\mathfrak{S}_{n}-equivariant Koszul algebras from the Boolean lattice

2023 Twin Cities REU in Combinatorics \& Algebra

Erin Delargy, Rylie Harris, Jiachen Kang, Bryan Lu, and Ramanuja Charyulu Telekicherla Kandalam

3 August 2023
Mentor: Ayah Almousa, TA: Anastasia Nathanson

Table of Contents

1. Background

Representation Theory of \mathfrak{S}_{n}
Koszul Algebras
Koszul Algebras from \mathcal{B}_{n}
2. Results

Results for the Chow Ring of Boolean Lattice
Results for the Colorful Ring of Boolean Lattice

Background

Irreducible Representations of \mathfrak{S}_{n}

Irreducible Representations of \mathfrak{S}_{n}

The irreducible representations of \mathfrak{S}_{n} are called Specht modules \mathcal{S}^{λ}, which are exactly indexed by partitions $\lambda \vdash n$.

Irreducible Representations of \mathfrak{S}_{n}

The irreducible representations of \mathfrak{S}_{n} are called Specht modules \mathcal{S}^{λ}, which are exactly indexed by partitions $\lambda \vdash n$.

Example

Some irreducible representations of \mathfrak{S}_{4} :

Irreducible Representations of \mathfrak{S}_{n}

The irreducible representations of \mathfrak{S}_{n} are called Specht modules \mathcal{S}^{λ}, which are exactly indexed by partitions $\lambda \vdash n$.

Example

Some irreducible representations of \mathfrak{S}_{4} :

- the trivial representation corresponds to $\lambda=\square \square \square$.

Irreducible Representations of \mathfrak{S}_{n}

The irreducible representations of \mathfrak{S}_{n} are called Specht modules \mathcal{S}^{λ}, which are exactly indexed by partitions $\lambda \vdash n$.

Example

Some irreducible representations of \mathfrak{S}_{4} :

- the trivial representation corresponds to $\lambda=\square \square$.
- the alternating representation corresponds to $\lambda=母$.

Irreducible Representations of \mathfrak{S}_{n}

The irreducible representations of \mathfrak{S}_{n} are called Specht modules \mathcal{S}^{λ}, which are exactly indexed by partitions $\lambda \vdash n$.

Example

Some irreducible representations of \mathfrak{S}_{4} :

- the trivial representation corresponds to $\lambda=\square \square$.
- the alternating representation corresponds to $\lambda=母$.
- the reflection representation corresponds to $\lambda=\square \square$.

More Specht modules

Specht modules can also be created from skew partitions λ / μ, but these are not irreducible representations.

More Specht modules

Specht modules can also be created from skew partitions λ / μ, but these are not irreducible representations.

Definition (Ribbon Diagrams)

A ribbon diagram is a connected skew shape λ / μ with no 2×2 box that is a subset of the shape.

A ribbon diagram with size $|\lambda / \mu|=n$ can also be described by a composition of n, reading row lengths from top to bottom:

Example

Restriction \& Branching for \mathfrak{S}_{n}

Definition (Restriction)

Let ρ be a representation of a group G and let H be a subgroup of G. The restriction of ρ to $H,\left.\rho\right|_{H}$, is the representation of H where for any $h \in H$ we have

$$
\rho_{H}(h)=\rho(h) .
$$

Restriction \& Branching for \mathfrak{S}_{n}

Definition (Restriction)

Let ρ be a representation of a group G and let H be a subgroup of G. The restriction of ρ to $H,\left.\rho\right|_{H}$, is the representation of H where for any $h \in H$ we have

$$
\left.\rho\right|_{H}(h)=\rho(h) .
$$

- We will mostly be considering the case where $G=\mathfrak{S}_{n}$ and $H=\mathfrak{S}_{n-1}$.

Restriction \& Branching for \mathfrak{S}_{n}

Definition (Restriction)

Let ρ be a representation of a group G and let H be a subgroup of G. The restriction of ρ to $H,\left.\rho\right|_{H}$, is the representation of H where for any $h \in H$ we have

$$
\left.\rho\right|_{H}(h)=\rho(h) .
$$

- We will mostly be considering the case where $G=\mathfrak{S}_{n}$ and $H=\mathfrak{S}_{n-1}$.
- Restriction is well-understood in this context for partitions, but is less well understood for skew-shapes.

Free Resolutions

Free Resolutions

One way to measure the complexity of an algebra A is to study the minimal free resolution of the residue field \mathbb{k} over A.

Free Resolutions

One way to measure the complexity of an algebra A is to study the minimal free resolution of the residue field \mathbb{k} over A.

