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1. Introduction

Young’s lattice is a well-studied poset that consists of partitions ordered by inclusion,
usually represented as Young diagrams. One intriguing object of study is the order complex
associated with intervals in Young’s lattice, as these simplicial complexes have nice geometric
properties, such as thinness and shellability. Björner and Brenti [BB05] state that shellable
and thin simplicial complexes are homeomorphic to balls or spheres, which allows one to
deduce that the order complexes of intervals in Young’s lattice are also balls or spheres. A
natural question is then to think about other substructures within Young’s lattice whose
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induced simplicial complex structure may also have nice geometric properties. Such sub-
structures may be motivated by existing theory and operations that may be done to Young
diagrams and tableaux.

The chains in the simplicial complex ∆([µ, λ]) are naturally described using some tableaux
of shape λ/µ, with the maximal faces bijecting with the standard skew tableaux of shape λ/µ.
A classical operation to perform on standard skew tableau are jeu de taquin slides, which
provide a way to transform one standard skew tableau into another by iteratively sliding
boxes within the tableau. This process not only gives rise to visually appealing algorithms
but also establishes connections to other combinatorial structures. However, when applying a
jeu de taquin slide to standard skew tableaux of the same shape, the shapes of the resulting
standard skew tableaux may not be the same. To better understand and analyze these
transformations, we restrict our focus to the dual equivalent tableaux, explored by Haiman
[Hai92]: two tableaux are dual equivalent if every sequence of slides applied to S and T
output tableaux of the same shape.

In this report, we aim to look at the geometric implications of jeu de taquin slides on
simplicial complexes whose maximal faces are dual-equivalent standard skew tableaux.

1.1. Main Results and Organization. In Section 2, we give preliminary background on
Jeu de Taquin theory and simplicial complexes, as well as introducing our main technical
lemmas. In Section 3, we introduce the main object of our study – dual equivalence com-
plexes, which are simplicial complexes arising from dual equivalence classes of tableaux. We
explain our motivating conjecture for these complexes, and show that the motivating conjec-
ture is false. In Section 4, we study operations on indexing tableaux that yield isomorphic
dual equivalence complexes, namely transposition and evacuation. In Section 5, we show
that certain classes of standard tableaux do satisfy our motivating conjecture, namely su-
perstandard tableaux, rectangular tableaux, dual reading tableaux, and certain hook-shaped
tableaux. In Section 6, we study how K-jdt acts on the interior faces of dual equivalence
complexes. Finally, in Section 7, we discuss possible future work and unsolved problems.

2. Preliminaries

2.1. Young Tableaux and Jeu de Taquin Theory. In this subsection, we recall some
standard definitions in jeu de taquin theory. First, recall that the shape of a Young dia-
gram (which we sometimes refer to as a straight Young diagram) is given by a sequence
λ = (λ1, λ2 . . . λk) of positive integers in weakly decreasing order. Young diagrams may be
represented pictorially as left-justified arrays of boxes, with λi boxes in row i. We refer to
the number of boxes in a Young diagram λ as |λ|.

A skew Young diagram is determined by a pair of straight diagrams (λ, µ) such that
the Young diagram of λ contains the Young diagram of µ. In terms of sequences, this means
that λi ≥ µi for all i. Then, the skew diagram is given by the set theoretic difference of
boxes in λ and µ.

Example 2.1. Let λ = (3, 2) and µ = (2, 1). Then, (λ, µ) defines a skew diagram:

λ = µ = λ/µ =
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Definition 2.2. Let λ be a straight Young diagram. A tableau1 of shape λ is a labeling of
the boxes of the diagram with integers from [k] := {1, . . . , k} such that the entries weakly
increase along any row and along any column, and every integer in [k] is the entry of at least
one box. An increasing tableau is a tableau such that the entries strictly increase along
any row and along any column. A standard tableau is a tableau with distinct entries.

These definitions are analogous for skew shapes λ \ µ.

1 1 3

1 3

(a) Example of a
non-tableau.

1 1 3

1 2

(b) Example of a
tableau.

1 2 3

2 3

(c) Example of an
increasing tableau.

1 2 4

3 5

(d) Example of a
standard tableau.

Figure 1. Examples of tableaux and non-tableaux of shape λ = (3, 2).

The following notation is often useful in describing the entries of a tableau:

Definition 2.3. The row reading word of a tableau T , abbreviated as wrow(T ), is the
word obtained by concatenating the rows (from left to right), starting from the bottom and
going up. The column reading word of T , wcol(T ), is the word obtained by concatenating
the columns (read bottom up) from left to right.

For example, for the tableau in Figure 1d, its row reading word is 35124, and its column
reading word is 31524.

Jeu de taquin , which we will often abbreviate as jdt , is an algorithm that takes in
a standard skew tableau and transforms it into a standard straight tableau via a series of
moves, sometimes called slides . We briefly sketch steps of jeu de taquin here, but we refer
the reader to [Ful97, Chapter 1] for more details.

1

2

3 4 5

(a) A standard
tableau of skew
shape.

1

2 5

3 4

(b) Applying one
jeu de taquin
move to the inner
corner.

