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Projective space and their products

Definition
Projective space Pn is defined as the quotient An+1/∼, where
x ∼ y if y = λx for some λ ̸= 0.

We are interested in finite sets of points in Pn × Pm.
But! we cannot have points of the form

[0 : . . . : 0]× [b0 : . . . : bm] or [a0 : . . . : an]× [0 : . . . : 0].
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Defining ideals

Definition
Let X be a subset of Pn × Pm. The Cox ring of Pn × Pm is
S = k[x0, . . . , xn, y0, . . . , ym] and is Z2-graded, where
deg(xi ) = (1, 0) and deg(yj) = (0, 1).
Then

I (X ) = {f ∈ S | f (x) = 0 for all x ∈ X}

is the bihomogeneous defining ideal of X .

We also have the irrelevant ideal

B = ⟨x0, . . . , xn⟩ ∩ ⟨y0, . . . , ym⟩.
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Cox ring and vanishing ideals

Let S = k[x0, . . . , xn, y0, . . . , ym].

A finite set of points

X = {P1,P2, . . . ,Ps}

in Pn × Pm has defining ideal

I (X ) = I (P1) ∩ I (P2) ∩ . . . ∩ I (Ps).

We call S/I (X ) the Cox ring of X .
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Example

In P2 × P1, consider the points P1 = [1 : 0 : 0]× [1 : 0], and
P2 = [2 : 1 : 0]× [1 : 2]. Then

I (P1) = ⟨x1, x2, y1⟩,

I (P2) = ⟨x1 − 2x0, x2, y1 − 2y0⟩.

For X = P1 ∪ P2, then

I (X ) = I (P1) ∩ I (P2)

= ⟨x2, 2y0y1 − y21 , 2x0y1 − x1y1, 2x1y0 − x1y1, 2x0x1 − x21 ⟩

Degree d Monomial Basis of (S/I )d Dimension

(0,0) 1 1
(1,0) x0, x1 2
(0,1) y0, y1 2
(1,1) x0y0, x1y1 2
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Hilbert Function

Definition
The Hilbert function of S/I (X ) is the function HS/I (X ) : N2 → N
defined by

HS/I (X )(i , j) = dimk(S/I (X ))i ,j

= dimk Si ,j − dimk I (X )i ,j

Example

X = {[1 : 0 : 0]× [1 : 0], [2 : 1 : 0]× [1 : 2]} as before.
I (X ) = ⟨x2, 2y0y1 − y21 , 2x0y1 − x1y1, 2x1y0 − x1y1, 2x0x1 − x21 ⟩

HS/I (X )(i , j) =

{
1 (i , j) = (0, 0)

2 otherwise
, HS/I (X ) =

1 2 · · ·
2 2 · · ·
...

...
. . .
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Free resolutions

Definition
A graded free resolution of S/I (X ) is an exact sequence of free
S-modules

0 ← S/I (X ) ←
⊕
d∈N2

S(−d)β0,d ←
⊕
d∈N2

S(−d)β1,d ← · · ·

A free resolution is minimal (MFR) if each free module has the
minimal number of generators. The βi ,d are the Betti numbers of
S/I (X ).
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Example

X = {[1 : 0 : 0]× [1 : 0], [2 : 1 : 0]× [1 : 2]} as before. A graded
MFR of S/I (X ) is given by

S ←

S(−1, 0)
⊕

S(−2, 0)
⊕

S(−1,−1)2
⊕

S(0,−2)

←

S(−3, 0)
⊕

S(−2,−1)4
⊕

S(−1,−2)3

←
S(−3,−1)2

⊕
S(−2,−2)3

← S(−3,−2)← 0

Theorem (Hilbert’s Syzygy Theorem, 1890)

The minimal free resolution of any module over a polynomial ring
has finite length, and this length is bounded by the number of
variables.
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Virtual Resolutions

Definition
Virtual resolutions (VR) are complexes of free S-modules which are not
necessarily exact:

0 ← S/I (X )
ϕ0←−

⊕
d∈N2

S(−d)β0,d
ϕ1←−

⊕
d∈N2

S(−d)β1,d
ϕ2←− · · ·

The modules Ker(ϕi−1)/ Im(ϕi ) are allowed to have support in the
irrelevant ideal

B = ⟨x0, . . . , xn⟩ ∩ ⟨y0, . . . , ym⟩.

