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Background



Irreducible Representations of Sn

The irreducible representations of Sn are called Specht modules Sλ,
which are exactly indexed by partitions λ ⊢ n.

Example

Some irreducible representations of S4:

• the trivial representation corresponds to λ = .

• the alternating representation corresponds to λ = .

• the reflection representation corresponds to λ = .
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More Specht modules

Specht modules can also be created from skew partitions λ/µ, but

these are not irreducible representations.

Definition (Ribbon Diagrams)

A ribbon diagram is a connected skew shape λ/µ with no 2× 2 box

that is a subset of the shape.

A ribbon diagram with size |λ/µ| = n can also be described by a

composition of n, reading row lengths from top to bottom:

Example

←→ (2, 3, 1, 2, 1, 1)

3



More Specht modules

Specht modules can also be created from skew partitions λ/µ, but

these are not irreducible representations.

Definition (Ribbon Diagrams)

A ribbon diagram is a connected skew shape λ/µ with no 2× 2 box

that is a subset of the shape.

A ribbon diagram with size |λ/µ| = n can also be described by a

composition of n, reading row lengths from top to bottom:

Example

←→ (2, 3, 1, 2, 1, 1)

3



Restriction & Branching for Sn

Definition (Restriction)

Let ρ be a representation of a group G and let H be a subgroup of G .

The restriction of ρ to H, ρ|H , is the representation of H where for any

h ∈ H we have

ρ|H(h) = ρ(h).

• We will mostly be considering the case where G = Sn and

H = Sn−1.

• Restriction is well-understood in this context for partitions, but is

less well understood for skew-shapes.
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Free Resolutions

One way to measure the complexity of an algebra A is to study the

minimal free resolution of the residue field k over A.

Definition (Minimal Free Resolution)

A minimal free resolution of a module M over a k-algebra A is a

complex

· · · ∂n−→ Fn−1
∂n−1−−−→ Fn−2

∂n−2−−−→ · · · ∂1−→ A
∂0−→ M

where:

• each Fi is a free A-module,

• the complex is exact, i.e. im ∂i = ker ∂i−1,

• none of the entries of the matrices for the maps ∂i are units.

Minimality gives us information about the structure of our module M:

· · · → Fn−1 → · · · → F2

relations
on relations−−−−−−→ F1

relations−−−−−→ F0
generators−−−−−−→ M
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Koszul Complex

Example

Let S = k[x1, x2, x3] and let
∧i =

∧i{e1, e2, e3}.

0→ S ⊗
3∧

∂3−→ S ⊗
2∧

∂2−→ S ⊗
1∧

∂1−→ S ⊗
0∧
−→ k→ 0

∂3 =

 x3
−x2
x1

 ∂2 =

−x2 −x3 0

x1 0 −x3
0 x1 x2

 ∂1 =
(
x1 x2 x3

)

If a group G acts on our algebra A, then the free modules in the minimal

resolution of k correspond to representations of G .
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Koszul algebras

• An algebra A is Koszul if every matrix in the minimal free resolution

of k over A has linear entries.

FACT

Koszul algebras are always quadratic.

• To any Koszul algebra A, we can associate to it another quadratic

algebra called its Koszul dual, denoted A!.

A =
T (V )

⟨I⟩
−→ A! =

T (V ∗)

⟨J ⟩
where T (V ) is the tensor algebra over vector space V .

Example

The Koszul dual of S = k[x1, . . . , xn] is the the exterior algebra∧
(e1, . . . en).
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Koszul algebras

We can relate the graded components of A and A! via the Priddy

complex, which is always a minimal free resolution for k over A:

Theorem (Priddy Complex [Pri70])

The graded components of A! assemble into the following minimal free

resolution:

· · · → A⊗ (A!)∗3 → A⊗ (A!)∗2 → A⊗ (A!)∗1 → A⊗ (A!)∗0 → k→ 0

This gives us a means of computing the representations of A! given the

representations of A. Moreover, this sequence gives us the following

Hilbert series identity:

Hilb(A!, t) =
1

Hilb(A,−t)

8
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The Boolean lattice

Definition (Boolean Lattice)

The Boolean lattice Bn is the set of subsets of [n] ordered by

containment.