Definition (Minimal Free Resolution)
A minimal free resolution of a module M over a \mathbb{k}-algebra A is a complex

$$
\cdots \xrightarrow{\partial_{n}} F_{n-1} \xrightarrow{\partial_{n-1}} F_{n-2} \xrightarrow{\partial_{n-2}} \cdots \xrightarrow{\partial_{1}} A \xrightarrow{\partial_{0}} M
$$

where:

Free Resolutions

One way to measure the complexity of an algebra A is to study the minimal free resolution of the residue field \mathbb{k} over A.
Definition (Minimal Free Resolution)
A minimal free resolution of a module M over a \mathbb{k}-algebra A is a complex

$$
\cdots \xrightarrow{\partial_{n}} F_{n-1} \xrightarrow{\partial_{n-1}} F_{n-2} \xrightarrow{\partial_{n-2}} \cdots \xrightarrow{\partial_{1}} A \xrightarrow{\partial_{0}} M
$$

where:

- each F_{i} is a free A-module,

Free Resolutions

One way to measure the complexity of an algebra A is to study the minimal free resolution of the residue field \mathbb{k} over A.
Definition (Minimal Free Resolution)
A minimal free resolution of a module M over a \mathbb{k}-algebra A is a complex

$$
\cdots \xrightarrow{\partial_{n}} F_{n-1} \xrightarrow{\partial_{n-1}} F_{n-2} \xrightarrow{\partial_{n-2}} \cdots \xrightarrow{\partial_{1}} A \xrightarrow{\partial_{0}} M
$$

where:

- each F_{i} is a free A-module,
- the complex is exact, i.e. $\operatorname{im} \partial_{i}=\operatorname{ker} \partial_{i-1}$,

Free Resolutions

One way to measure the complexity of an algebra A is to study the minimal free resolution of the residue field \mathbb{k} over A.

Definition (Minimal Free Resolution)

A minimal free resolution of a module M over a \mathbb{k}-algebra A is a complex

$$
\cdots \xrightarrow{\partial_{n}} F_{n-1} \xrightarrow{\partial_{n-1}} F_{n-2} \xrightarrow{\partial_{n-2}} \cdots \xrightarrow{\partial_{1}} A \xrightarrow{\partial_{0}} M
$$

where:

- each F_{i} is a free A-module,
- the complex is exact, i.e. $\operatorname{im} \partial_{i}=\operatorname{ker} \partial_{i-1}$,
- none of the entries of the matrices for the maps ∂_{i} are units.

Free Resolutions

One way to measure the complexity of an algebra A is to study the minimal free resolution of the residue field \mathbb{k} over A.

Definition (Minimal Free Resolution)

A minimal free resolution of a module M over a \mathbb{k}-algebra A is a complex

$$
\cdots \xrightarrow{\partial_{n}} F_{n-1} \xrightarrow{\partial_{n-1}} F_{n-2} \xrightarrow{\partial_{n-2}} \cdots \xrightarrow{\partial_{1}} A \xrightarrow{\partial_{0}} M
$$

where:

- each F_{i} is a free A-module,
- the complex is exact, i.e. $\operatorname{im} \partial_{i}=\operatorname{ker} \partial_{i-1}$,
- none of the entries of the matrices for the maps ∂_{i} are units.

Minimality gives us information about the structure of our module M :

$$
\cdots \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{2} \xrightarrow{\begin{array}{c}
\text { relations } \\
\text { on relations }
\end{array}} F_{1} \xrightarrow{\text { relations }} F_{0} \xrightarrow{\text { generators }} M
$$

Koszul Complex

Example
Let $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ and let $\bigwedge^{i}=\bigwedge^{i}\left\{e_{1}, e_{2}, e_{3}\right\}$.

Koszul Complex

Example

Let $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ and let $\bigwedge^{i}=\Lambda^{i}\left\{e_{1}, e_{2}, e_{3}\right\}$.

$$
0 \rightarrow S \otimes \bigwedge^{3} \xrightarrow{\partial_{3}} S \otimes \bigwedge^{2} \xrightarrow{\partial_{2}} S \otimes \bigwedge^{1} \xrightarrow{\partial_{1}} S \otimes \bigwedge^{0} \rightarrow \mathbb{k} \rightarrow 0
$$

Koszul Complex

Example

Let $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ and let $\bigwedge^{i}=\bigwedge^{i}\left\{e_{1}, e_{2}, e_{3}\right\}$.

$$
\begin{gathered}
0 \rightarrow S \otimes \bigwedge^{3} \xrightarrow{\partial_{3}} S \otimes \bigwedge^{2} \xrightarrow{\partial_{2}} S \otimes \bigwedge^{1} \xrightarrow{\partial_{1}} S \otimes \bigwedge^{0} \rightarrow \mathbb{k} \rightarrow 0 \\
\partial_{3}=\left(\begin{array}{c}
x_{3} \\
-x_{2} \\
x_{1}
\end{array}\right) \quad \partial_{2}=\left(\begin{array}{ccc}
-x_{2} & -x_{3} & 0 \\
x_{1} & 0 & -x_{3} \\
0 & x_{1} & x_{2}
\end{array}\right) \quad \partial_{1}=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)
\end{gathered}
$$

Koszul Complex

Example

Let $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ and let $\bigwedge^{i}=\bigwedge^{i}\left\{e_{1}, e_{2}, e_{3}\right\}$.

$$
\begin{gathered}
0 \rightarrow S \otimes \bigwedge^{3} \xrightarrow{\partial_{3}} S \otimes \bigwedge^{2} \xrightarrow{\partial_{2}} S \otimes \bigwedge^{1} \xrightarrow{\partial_{1}} S \otimes \bigwedge^{0} \rightarrow \mathbb{k} \rightarrow 0 \\
\partial_{3}=\left(\begin{array}{c}
x_{3} \\
-x_{2} \\
x_{1}
\end{array}\right) \quad \partial_{2}=\left(\begin{array}{ccc}
-x_{2} & -x_{3} & 0 \\
x_{1} & 0 & -x_{3} \\
0 & x_{1} & x_{2}
\end{array}\right) \quad \partial_{1}=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)
\end{gathered}
$$

If a group G acts on our algebra A, then the free modules in the minimal resolution of \mathbb{k} correspond to representations of G.