1 5

2

3 4

(c) A second jeu
de taquin move.

1 5

2 4

3

(d) A third jeu de
taquin move.

1 4 5

2

3

(e) The tableau
has been fully rec-
tified.

Figure 2. Iterated jeu de taquin slides on a standard skew tableau of shape
(3, 3, 3)/(2, 2).

1What we call tableaux may be known as weakly-increasing tableaux.
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As shown in Figure 2, at each step of jeu de taquin on a skew shape, one chooses an inner
corner of the empty cells and slides it out of the diagram. In the first step, we slide out the
empty corner adjacent to 2 and 4 by first swapping it with 2, since 2 < 4, and then swapping
it with 5. At each step of the process, the number of empty boxes in the diagram decreases
by one; when there are no empty boxes left, we have rectified the tableau.

It is a nontrivial fact that if we start with a standard tableau, then at each step of jeu
de taquin, we still have a standard tableau. It is an even more remarkable and non-obvious
fact that the rectification is well-defined: we can pick inner corners to slide out in any order,
and the resulting straight tableau will always be the same [Ful97, Chapter 3]

The Robinson-Schensted correspondence (abbreviated as RS) will also be a key tool
for our report. Again, we will briefly describe the main idea of RS and refer the reader to
[Ful97, Chapter 4] for details (and to [Ful97, Chapter 1] for details on insertion on tableaux,
a preliminary for RS). There are many equivalent ways to formulate RS, but for us, RS is a
bijection between permutations of [n] and pairs (P,Q) of standard tableaux of a given shape
λ with |λ| = n. We call P (w) the insertion tableau and Q(w) the recording tableau .
Dual equivalence classes, described in the next subsection, were originally motivated by their
nice relationship with RS.

P (w) =
1 2 3 5

4
Q(w) =

1 2 3 4

5

Figure 3. The pair (P,Q) corresponding to the permutation w = 12534.

2.2. Dual Equivalence. In this subsection, we introduce dual equivalence classes of
tableaux, which were defined by Haiman [Hai92].

First, we recall the definition of Knuth moves [Ful97, Chapter 2]. Given a word w, let
xyz be a substring of w. A Knuth move on w is given by the following equivalences:

· · ·xzy · · · ↔ · · · zxy · · · if x < z < y, or
· · · yzx · · · ↔ · · · yxz · · · if x < y < z.

The motivation for studying dual equivalence is that it is precisely dual to Knuth equiva-
lence, in a way made more precise by Proposition 2.4.

Proposition 2.4 ([Ful97, p. 191]). Let w and z be permutations of [n]. The following
statements are equivalent:

(i) w−1 and z−1 are Knuth equivalent.
(ii) w and z have the same recording tableau, i.e. Q(w) = Q(z).
(iii) w and z can be transformed into each other by a finite sequence of elementary dual

Knuth transformations, where an elementary dual Knuth transformation on a per-
mutation x1 . . . xn is the interchange of two letters xi = k and xj = k + 1, provided
that one of the letters k − 1 or k + 2 occurs between them in the word.

We say permutations w and z of [n] are dual equivalent , denoted w ∼ z, if they satisfy
the equivalent properties in Proposition 2.4. Dual equivalence is an equivalence relation on
the set of permutations of [n].

Given a standard straight tableau Q with n boxes, the set of permutations w of [n] having
recording tableau Q forms a dual equivalence class, by Proposition 2.4(ii). Hence, we define
this set to be the dual equivalence class indexed by Q.
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Example 2.5. The permutations 2341 and 1342 are dual equivalent, since they differ by an
elementary dual Knuth transformation that interchanges 1 and 2, since 3 appears between

them. Moreover, the recording tableau of both 2341 and 1342 is 1 2 3
4 , and hence 2341 and

1342 are elements of the dual equivalence class indexed by 1 2 3
4 .

Proposition 2.6 ([Hai92, Theorem 2.6, Lemma 2.11]). Let S and T be standard skew ta-
bleaux of the same shape. The following statements are equivalent:

(i) The permutations wrow(S) and wrow(T ) are dual equivalent.
(ii) Every sequence of slides, when applied to S and T , yields two tableaux of the same

shape.
(iii) There is a rectifying sequence of slides which, when applied to S and T , yields pairs

tableaux of the same shape at each intermediate step.
(iv) S and T can be transformed into each other by a finite sequence of elementary dual

Knuth transformations on their reading words.

We say standard skew tableaux S and T of the same shape are dual equivalent , denoted
S ∼ T , if they satisfy the equivalent properties in Proposition 2.6.

We lay out some useful known facts about the dual equivalence relation.

Corollary 2.7 ([Hai92, Corollary 2.5]). Any pair of standard straight tableaux of the same
shape are dual equivalent.

Corollary 2.7 follows from applying Proposition 2.6(ii) to the empty sequence of slides.

Corollary 2.8 ([Hai92]). Let S and T be standard skew tablaeux, and let S ′ and T ′ be
obtained from S and T by the same sequence of slides. Then, S and T are dual equivalent
if, and only if, S ′ and T ′ are dual equivalent.