Note:
(1) Every MFR is a VR;
(2) In Pn × Pm, while MFRs have length bounded by n+m+ 2, VRs can
have length bounded by n +m
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Why study resolutions?

MFRs tell us about the module:

▶ Hilbert function

▶ Dimension

▶ Degree

▶ Vanishing of cohomology

▶ Embedded deformation
theory

▶ Smoothness for curves

▶ Compactness

▶ Complete intersections

▶ Intersection theory

▶ Positivity/ampleness

▶ and more!

Eisenbud’s Geometry of Syzygies book summarizes some of these
stories for Pn.
BUT! In products of projective space MFRs are “too long”

▶ VRs are shorter and still give useful geometric information

▶ Looking at multiple VRs can show even more geometry
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Two Approaches Towards Virtual Resolutions
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First Approach: Trimming

Let X be a finite set of points in Pn × Pm.

Theorem (Maclagan–Smith 2004)

The multigraded regularity of S/I (X ) is

reg(S/I (X )) = {d ∈ Z2 | HX (d) = |X |}.

Example

X = {[1 : 0 : 0]× [1 : 0], [2 : 1 : 0]× [1 : 2]} as before.

Hilbert matrix: HX =

1 2 · · ·
2 2 · · ·
...

...
. . .
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Trimming: First Example

Definition
Trimming at d : keep the free
summands in the MFR of
X ⊆ Pn × Pm generated in degree
≤ d + (n,m).

Theorem
(Berkesch–Erman–Smith 2020)

Trimming the MFR of X at
d ∈ reg(S/I (X )) always yields
virtual resolutions.

Example
X = {[1 : 0 : 0]× [1 : 0], [2 : 1 : 0]× [1 : 2]} as before.
MFR & VR (trimming at (1, 0) + (2, 1) = (3, 1)):

S ←

S(−1, 0)
⊕

S(−2, 0)
⊕

S(−1,−1)2
⊕

S(0,−2)

←

S(−3, 0)
⊕

S(−2,−1)4
⊕

S(−1,−2)3

←
S(−3,−1)2

⊕
S(−2,−2)3

← S(−3,−2)← 0
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Trimming: Generic Hilbert Matrix

Conjecture

When the points in X ⊆ Pn × Pm are in sufficiently general position, the
Hilbert matrix should have a fixed form; namely, we should have

HX (i , j) = min

{(
i + n

n

)(
j +m

m

)
, |X |

}
Example
X = set of 12 random points in P1 × P2 generated in Macaulay2

HX =



1 3 6 10 12 12 · · ·
2 6 12 12 12 12 · · ·
3 9 12 12 12 12 · · ·
...

...
...

...
...

...
...

11 12 12 12 12 12 · · ·
12 12 12 12 12 12 · · ·
...

...
...

...
...

...
. . .
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From Difference Matrix to Betti Numbers

Example (continued)

1 0 0 0 · · ·
0 0 0 −8 · · ·
0 0 −6 16 · · ·
0 0 0 0 · · ·
0 −3 9 −9 · · ·
0 0 0 0 · · ·
...

...
...