Koszul algebras

Koszul algebras

- An algebra A is Koszul if every matrix in the minimal free resolution of \mathbb{k} over A has linear entries.

Koszul algebras

- An algebra A is Koszul if every matrix in the minimal free resolution of \mathbb{k} over A has linear entries.

FACT

Koszul algebras are always quadratic.

Koszul algebras

- An algebra A is Koszul if every matrix in the minimal free resolution of \mathbb{k} over A has linear entries.

FACT

Koszul algebras are always quadratic.

- To any Koszul algebra A, we can associate to it another quadratic algebra called its Koszul dual, denoted $A^{!}$.

$$
A=\frac{T(V)}{\langle\mathcal{I}\rangle} \quad \longrightarrow \quad A^{!}=\frac{T\left(V^{*}\right)}{\langle\mathcal{J}\rangle}
$$

where $T(V)$ is the tensor algebra over vector space V.

Koszul algebras

- An algebra A is Koszul if every matrix in the minimal free resolution of \mathbb{k} over A has linear entries.

FACT

Koszul algebras are always quadratic.

- To any Koszul algebra A, we can associate to it another quadratic algebra called its Koszul dual, denoted $A^{!}$.

$$
A=\frac{T(V)}{\langle\mathcal{I}\rangle} \quad \longrightarrow \quad A^{!}=\frac{T\left(V^{*}\right)}{\langle\mathcal{J}\rangle}
$$

where $T(V)$ is the tensor algebra over vector space V.

Example

The Koszul dual of $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ is the the exterior algebra $\bigwedge\left(e_{1}, \ldots e_{n}\right)$.

Koszul algebras

We can relate the graded components of A and $A^{!}$via the Priddy complex, which is always a minimal free resolution for \mathbb{k} over A :

Koszul algebras

We can relate the graded components of A and $A^{!}$via the Priddy complex, which is always a minimal free resolution for \mathbb{k} over A :

Theorem (Priddy Complex [Pri70])

The graded components of $A^{!}$assemble into the following minimal free resolution:

$$
\cdots \rightarrow A \otimes\left(A^{!}\right)_{3}^{*} \rightarrow A \otimes\left(A^{!}\right)_{2}^{*} \rightarrow A \otimes\left(A^{!}\right)_{1}^{*} \rightarrow A \otimes\left(A^{!}\right)_{0}^{*} \rightarrow \mathbb{k} \rightarrow 0
$$

Koszul algebras

We can relate the graded components of A and $A^{!}$via the Priddy complex, which is always a minimal free resolution for \mathbb{k} over A :

Theorem (Priddy Complex [Pri70])

The graded components of $A^{!}$assemble into the following minimal free resolution:

$$
\cdots \rightarrow A \otimes\left(A^{!}\right)_{3}^{*} \rightarrow A \otimes\left(A^{!}\right)_{2}^{*} \rightarrow A \otimes\left(A^{!}\right)_{1}^{*} \rightarrow A \otimes\left(A^{!}\right)_{0}^{*} \rightarrow \mathbb{k} \rightarrow 0
$$

This gives us a means of computing the representations of $A^{!}$given the representations of A. Moreover, this sequence gives us the following Hilbert series identity:

$$
\operatorname{Hilb}\left(A^{!}, t\right)=\frac{1}{\operatorname{Hilb}(A,-t)}
$$

The Boolean lattice

Definition (Boolean Lattice)

The Boolean lattice \mathcal{B}_{n} is the set of subsets of $[n]$ ordered by containment.

Example (\mathcal{B}_{3})

Koszul Algebras from \mathcal{B}_{n}

We consider the following three rings:

$$
\begin{array}{c|c}
\text { Stanley-Reisner ring } & \mathbb{k}\left[\Delta \mathcal{B}_{n}\right]=\frac{\mathbb{k}\left[x_{F}: F \in \mathcal{B}_{n}\right]}{\left\langle x_{F} x_{G}: F, G \text { incomparable in } \mathcal{B}_{n}\right\rangle} \\
\text { Chow ring } & \operatorname{Chow}\left(\mathcal{B}_{n}\right)=\frac{\mathbb{k}\left[\Delta \mathcal{B}_{n}\right]}{\left\langle\sum_{e \in F} x_{F}: e \in[n]\right\rangle} \\
\text { Colorful ring } & \operatorname{colorful}\left(\mathcal{B}_{n}\right)=\frac{\mathbb{k}\left[\Delta \mathcal{B}_{n}\right]}{\left\langle\sum_{|F|=i} x_{F}: i \in[n]\right\rangle}
\end{array}
$$

The Stanley-Reisner ring for $\Delta\left(\mathcal{B}_{n}\right)$

Definition (Stanley-Reisner ring)

