
$K\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{1} x_{2} x_{3} x_{4}\right)$.

Linear Systems of Parameters

Definition

A linear system of parameters (LSOP) $\underline{\theta}$ is a set of $\theta_{i} \in K[\Delta]$ that are linear in the x_{j}^{\prime} 's such that $K[\Delta] /(\underline{\theta})$ is finite dimensional over K
$\mathbf{M}(\underline{\theta})$

$$
M(\underline{\theta})==\left[\begin{array}{ccc}
- & \theta_{1} & - \\
\vdots & \vdots & \vdots \\
- & \theta_{r} & -
\end{array}\right]
$$

Fact

If Δ is the boundary of a simplicial polytope, then we can get an LSOP as follows: $M(\underline{\theta})=\left[\begin{array}{ccc}\mid & \ldots & \mid \\ v_{1} & \ldots & v_{n} \\ \mid & \ldots & \mid\end{array}\right]$

Example

$$
\begin{aligned}
& M(\underline{\theta})= \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right] \begin{array}{l}
\theta_{1}=x_{1}-x_{4} \\
\theta_{2}=x_{2}-x_{4} \\
\theta_{3}=x_{3}-x_{4}
\end{array}}
\end{aligned}
$$

Now $K[\Delta] /(\underline{\theta})=K[t] / t^{4}$.

Fact

If Δ is the boundary of a simplicial polytope, then we can get an LSOP as follows: $M(\underline{\theta})=\left[\begin{array}{ccc}\mid & \ldots & \mid \\ v_{1} & \ldots & v_{n} \\ \mid & \ldots & \mid\end{array}\right]$

Example

$$
\begin{aligned}
& M(\underline{\theta})= \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right] \begin{array}{l}
\theta_{1}=x_{1}-x_{4} \\
\theta_{2}=x_{2}-x_{4} \\
\theta_{3}=x_{3}-x_{4}
\end{array}}
\end{aligned}
$$

Now $K[\Delta] /(\underline{\theta})=K[t] / t^{4}$.

Weak Lefschetz

- Let $A=K[\Delta] /(\underline{\theta})$ be the Stanley-Reisner ring of a the simplicial complex Δ quotiented out by an LSOP $\underline{\theta}$.

Weak Lefschetz

- Let $A=K[\Delta] /(\underline{\theta})$ be the Stanley-Reisner ring of a the simplicial complex Δ quotiented out by an LSOP $\underline{\theta}$.
- A is \mathbb{N} graded, say with graded components A_{i} for $i \in\{0,1, \ldots, d\}$

Weak Lefschetz

- Let $A=K[\Delta] /(\underline{\theta})$ be the Stanley-Reisner ring of a the simplicial complex Δ quotiented out by an LSOP $\underline{\theta}$.
- A is \mathbb{N} graded, say with graded components A_{i} for $i \in\{0,1, \ldots, d\}$

Definition

Given an $\ell \in A_{1}$, we say that ℓ is Weak-Lefschetz (WL) if and only if the multiplication by ℓ map $(\cdot \ell)$ from A_{i} to A_{i+1} is full rank for all $i \in\{0, \ldots, d-1\}$.

Weak Lefschetz

- Let $A=K[\Delta] /(\underline{\theta})$ be the Stanley-Reisner ring of a the simplicial complex Δ quotiented out by an LSOP $\underline{\theta}$.
- A is \mathbb{N} graded, say with graded components A_{i} for $i \in\{0,1, \ldots, d\}$

Definition

Given an $\ell \in A_{1}$, we say that ℓ is Weak-Lefschetz (WL) if and only if the multiplication by ℓ map $(\cdot \ell)$ from A_{i} to A_{i+1} is full rank for all $i \in\{0, \ldots, d-1\}$.

In particular, if Δ is the boundary of a convex simplicial polytope, then ℓ is WL iff $\cdot \ell$ from A_{i} to A_{i+1} is injective for $i<r / 2$ and surjective otherwise, since the dimensions of the A_{i} 's are symmetric and unimodal.

What do we want to know?

Big Question

Is the WL property matroidal?

What do we want to know?

Big Question

Is the WL property matroidal?
Matroidal
Define $\hat{M}(\underline{\theta}, \ell)=\left[\begin{array}{c}-\theta_{1}- \\ \cdots \\ -\theta_{k}- \\ -\ell-\end{array}\right]$.