...
0 0 0 0 · · ·
−1 3 −3 1 · · ·
0 0 0 0 · · ·


A certain difference matrix

of HX

Hom. degree Degree Betti number
1 (1, 3) 8
1 (2, 2) 6
1 (4, 1) 3
1 (12, 0) 1
2 (2, 3) 16
2 (4, 2) 9
2 (12, 1) 3
3 (4, 3) 9
3 (12, 2) 3
4 (12, 3) 1

(Some of the) Betti numbers of X
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1 0 0 0 · · ·
0 0 0 −8 · · ·
0 0 −6 16 · · ·
0 0 0 0 · · ·
0 −3 9 −9 · · ·
0 0 0 0 · · ·
...

...
...

...
0 0 0 0 · · ·
−1 3 −3 1 · · ·
0 0 0 0 · · ·



Hom. degree Degree Betti number

1 (1, 3) 8
1 (2, 2) 6
1 (4, 1) 3
1 (12, 0) 1

2 (2, 3) 16
2 (4, 2) 9
2 (12, 1) 3

3 (4, 3) 9
3 (12, 2) 3

4 (12, 3) 1

A virtual resolution of X by trimming at (11, 0) + (1, 2) = (12, 3):

S ←

S(−2,−2)6
⊕

S(−4,−1)3
⊕

S(−12, 0)1

←
S(−4,−2)9

⊕
S(−12,−1)3

← S(−12,−2)3 ← 0

Here we used a version of the Minimal Resolution Conjecture.
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Trimming: Result

Assuming the two conjectures, we have:

Theorem (B-D-G-S-S 2023+)

For X ⊆ P1 × P2 in sufficiently general position, when |X | ≥ 12, doing
“trimming” at (|X | − 1, 0) ∈ reg(S/I (X )) will always give us a virtual
resolution of length 3 of the form:

S ←

S(−m,−2)6−r

⊕
S(−m − 1,−2)r

⊕
S(−m′,−1)3−r ′

⊕
S(−m′ − 1,−1)r

′

⊕
S(−n, 0)

←

S(−m′,−2)9−3r ′

⊕
S(−m′ − 1,−2)3r

′

⊕
S(−n,−1)3

← S(−n,−2)3 ← 0

where n = 6m + r = 3m′ + r ′.
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Second Approach: Intersection with ⟨x⟩a

Theorem (Harada–Nowroozi–Van Tuyl 2022)

Let X be a finite set of points in P1 × P1. Let t denote the number
of unique first coordinates. Then for all a ≥ t − 1, the MFR of
S/(I (X ) ∩ ⟨x0, x1⟩a) is a VR of S/I (X ) of length two.

Our result:

Theorem (B-D-G-S-S 2023+)

Let X be a set of points in Pn × P1. Let t denote the number of
first coordinates. For all a ≥ t − 1, the MFR of
S/(I (X ) ∩ ⟨x0, . . . , xn⟩a) is a VR of S/I (X ) of length n + 1.
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Example

Let X = {[1 : 0 : 0]× [1 : 0], [2 : 1 : 0]× [1 : 2]} ⊆ P2 × P1.
Then t = 2 and

I (X ) = ⟨x1, x2, y1⟩ ∩ ⟨x1 − 2x0, x2, y1 − 2y0⟩.

The MFR of S/(I (X ) ∩ ⟨x0, x1, x2⟩a) has length 3 for all
a ≥ 2− 1 = 1.

This MFR (for a = 1) is a VR of S/I (X ).

S ←

S(−1, 0)
⊕

S(−2, 0)
⊕

S(−1,−1)2

←
S(−2,−1)4

⊕
S(−3, 0)

← S(−3,−1)2 ← 0

Recall the MFR of S/I (X ) is length 4.
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But wait, there’s more!

Theorem (B-D-G-S-S 2023+)

Let X be a set of points in Pn × Pm. Let t denote the number of
distinct first coordinates. For all a ≥ t − 1, the MFR of
S/(I (X ) ∩ ⟨x0, . . . , xn⟩a) is a VR of S/I (X ) of length at most
n +m.

Tools we used:

▶ Auslander–Buchsbaum

▶ Primary decomposition

▶ Short exact sequences and additivity of the Hilbert Function
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