The Stanley-Reisner ring of the order complex of the Boolean lattice is

$$
\mathbb{k}\left[\Delta \mathcal{B}_{n}\right]:=\frac{\mathbb{k}\left[x_{F}: F \in \mathcal{B}_{n}\right]}{\left\langle x_{F} x_{G}: F, G \text { incomparable in } \mathcal{B}_{n}\right\rangle} .
$$

The Stanley-Reisner ring for $\Delta\left(\mathcal{B}_{n}\right)$

Definition (Stanley-Reisner ring)

The Stanley-Reisner ring of the order complex of the Boolean lattice is

$$
\mathbb{k}\left[\Delta \mathcal{B}_{n}\right]:=\frac{\mathbb{k}\left[x_{F}: F \in \mathcal{B}_{n}\right]}{\left\langle x_{F} x_{G}: F, G \text { incomparable in } \mathcal{B}_{n}\right\rangle} .
$$

Example $\left(\mathbb{k}\left[\mathcal{B}_{3}\right]\right)$
$\mathbb{k}\left[\Delta \mathcal{B}_{3}\right]=\frac{\mathbb{k}\left[x_{1}, x_{2}, x_{3}, x_{12}, x_{13}, x_{23}, x_{123}\right]}{\left\langle x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{12} x_{13}, x_{12} x_{23},\right.}$

Chow Ring of \mathcal{B}_{n}

Definition (Chow ring of \mathcal{B}_{n})

The Chow ring of \mathcal{B}_{n} is

$$
\operatorname{Chow}\left(\mathcal{B}_{n}\right)=\frac{\mathbb{k}\left[\Delta \mathcal{B}_{n}\right]}{\left\langle\sum_{i \in F} x_{F}: i \in[n]\right\rangle}
$$

Chow Ring of \mathcal{B}_{n}

Definition (Chow ring of \mathcal{B}_{n})

The Chow ring of \mathcal{B}_{n} is

$$
\operatorname{Chow}\left(\mathcal{B}_{n}\right)=\frac{\mathbb{k}\left[\Delta \mathcal{B}_{n}\right]}{\left\langle\sum_{i \in F} x_{F}: i \in[n]\right\rangle}
$$

It is possible to obtain quadratic relations by replacing x_{e} with $x_{e}-\sum_{e \complement_{\subsetneq}} x_{F}$ for all $e \in E$. This is the atom-free presentation, which we will use by default.

Chow ring of \mathcal{B}_{3}

Example (Boolean lattice on three elements and $\operatorname{Chow}\left(\mathcal{B}_{3}\right)$)

$\operatorname{Chow}\left(\mathcal{B}_{3}\right)$

$$
=\frac{\mathbb{k}\left[\Delta \mathcal{B}_{3}\right]}{\left\langle x_{1}+x_{12}+x_{13}+x_{123}, x_{2}+x_{12}+x_{23}+x_{123}, x_{3}+x_{13}+x_{23}+x_{123}\right\rangle}
$$

Colorful Ring of \mathcal{B}_{n}

Definition (Colorful Ring of \mathcal{B}_{n})

The colorful ring of \mathcal{B}_{n} is

$$
\operatorname{colorful}\left(\mathcal{B}_{n}\right):=\frac{\mathbb{k}\left[\Delta \mathcal{B}_{n}\right]}{\left\langle\sum_{|F|=i} x_{F}: i \in[n]\right\rangle}
$$

Colorful Ring of \mathcal{B}_{n}

Definition (Colorful Ring of \mathcal{B}_{n})

The colorful ring of \mathcal{B}_{n} is

$$
\operatorname{colorful}\left(\mathcal{B}_{n}\right):=\frac{\mathbb{k}\left[\Delta \mathcal{B}_{n}\right]}{\left\langle\sum_{|F|=i} x_{F}: i \in[n]\right\rangle}
$$

no atom-free presentation; choose to remove each $x_{[i]}$

Example

$$
\begin{aligned}
& \operatorname{colorful}\left(\mathcal{B}_{3}\right)=\frac{\mathbb{k}\left[\Delta \mathcal{B}_{3}\right]}{\left\langle x_{1}+x_{2}+x_{3}, x_{12}+x_{13}+x_{23}, x_{123}\right\rangle} \\
& \quad=\frac{\mathbb{k}\left[x_{2}, x_{3}, x_{13}, x_{23}\right]}{\left\langle x_{2}^{2}, x_{3}^{2}, x_{13}^{2}, x_{23}^{2}, x_{2} x_{3}, x_{2} x_{13}, x_{13} x_{23}, x_{2} x_{23}+x_{3} x_{23}, x_{3} x_{13}+x_{3} x_{23}\right\rangle}
\end{aligned}
$$

Combinatorial Interpretation

Example

$$
\operatorname{colorful}\left(\mathcal{B}_{3}\right)=\frac{\mathbb{k}\left[\Delta \mathcal{B}_{3}\right]}{\left\langle x_{1}+x_{2}+x_{3}, x_{12}+x_{13}+x_{23}, x_{123}\right\rangle}
$$

1

Figure: A 3-coloring of the barycentric subdivision of a 2-simplex

Hilbert Series of $\operatorname{Chow}\left(\mathcal{B}_{n}\right)$ and $\operatorname{colorful}\left(\mathcal{B}_{n}\right)$