What do we want to know?

Big Question

Is the WL property matroidal?
Matroidal
Define $\hat{M}(\underline{\theta}, \ell)=\left[\begin{array}{c}-\theta_{1}- \\ \cdots \\ -\theta_{K}- \\ -\ell-\end{array}\right]$.
Does WL property depend on minors of $\hat{M}(\underline{\theta}, \ell)$?

Reduction to Middle Map

Proposition

- If d odd, ℓ is $W L \Longleftrightarrow A_{\frac{d-1}{2}} \xrightarrow{\bullet} A_{\frac{d+1}{2}}$ is injective.
- If d even, ℓ is $\mathrm{WL} \Longleftrightarrow A_{\frac{d}{2}-1} \stackrel{\ell}{\longrightarrow} A_{\frac{d}{2}}$ is injective $\Longleftrightarrow A_{\frac{d}{2}} \xrightarrow{\bullet} A_{\frac{d}{2}+1}$ is surjective.

Reduction to Even Dimensions

Bipyramid Construction

For a polytope P, let P^{\prime}, its bipyramid, be the polytope with vertex set $\left\{x_{1} \cdots x_{n}\right\} \bigcup\left\{x_{n+1} x_{n+2}\right\}$, where

- $x_{n+1}, x_{n+2} \notin \operatorname{span}\left\{x_{1}, \cdots, x_{n}\right\}$
- The line $x_{n+1} x_{n+2}$ goes through the origin

Reduction to Even Dimensions

Bipyramid Construction

For a polytope P, let P^{\prime}, its bipyramid, be the polytope with vertex set $\left\{x_{1} \cdots x_{n}\right\} \bigcup\left\{x_{n+1} x_{n+2}\right\}$, where

- $x_{n+1}, x_{n+2} \notin \operatorname{span}\left\{x_{1}, \cdots, x_{n}\right\}$
- The line $x_{n+1} x_{n+2}$ goes through the origin

Reduction to Even Dimensions

Proposition

- $A^{\prime} \simeq A\left[x_{n+1}\right] /\left(x_{n+1}^{2}\right)$
- $A_{k}^{\prime} \simeq A_{k} \oplus x_{n+1} A_{k-1}$

Reduction to Even Dimensions

Proposition

- $A^{\prime} \simeq A\left[x_{n+1}\right] /\left(x_{n+1}^{2}\right)$
- $A_{k}^{\prime} \simeq A_{k} \oplus x_{n+1} A_{k-1}$

Proposition

Let d be odd.
$\sum_{i=1}^{n} \alpha_{i} x_{i} \in A_{1}$ is WL in $A \Longleftrightarrow \sum_{i=1}^{n} \alpha_{i} x_{i} \in A_{1}^{\prime}$ is WL in A^{\prime}.

Stacked Polytopes

Stacking Construction

Let P be a polytope and $F \in \mathcal{F}(P)$.
To obtain P^{\prime} from P, add in a new vertex x_{n+1} "close enough" to F on the outside.

Stacked Polytopes

Stacking Construction

Let P be a polytope and $F \in \mathcal{F}(P)$.
To obtain P^{\prime} from P, add in a new vertex x_{n+1} "close enough" to F on the outside.

Definition

P is a stacked polytope if P is obtained from a simplex through a sequence of stacking operations.

Stacked Polytopes

Stacking Construction

Let P be a polytope and $F \in \mathcal{F}(P)$.
To obtain P^{\prime} from P, add in a new vertex x_{n+1} "close enough" to F on the outside.

Definition

P is a stacked polytope if P is obtained from a simplex through a sequence of stacking operations.

P

Stacked Polytopes

Definition

P is a stacked polytope if P is obtained from a simplex through a sequence of stacking operations.