Example (B3)
{1, 2, 3}

{1, 2}
{1, 3}

{2, 3}

{1}
{2}

{3}

∅
9



Koszul Algebras from Bn

We consider the following three rings:

Stanley-Reisner ring k[∆Bn] =
k[xF : F ∈ Bn]

⟨xF xG : F ,G incomparable in Bn⟩

Chow ring Chow(Bn) =
k[∆Bn]〈∑

e∈F xF : e ∈ [n]
〉

Colorful ring colorful(Bn) =
k[∆Bn]

⟨
∑

|F |=i xF : i ∈ [n]⟩

10



The Stanley-Reisner ring for ∆(Bn)

Definition (Stanley-Reisner ring)

The Stanley-Reisner ring of the order complex of the Boolean lattice is

k[∆Bn] :=
k[xF : F ∈ Bn]

⟨xF xG : F ,G incomparable in Bn⟩
.

Example (k[B3])

k[∆B3] =
k[x1, x2, x3, x12, x13, x23, x123]
⟨x1x2,x1x3,x2x3,x12x13,x12x23,
x13x23,x1x23,x2x13,x3x12⟩

{1, 2, 3}

{1, 2}
{1, 3}

{2, 3}

{1}
{2}

{3}

∅
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Chow Ring of Bn

Definition (Chow ring of Bn)

The Chow ring of Bn is

Chow(Bn) =
k[∆Bn]

⟨
∑

i∈F xF : i ∈ [n]⟩

It is possible to obtain quadratic relations by replacing xe with

xe −
∑

e⊊F xF for all e ∈ E . This is the atom-free presentation, which we

will use by default.
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Chow ring of B3

Example (Boolean lattice on three elements and Chow(B3))

{1, 2, 3}

{1, 2}
{1, 3}

{2, 3}

{1}
{2}

{3}

∅

Chow(B3)

=
k[∆B3]

⟨x1 + x12 + x13 + x123, x2 + x12 + x23 + x123, x3 + x13 + x23 + x123⟩
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Colorful Ring of Bn

Definition (Colorful Ring of Bn)

The colorful ring of Bn is

colorful(Bn) :=
k[∆Bn]

⟨
∑

|F |=i xF : i ∈ [n]⟩

no atom-free presentation; choose to remove each x[i ]

Example

colorful(B3) =
k[∆B3]

⟨x1 + x2 + x3, x12 + x13 + x23, x123⟩

=
k[x2, x3, x13, x23]

⟨x22 , x23 , x213, x223, x2x3, x2x13, x13x23, x2x23 + x3x23, x3x13 + x3x23⟩
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Combinatorial Interpretation

Example

colorful(B3) =
k[∆B3]

⟨x1 + x2 + x3, x12 + x13 + x23, x123⟩

1

2 3

12 13

23

123

Figure: A 3-coloring of the barycentric subdivision of a 2-simplex
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Hilbert Series of Chow(Bn) and colorful(Bn)

The Chow ring and the colorful ring have the same Hilbert series: the

dimension of the k-th graded component is given by the Eulerian number〈
n
k

〉
:

Hilb(Chow(Bn), t) = Hilb(colorful(Bn, t)) =
n−1∑
k=0

〈
n

k

〉
tk

The Eulerian numbers count permutations in Sn with k descents, and

satisfy the recurrence〈
n

k

〉
= (n − k)

〈
n − 1

k − 1

〉
+ (k + 1)

〈
n − 1

k

〉
.