The Chow ring and the colorful ring have the same Hilbert series: the dimension of the k-th graded component is given by the Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$:

$$
\operatorname{Hilb}\left(\operatorname{Chow}\left(\mathcal{B}_{n}\right), t\right)=\operatorname{Hilb}\left(\operatorname{colorful}\left(\mathcal{B}_{n}, t\right)\right)=\sum_{k=0}^{n-1}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle t^{k}
$$

The Eulerian numbers count permutations in \mathfrak{S}_{n} with k descents, and satisfy the recurrence

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=(n-k)\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle+(k+1)\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle .
$$

Results

Directions of Study

	Chow (\mathcal{B}_{n})	$\operatorname{colorful}\left(\mathcal{B}_{n}\right)$
dims	Eulerian numbers	Eulerian numbers
basis	Feichtner-Yuzvinsky [FY04]	$\text { descent monomials }\binom{[G 584]}{[D H K L T 23+]}$
reps	Stembridge [Ste92]	ribbons [DHKLT23+]
reflects branching?	not really [DHKLT23+]	yes [DHKLT23+]
quadratic GB?	yes [Cor23]	yes [DHKLT23+]

	$\operatorname{Chow}\left(\mathcal{B}_{n}\right)^{!}$	$\operatorname{colorful}\left(\mathcal{B}_{n}\right)^{!}$
dims	recursive form $[\mathrm{DHKLT23+]}$	recursive form $[\mathrm{DHKLT23+]}$
basis	conj. [DHKLT23+]	TBE
reps reflects branching? quadratic GB?	??? [DHKLT23+]	conj. non-quadratic [DHKLT23+]

Data Table for $\operatorname{Chow}\left(\mathcal{B}_{5}\right)$

degree	basis elements	skew representations	dimension
0	1	\square	1
1	$x_{i j}, x_{i j k}, x_{i j k \prime}, x_{[5]}$	${ }^{2} \square \square+\square \square+\square \square \square$	26
2	$\begin{gathered} x_{i j} x_{i j k l}, x_{i j} x_{[5]}, \\ x_{i j k}^{2}, x_{i j k} x_{[5]}, x_{i j k l}^{2}, x_{[5]}^{2} \end{gathered}$	$\begin{gathered} 3_{\square}^{\square}+\square \\ +\square \square+\square \end{gathered}$	66
3	$\begin{gathered} x_{i j k}^{2} x_{[5]}, x_{i j} x_{[5]}^{2}, \\ x_{[4]}^{3}, x_{[5]}^{3} \end{gathered}$	${ }^{2} \square \square+\square \square+\square \square$	26
4	$x_{[5]}^{4}$	$\square \square$	1

Graded Components of Dual $(n=3)$

degree	irreducible representations	dimension
0	\square	1
1	$\square+2 \square$	4
2	$母+5 \square+4 \square \square$	15
3	$7 母+19 \square+11 \square$	56
4	$32 甘+70 \square+37 \square$	209

Graded Components of Dual $(n=3)$

degree	irreducible representations	dimension
0	\square	1
1	$\square+2 \square$	4
2	$母+5 \square+4 \square \square$	15
3	$7 母+19 \square+11 \square$	56
4	$32 甘+70 \square+37 \square$	209

To be a permutation representation，the graded components should then be expressible in terms of \square, \square ，and $\square \square$ ．

Basis for graded components of $\operatorname{Chow}\left(\mathcal{B}_{3}\right)^{!}$

Theorem (DHKLT23+)

Let M_{d} be the set of all degree d monomials not in the ideal $\langle G\rangle$ where

$$
G=\left\{z_{123}^{2}, z_{123} z_{23}^{2}\right\}
$$

then M_{d} is a basis for the degree d component of $\operatorname{Chow}\left(\mathcal{B}_{3}\right)^{!}$.

Basis for graded components of $\operatorname{Chow}\left(\mathcal{B}_{3}\right)^{!}$

Theorem (DHKLT23+)

Let M_{d} be the set of all degree d monomials not in the ideal $\langle G\rangle$ where

$$
G=\left\{z_{123}^{2}, z_{123} z_{23}^{2}\right\}
$$

then M_{d} is a basis for the degree d component of $\operatorname{Chow}\left(\mathcal{B}_{3}\right)^{\text {! }}$.

$$
\operatorname{Chow}\left(\mathcal{B}_{3}\right)^{!}=\frac{\mathbb{k}\left\langle z_{12}, z_{13}, z_{23}, z_{123}\right\rangle}{\left\langle z_{123}^{2}-z_{12}^{2}-z_{13}^{2}-z_{23}^{2}\right\rangle}
$$

Basis for graded components of $\operatorname{Chow}\left(\mathcal{B}_{3}\right)^{!}$

Theorem (DHKLT23+)

Let M_{d} be the set of all degree d monomials not in the ideal $\langle G\rangle$ where

$$
G=\left\{z_{123}^{2}, z_{123} z_{23}^{2}\right\}
$$

then M_{d} is a basis for the degree d component of $\operatorname{Chow}\left(\mathcal{B}_{3}\right)^{!}$.