Proposition

$$
\sum_{i=1}^{n+1} \alpha_{i} x_{i} \in A_{1}^{\prime} \text { is } \mathrm{WL} \text { in } A^{\prime} \Longleftrightarrow\left\{\begin{array}{l}
\sum_{i=1}^{n} \alpha_{i} x_{i} \in A_{1} \text { is } \mathrm{WL} \text { in } A \\
\alpha_{n+1} \neq 0
\end{array}\right.
$$

Cyclic Polytopes

Definition

$C(n, d)$, the d-dimensional polytope on n vertices is the convex hull of any n points on the moment curve

$$
t \mapsto\left[\begin{array}{c}
t \\
t^{2} \\
\vdots \\
t^{d}
\end{array}\right]
$$

Cyclic Polytopes

Definition

$C(n, d)$, the d-dimensional polytope on n vertices is the convex hull of any n points on the moment curve

$$
t \mapsto\left[\begin{array}{c}
t \\
t^{2} \\
\vdots \\
t^{d}
\end{array}\right]
$$

Cyclic Polytopes

Proposition

- Let d even. ℓ is $W L \Longleftrightarrow \ell \neq 0$
- Let d odd. ℓ is $\mathrm{WL} \Longleftrightarrow$ all minors of $M((\underline{\theta}), \ell)$ with columns indexed by $\left\{x_{1}, x_{i_{1}}, x_{i_{2}}, \cdots x_{i_{d-1}}, x_{n}\right\}$ are L.I., where $\left\{x_{1}, x_{i_{1}}, x_{i_{2}}, \cdots x_{i_{d-1}}\right\}$ runs through all facets not containing x_{n}.

Cross Polytopes

Definition

The n-dimensional cross polytope is the convex hull of $\left\{e_{i},-e_{i}, 1 \leq i \leq n\right\}$ (ie. square, octahedron)

Cross Polytopes

Definition

The n-dimensional cross polytope is the convex hull of $\left\{e_{i},-e_{i}, 1 \leq i \leq n\right\}$ (ie. square, octahedron)

Proposition

Let Δ be the boundary of the n-dimensional cross polytope. Then $K[\Delta] /(\underline{\theta})$ is isomorphic to the K-span of all square-free monomials in x_{1}, \ldots, x_{n}.

Cross Polytopes

Definition

The n-dimensional cross polytope is the convex hull of $\left\{e_{i},-e_{i}, 1 \leq i \leq n\right\}$ (ie. square, octahedron)

Proposition

Let Δ be the boundary of the n-dimensional cross polytope. Then $K[\Delta] /(\underline{\theta})$ is isomorphic to the K-span of all square-free monomials in x_{1}, \ldots, x_{n}.

Proposition

Let $\ell=\sum_{i=1}^{n} c_{i} x_{i} \in K[\Delta] /(\underline{\theta})$.

- If n is odd, ℓ is WL if and only if $c_{i} \neq 0$ for all i.
- If n is even, ℓ is WL if and only if $c_{i}=0$ for at most one i.

Counterexample

What We Found

Is the WL property matroidal in general?

Counterexample

What We Found

Is the WL property matroidal in general? No!

Counterexample

What We Found

Is the WL property matroidal in general? No!

Boundary of a Tetrahedron Counterexample

Consider the following Δ :

Counterexample

What We Found

Is the WL property matroidal in general? No!

Boundary of a Tetrahedron Counterexample

Consider the following Δ :

with vertex LSOP: $\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 1 & -1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & -1\end{array}\right]$

Counterexample

What We Found

Is the WL property matroidal in general? No!

Boundary of a Tetrahedron Counterexample

Consider the following Δ :

with vertex LSOP: $\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 1 & -1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & -1\end{array}\right]$
Claim: The rank of $\cdot \ell: A_{1} \rightarrow A_{2}$ is not det. by minors of $\hat{M}(\underline{\theta}, \ell)$.

Thank You Slide

Thank you for watching and thank you to all the REU staff who were super thoughtful and encouraging throughout the research process, and especially to Vic for providing team 7 with a great problem to work on, and to Sasha and Trevor for their guidance!

References

Tiom Braden, June Huh, Jacob P. Matherne, Nicholas Proudfoot, and Botong Wang, A semi-small decomposition of the chow ring of a matroid, arXiv:2002. 03341 (2002).

國 Adriano M. Garsia, Combinatorial methods in the theory of Cohen-Macaulay rings, Adv. in Math. 38 (1980), no. 3, 229-266. MR 597728
國 J. Scott Provan and Louis J. Billera, Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res. 5 (1980), no. 4, 576-594. MR 593648