16
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Directions of Study

Chow(Bn) colorful(Bn)
dims Eulerian numbers Eulerian numbers

basis Feichtner-Yuzvinsky [FY04] descent monomials
(

[GS84]
[DHKLT23+]

)
reps Stembridge [Ste92] ribbons [DHKLT23+]

reflects

branching?

not really [DHKLT23+] yes [DHKLT23+]

quadratic GB? yes [Cor23] yes [DHKLT23+]

Chow(Bn)! colorful(Bn)!

dims recursive form [DHKLT23+] recursive form [DHKLT23+]

basis conj. [DHKLT23+] TBE

reps ??? [DHKLT23+] conj. ⊕ of ribbons [DHKLT23+]

reflects

branching?

TBE TBE

quadratic GB? conj. non-quadratic [DHKLT23+] TBE

17



Data Table for Chow(B5)

degree basis elements skew representations dimension

0 1 1

1 xij , xijk , xijkl , x[5] 2 + + 26

2 xijxijkl , xijx[5], 3 + + 66

x2ijk , xijkx[5], x
2
ijkl , x

2
[5] +

3 x2ijkx[5], xijx
2
[5], 2 + + 26

x3[4], x
3
[5]

4 x4[5] 1

18



Graded Components of Dual (n = 3)

degree irreducible representations dimension

0 1

1 + 2 4

2 + 5 + 4 15

3 7 + 19 + 11 56

4 32 + 70 + 37 209

To be a permutation representation, the graded components should then

be expressible in terms of , , and .

19
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Basis for graded components of Chow(B3)!

Theorem (DHKLT23+)

Let Md be the set of all degree d monomials not in the ideal ⟨G ⟩
where

G = {z2123, z123z223}

then Md is a basis for the degree d component of Chow(B3)!.

Chow(B3)! =
k⟨z12, z13, z23, z123⟩
⟨z2123 − z212 − z213 − z223⟩

(z2123 − z212 − z213 − z223)z123 − z123(z
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↓
z123z

2
12 + z123z

2
13 + z123z

2
23 − z212z123 − z213z123 − z223z123
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Example: Basis for graded components of Chow(B3)!

G = {z2123, z123z223}

Example

degree (some) basis elements dimension

0 1 1

1 z12, z13, z23, z123 4

2 z212, z12z13,. . . z2123 42 − 1 = 15

3 z312, z
2
12z13,. . . z12z

2
123,z13z

2
123,z23z

2
123 43 − 8 = 56

z3123,z
2
123z12,z

2
123z13,z

2
123z23,z123z

2
23

...
...

...

21



Conjecture for Basis of Chow(Bn)!

Conjecture (DHKLT23+)

Let G =
⋃4

i=1 Gi where

G1 = {z2F : |F | > 2}
G2 = {zG zH : H ⊂ G , |G | − |H| > 1, |H| ≥ 2}
G3 = {zijkz2jk : i < j < k}
G4 = {zF∪ijzF∪jzF : i < j}

Let Md be the set of degree d monomials not in ⟨G ⟩. Then Md is

a basis for the degree d component of Chow(Bn)!.
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Directions of Study

Chow(Bn) colorful(Bn)
dims Eulerian numbers Eulerian numbers

basis Feichtner-Yuzvinsky [FY04] descent monomials
(

[GS84]
[DHKLT23+]

)
reps Stembridge [Ste92] ribbons [DHKLT23+]

reflects

branching?

not really [DHKLT23+] yes [DHKLT23+]

quadratic GB? yes [Cor23] yes [DHKLT23+]

Chow(Bn)! colorful(Bn)!

dims recursive form [DHKLT23+] recursive form [DHKLT23+]

basis conj. [DHKLT23+] TBE

reps ??? [DHKLT23+] conj. ⊕ of ribbons [DHKLT23+]

reflects

branching?

TBE TBE

quadratic GB? conj. non-quadratic [DHKLT23+] TBE
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Colorful Basis Combinatorially: Descent Monomials

Definition ([GS84])

For σ ∈ Sn, we define the descent monomial of σ by

η(σ) =
∏

σ(i+1)<σ(i)

xσ(1)...σ(i)

Note that the degree of η(σ) is the number of descents in σ.