$$
\begin{gathered}
\operatorname{Chow}\left(\mathcal{B}_{3}\right)^{!}=\frac{\mathbb{k}\left\langle z_{12}, z_{13}, z_{23}, z_{123}\right\rangle}{\left\langle z_{123}^{2}-z_{12}^{2}-z_{13}^{2}-z_{23}^{2}\right\rangle} \\
\left(z_{123}^{2}-z_{12}^{2}-z_{13}^{2}-z_{23}^{2}\right) z_{123}-z_{123}\left(z_{123}^{2}-z_{12}^{2}-z_{13}^{2}-z_{23}^{2}\right) \\
\downarrow \\
z_{123} z_{12}^{2}+z_{123} z_{13}^{2}+z_{123} z_{23}^{2}-z_{12}^{2} z_{123}-z_{13}^{2} z_{123}-z_{23}^{2} z_{123}
\end{gathered}
$$

Example: Basis for graded components of $\operatorname{Chow}\left(\mathcal{B}_{3}\right)^{!}$

$$
G=\left\{z_{123}^{2}, z_{123} z_{23}^{2}\right\}
$$

Example

degree	(some) basis elements	dimension
0	1	1
1	$z_{12}, z_{13}, z_{23}, z_{123}$	4
2	$z_{12}^{2}, z_{12} z_{13}, \ldots z_{123}^{2}$	$4^{2}-1=15$
3	$z_{12}^{3}, z_{12}^{2} z_{13}, \ldots z_{12} z_{123}^{2}, z_{13} z_{123}^{2}, z_{23} z_{123}^{2}$	$4^{3}-8=56$
	$z_{123}^{2}, z_{123}^{2} z_{12}, z_{123}^{2} z_{13}, z_{123}^{2} z_{23}, z_{123} z_{23}^{2}$	
\vdots	\vdots	\vdots

Conjecture for Basis of $\operatorname{Chow}\left(\mathcal{B}_{n}\right)^{!}$

Conjecture (DHKLT23+)
Let $G=\bigcup_{i=1}^{4} G_{i}$ where

$$
\begin{aligned}
& G_{1}=\left\{z_{F}^{2}:|F|>2\right\} \\
& G_{2}=\left\{z_{G} z_{H}: H \subset G,|G|-|H|>1,|H| \geq 2\right\} \\
& G_{3}=\left\{z_{i j k} z_{j k}^{2}: i<j<k\right\} \\
& G_{4}=\left\{z_{F \cup i j} z_{F \cup j} z_{F}: i<j\right\}
\end{aligned}
$$

Let M_{d} be the set of degree d monomials not in $\langle G\rangle$. Then M_{d} is a basis for the degree d component of $\operatorname{Chow}\left(\mathcal{B}_{n}\right)^{!}$.

Directions of Study

	Chow (\mathcal{B}_{n})	colorful $\left(\mathcal{B}_{n}\right)$
dims	Eulerian numbers	Eulerian numbers
basis	Feichtner-Yuzvinsky [FY04]	$\text { descent monomials }\binom{[G 584]}{[D H K L T 23+]}$
reps	Stembridge [Ste92]	ribbons [DHKLT23+]
reflects branching?	not really [DHKLT23+]	yes [DHKLT23+]
quadratic GB?	yes [Cor23]	yes [DHKLT23+]

	$\operatorname{Chow}\left(\mathcal{B}_{n}\right)^{!}$	$\operatorname{colorful}\left(\mathcal{B}_{n}\right)^{!}$
dims	recursive form $[\mathrm{DHKLT23+]}$	recursive form $[\mathrm{DHKLT23+]}$
basis	conj. [DHKLT23+]	TBE
reps reflects branching? quadratic GB?	??? [DHKLT23+]	conj. non-quadratic [DHKLT23+]

Colorful Basis Combinatorially: Descent Monomials

Definition ([GS84])

For $\sigma \in \mathfrak{S}_{n}$, we define the descent monomial of σ by

$$
\eta(\sigma)=\prod_{\sigma(i+1)<\sigma(i)} x_{\sigma(1) \ldots \sigma(i)}
$$

Note that the degree of $\eta(\sigma)$ is the number of descents in σ.

Colorful Basis Combinatorially: Descent Monomials

Definition ([GS84])

For $\sigma \in \mathfrak{S}_{n}$, we define the descent monomial of σ by

$$
\eta(\sigma)=\prod_{\sigma(i+1)<\sigma(i)} x_{\sigma(1) \ldots \sigma(i)}
$$

Note that the degree of $\eta(\sigma)$ is the number of descents in σ.

Example

For the permutation $17832465 \in \mathfrak{S}_{8}$ with 3 descents, we get

$$
17832465 \mapsto x_{178} x_{1378} x_{1234678},
$$

a degree 3 monomial.

Descent Monomials Are a Basis of colorful $\left(\mathcal{B}_{n}\right)$

Theorem

$\eta\left(\mathfrak{S}_{n}\right)$ is a basis of colorful $\left(\mathcal{B}_{n}\right)$.

Example (Basis of colorful $\left(\mathcal{B}_{4}\right)$)

0 descents	$\eta(\sigma)$	1 descent	$\eta(\sigma)$	2 descents	$\eta(\sigma)$	3 descents	$\eta(\sigma)$
1234	1	2134	x_{2}	2143	$x_{2} x_{124}$	4321	$x_{4} x_{34} x_{234}$
		3124	x_{3}	3214	$x_{3} x_{23}$		
		4123	x_{4}	3142	$x_{3} x_{134}$		
		1324	x_{13}	3241	$x_{3} x_{234}$		
		1423	x_{14}	4213	$x_{4} x_{24}$		
		2314	x_{23}	4312	$x_{4} x_{34}$		
			12412	x_{24}	4132	$x_{4} x_{134}$	
		x_{34}	4231	$x_{4} x_{234}$			
			x_{124}	1432	$x_{14} x_{134}$		
			x_{134}	2431	$x_{24} x_{234}$		
			x_{234}	3421	$x_{34} x_{234}$		

Colorful Basis

Theorem (DHKLT23+)

The following set is a quadratic Gröbner basis for the ideal of relations of colorful $\left(\mathcal{B}_{n}\right)$:

$$
\begin{aligned}
&\left\{x_{F} x_{G} \mid X, G \text { incomparable, } X, G \neq[i] \forall 1 \leq i \leq n\right\} \\
& \cup\left\{x_{F}^{2} \mid F \neq[i] \forall 1 \leq i \leq n\right\} \\
& \cup\left\{x_{G} \sum_{|F|=i, F \subset G} x_{F}|[i] \not \subset G,|G|>i, 1 \leq i \leq n\}\right. \\
& \cup\left\{x_{G} \sum_{|F|=i, G \subset F} x_{F}|G \not \subset[i],|G|<i, 1 \leq i \leq n\} .\right.
\end{aligned}
$$

We do not have a conjecture for a basis for the graded components of $\left(A^{!}\right)_{i}$, but the above result is a first step in this direction!

Reps of colorful $\left(\mathcal{B}_{n}\right)$: Ribbon Diagrams

The reps of colorful $\left(\mathcal{B}_{n}\right)_{k}$ are given by the ribbon diagrams with n boxes and of length $k+1$:

n	degree	representations	dimension
3	0		
3	1	$\square+\square$	4
3	2	\square	1
		$\square+\square$	4
4	0	$\square+\square$	11
4	1	$\square+\square+\square$	
4	2	$\square+\square+\square$	11
4	3	\square	1

A recurrence on the Eulerian numbers

Recall the recurrence for the Eulerian numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$:

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=(n-k)\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle+(k+1)\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle .
$$

A recurrence on the Eulerian numbers

Recall the recurrence for the Eulerian numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$:

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=(n-k)\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle+(k+1)\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle .
$$

Question: Can we categorify this recurrence at the level of representations with the Chow ring/colorful ring?

A recurrence on the Eulerian numbers

Recall the recurrence for the Eulerian numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$:

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=(n-k)\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle+(k+1)\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle .
$$

Question: Can we categorify this recurrence at the level of representations with the Chow ring/colorful ring?

Can partially do it for the graded components of the Chow ring, but only when $d=0,1, n-2, n-1$ for any n.

Example

For $A(n):=\operatorname{Chow}\left(\mathcal{B}_{n}\right)$, we have the short exact sequence
$0 \rightarrow \mathcal{S}^{(n-1,1) /(1)} \otimes A(n-1)_{0} \xrightarrow{i} A(n)_{1} \downarrow_{\mathfrak{G}_{n-1}}^{\mathfrak{E}_{n}} \xrightarrow{q} 2 \mathcal{S}^{(n-1)} \otimes A(n-1)_{1} \rightarrow 0$.

Ribbon Branching

Theorem (Ribbon Branching Rule, DHKLT23+)
Let $\lambda / \mu:=\left(a_{1}, \ldots, a_{n}\right)$ be a ribbon and let $\left(b_{1}, \ldots, b_{n}\right):=(\lambda / \mu)^{T}$. Then,

$$
\mathcal{S}^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_{n}}=\bigoplus_{i \mid a_{i}>1} \mathcal{S}^{\lambda-e_{i}} \oplus \bigoplus_{i \mid b_{i}>1} \mathcal{S}^{\left(\lambda^{\top}-e_{j}\right)^{T}}
$$

Ribbon Branching

Theorem (Ribbon Branching Rule, DHKLT23+)

Let $\lambda / \mu:=\left(a_{1}, \ldots, a_{n}\right)$ be a ribbon and let $\left(b_{1}, \ldots, b_{n}\right):=(\lambda / \mu)^{T}$. Then,

$$
\mathcal{S}^{\lambda} \downarrow_{\mathfrak{G}_{n-1}}^{\mathfrak{S}_{n}}=\bigoplus_{i \mid a_{i}>1} \mathcal{S}^{\lambda-e_{i}} \oplus \bigoplus_{i \mid b_{i}>1} \mathcal{S}^{\left(\lambda^{\top}-e_{j}\right)^{T}}
$$

Example

Let $\lambda=\nabla^{\square}=(2,3,1,2,1,1)$. Then $\lambda^{T}=\square^{\square}=(3,3,1,2,1)$.
The restriction of λ from an \mathfrak{S}_{10}-representation to a \mathfrak{S}_{9}-representation is given by