Example

For the permutation 17832465 ∈ S8 with 3 descents, we get

17832465 7→ x178x1378x1234678,

a degree 3 monomial.
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Descent Monomials Are a Basis of colorful(Bn)

Theorem

η(Sn) is a basis of colorful(Bn).

Example (Basis of colorful(B4))
0 descents η(σ) 1 descent η(σ) 2 descents η(σ) 3 descents η(σ)

1234 1 2134 x2 2143 x2x124 4321 x4x34x234
3124 x3 3214 x3x23
4123 x4 3142 x3x134
1324 x13 3241 x3x234
1423 x14 4213 x4x24
2314 x23 4312 x4x34
2413 x24 4132 x4x134
3412 x34 4231 x4x234
1243 x124 1432 x14x134
1342 x134 2431 x24x234
2341 x234 3421 x34x234 25



Colorful Basis

Theorem (DHKLT23+)

The following set is a quadratic Gröbner basis for the ideal of rela-

tions of colorful(Bn):

{xF xG | X ,G incomparable,X ,G ̸= [i ] ∀1 ≤ i ≤ n}
∪{x2F | F ̸= [i ] ∀1 ≤ i ≤ n}

∪{xG
∑

|F |=i,F⊂G

xF | [i ] ̸⊂ G , |G | > i , 1 ≤ i ≤ n}

∪{xG
∑

|F |=i,G⊂F

xF | G ̸⊂ [i ], |G | < i , 1 ≤ i ≤ n}.

We do not have a conjecture for a basis for the graded components of

(A!)i , but the above result is a first step in this direction!
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Reps of colorful(Bn): Ribbon Diagrams

The reps of colorful(Bn)k are given by the ribbon diagrams with n boxes

and of length k + 1:

n degree representations dimension

3 0 1

3 1 + 4

3 2 1

4 0 1

4 1 + + 11

4 2 + + 11

4 3 1
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A recurrence on the Eulerian numbers

Recall the recurrence for the Eulerian numbers
〈
n
k

〉
:〈

n

k

〉
= (n − k)

〈
n − 1

k − 1

〉
+ (k + 1)

〈
n − 1

k

〉
.

Question: Can we categorify this recurrence at the level of

representations with the Chow ring/colorful ring?

Can partially do it for the graded components of the Chow ring, but only

when d = 0, 1, n − 2, n − 1 for any n.

Example

For A(n) := Chow(Bn), we have the short exact sequence

0→ S(n−1,1)/(1) ⊗ A(n−1)0
i−→ A(n)1 ↓Sn

Sn−1

q−→ 2S(n−1) ⊗ A(n−1)1 → 0.
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Ribbon Branching

Theorem (Ribbon Branching Rule, DHKLT23+)

Let λ/µ := (a1, ..., an) be a ribbon and let (b1, ..., bn) := (λ/µ)T .

Then,

Sλ ↓Sn

Sn−1
=

⊕
i | ai>1

Sλ−ei ⊕
⊕

i | bi>1

S(λ
T−ej )

T

Example

Let λ = = (2, 3, 1, 2, 1, 1). Then λT = = (3, 3, 1, 2, 1).

The restriction of λ from an S10-representation to a S9-representation is

given by y
S10

S9

∼= ⊕ ⊕ ⊕ ⊕ ⊕
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Colorful Ring Branching

Theorem (Colorful Branching Rule, DHKLT23+)

Let A(n) be the ring colorful(Bn). Then,

A(n)k ↓Sn

Sn−1

∼= (n − k)A(n − 1)k−1 ⊕ (k + 1)A(n − 1)k .

Example

A(4)1 = ⊕ ⊕ = 2

(
⊕

)
⊕ 3 .
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Graded Components of Colorful(B3) Dual

degree representations

0

1 +

2 3 + 2
(

+
)
+ 4

3 8 + 10
(

+
)
+ 8

4 36 + 34
(

+
)
+ 37

Conjecture (DHKLT23+)

If A(n) = colorful(n), then colorful(n)!d is expressible in terms of a direct

sum of graded components of A(n). 31
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