Ribbon Branching

Theorem (Ribbon Branching Rule, DHKLT23+)

Let $\lambda / \mu:=\left(a_{1}, \ldots, a_{n}\right)$ be a ribbon and let $\left(b_{1}, \ldots, b_{n}\right):=(\lambda / \mu)^{T}$. Then,

$$
\mathcal{S}^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_{n-1}}=\bigoplus_{i \mid a_{i}>1} \mathcal{S}^{\lambda-e_{i}} \oplus \bigoplus_{i \mid b_{i}>1} \mathcal{S}^{\left(\lambda^{\top}-e_{j}\right)^{\top}}
$$

Example

Let $\lambda=\varpi^{\square}=(2,3,1,2,1,1)$. Then $\lambda^{T}=\square^{\square}=(3,3,1,2,1)$.
The restriction of λ from an \mathfrak{S}_{10}-representation to a \mathfrak{S}_{9}-representation is given by

Ribbon Branching

Theorem (Ribbon Branching Rule, DHKLT23+)

Let $\lambda / \mu:=\left(a_{1}, \ldots, a_{n}\right)$ be a ribbon and let $\left(b_{1}, \ldots, b_{n}\right):=(\lambda / \mu)^{T}$. Then,

$$
\mathcal{S}^{\lambda} \downarrow_{\mathfrak{G}_{n-1}}^{\mathfrak{G}_{n-1}}=\bigoplus_{i \mid a_{i}>1} \mathcal{S}^{\lambda-e_{i}} \oplus \bigoplus_{i \mid b_{i}>1} \mathcal{S}^{\left(\lambda^{\top}-e_{j}\right)^{\top}}
$$

Example

Let $\lambda=\square^{\square}=(2,3,1,2,1,1)$. Then $\lambda^{T}=\square^{\square}=(3,3,1,2,1)$.
The restriction of λ from an \mathfrak{S}_{10}-representation to a \mathfrak{S}_{9}-representation is given by

Colorful Ring Branching

Theorem (Colorful Branching Rule, DHKLT23+)
Let $A(n)$ be the ring colorful $\left(\mathcal{B}_{n}\right)$. Then,

$$
A(n)_{k} \downarrow_{\mathfrak{G}_{n-1}}^{\mathfrak{S}_{n}} \cong(n-k) A(n-1)_{k-1} \oplus(k+1) A(n-1)_{k} .
$$

Colorful Ring Branching

Theorem (Colorful Branching Rule, DHKLT23+)
Let $A(n)$ be the ring colorful $\left(\mathcal{B}_{n}\right)$. Then,

$$
A(n)_{k} \downarrow_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_{n}} \cong(n-k) A(n-1)_{k-1} \oplus(k+1) A(n-1)_{k} .
$$

Example

$$
A(4)_{1}=\square \oplus \square \oplus \square=2(\nabla \oplus \square) \oplus 3 \boxminus .
$$

Graded Components of Colorful $\left(B_{3}\right)$ Dual

degree	representations
0	\square
1	$\square+\square$
2	$3 \boxminus+2(\square+\square)+4 \square \square$
3	$8 \boxminus+10(\square+\square)+8 \square$
4	$36 \boxminus+34(\square+\square)+37 \square \square$

Conjecture (DHKLT23+)
If $A(n)=\operatorname{colorful}(n)$, then $\operatorname{colorful}(n)!d$ is expressible in terms of a direct sum of graded components of $A(n)$.

Acknowledgements

We would like to thank Ayah and Anastasia for their help and guidance, as well as Vic Reiner for helpful suggestions throughout this project. Thank you also to the UMN Math Department for hosting this REU!

This project was partially supported by RTG grant NSF/DMS-1745638.

References

[Pri70] Stewart B. Priddy. "Koszul Resolutions". In: Transactions of the American Mathematical Society 152.1 (1970), pp. 39-60. ISSN: 00029947. URL: http://www.jstor.org/stable/1995637 (visited on 07/26/2023).
[GS84] A. M. Garsia and D. Stanton. "Group actions of Stanley-Reisner rings and invariants of permutation groups". In: Adv. in Math. 51.2 (1984), pp. 107-201. ISSN: 0001-8708. Dor: 10.1016/0001-8708(84)90005-7. URL:
https://doi.org/10.1016/0001-8708(84)90005-7.
[Ste92] John R. Stembridge. "Eulerian numbers, tableaux, and the Betti numbers of a toric variety". In: Discrete Mathematics 99.1 (1992), pp. 307-320. ISSN: 0012-365X. Doi:
https://doi.org/10.1016/0012-365X(92) 90378-S. URL: https://www.sciencedirect.com/science/article/pii/ 0012365X9290378S.
[FY04] E. M. Feichtner and S. Yuzvinsky. "Chow rings of toric varieties defined by atomic lattices". In: Invent. Math. 155.3 (2004), pp. 515-536. ISSN: 0020-9910. DOI:
10.1007/s00222-003-0327-2. URL: https://doi-org.jpllnet.sfsu.edu/10.1007/s00222-003-0327-2.
[Cor23] Basile Coron. "Matroids, Feynman categories, and Koszul duality". In: (2023). arXiv: 2211.12370 [math.C0].