The forwards direction of Corollary 2.8 follows from applying Proposition 2.6(ii) to every
sequence of slides starting with the given sequence of slides, while the backwards direction
follows from appending the given sequence of slides to the sequence obtained from Proposi-
tion 2.6(iii).

Definition 2.9. Let T be a standard tableau of shape λ/µ. The dual equivalence class
of tableau containing T is denoted [T ]D.

2.3. Simplicial Complexes. A simplicial complex ∆ with vertex set V is a nonempty
family of subsets of V , called faces , such that if F ⊂ G ∈ ∆, then F ∈ ∆. Moreover,
we assume that {v} ∈ ∆ for all v ∈ V . A facet of ∆ is a maximal face of the complex.
The dimension of a face F is dimF := |F | − 1, and the codimension of a face F
is codimF := dim∆ − dimF . The dimension of a simplicial complex ∆ is given by
dim∆ := maxF∈∆ dimF . A simplicial complex is called pure if all of its facets have the
same dimension.

Given a finite poset P , we can define its associated order complex ∆(P ) as the simplicial
complex of all chains of P . The dimension of a face of ∆(P ) is one less than the length of its
corresponding chain; so, vertices of ∆(P ) correspond to elements of P , and facets of ∆(P )
correspond to maximal chains of P .

In particular, we obtain an order complex from Young’s Lattice , the poset of Young
diagrams with the ordering given by inclusion. However, since this simplicial complex is
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Figure 4. Hasse diagram of [ , ] in Young’s lattice.

infinite, we instead consider the order complex of intervals [µ, λ] in Young’s lattice, which
are finite.

Recall that the faces of the order complex of ∆([µ, λ]) containing µ and λ are chains of
partitions of the form

µ = λ0 ≤ λ1 ≤ · · · ≤ λk = λ.

We associate this chain to the tableau of shape λ/µ that assigns the integer ℓ to the boxes in
λℓ/λℓ−1. This correspondence also gives a bijection between facets of ∆([µ, λ]) and standard
tableaux of shape λ/µ.

Definition 2.10. The boundary of a pure simplicial complex ∆ consists of all faces F ∈ ∆
such that there exists a codimension 1 face G with the property that F ⊆ G and G lies in
exactly one facet of ∆. The interior of ∆ consists of all faces of ∆ not in the boundary.

Proposition 2.11. The correspondence between faces of ∆([µ, λ]) and weakly-increasing
tableaux of shape λ/µ determines a bijection between interior faces of ∆([µ, λ]) and increasing
tableaux of shape λ/µ.

Proof. First, we prove that all interior faces in ∆([µ, λ]) contain both µ and λ. Equivalently,
we prove that all faces not containing either µ or λ are a boundary face. Let G be a face
not containing µ (resp. λ), and let F be a facet containing G. Since ∆([µ, λ]) is pure, F has
codimension 0. Let F ′ be F without the vertex µ (resp. λ). Then, the codimension of F ′ is
1, the only facet containing F ′ is F , and G is contained in F ′. Hence, G is a boundary face.

We now prove that interior faces are mapped to increasing tableaux via this association.
Let G be an interior face. Consider two boxes b1, b2 of weakly increasing tableau G with the
same filling ℓ. Consider the Young diagram ρ1 (resp. ρ3) containing all boxes with numbers
strictly less than ℓ in the tableau G, and all boxes on the upper-left to b1, b2, exclusively
(resp. inclusively). Note that G′ = G ∪ {ρ1, ρ3} is a face, since the new vertices contain
G(ℓ−1) and are contained in G(ℓ). Let F ′ be a facet containing G′, say

F ′ = {µ ⊂ · · · ⊂ ρ1 ⊂ ρ2 ⊂ ρ3 ⊂ · · · ⊂ λ}.

Without loss of generality, ρ2 = ρ1 ∪ {b1}. Let F = F ′ \ {ρ2}. Note that F ⊃ G has
codimension 1. Since G is an interior face, there is a facet F ′′ which is distinct from F ′ and
also contains F . By the structure of the Young’s lattice, this facet must be

F ′′ = {µ ⊂ · · · ⊂ ρ1 ⊂ ρ1 ∪ {b2} ⊂ ρ3 ⊂ · · · ⊂ λ}.

Since both ρ1 ∪ {b1} and ρ1 ∪ {b2} are Young diagrams, it follows that b1 and b2 are not in
the same column or row. Therefore, the tableau G is an increasing tableaux.

Next, we prove that boundary faces containing µ and λ are mapped to weakly increasing
tableaux that are not increasing tableaux. Let G be a boundary face. Hence, there exists a
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face F ′ with codimension 1, say

F = {µ ⊂ · · · ⊂ G(ℓ−1) ⊂ · · · ⊂ ρ1 ⊂ ρ3 ⊂ · · · ⊂ G(ℓ) ⊂ · · · ⊂ λ},
where ρ3 \ ρ1 = {b1, b2}, and such that there’s only one facet F ′ that contains it, say

F ′ = {µ ⊂ · · · ⊂ G(ℓ−1) ⊂ · · · ⊂ ρ1 ⊂ ρ1 ∪ {b1} ⊂ ρ3 ⊂ · · · ⊂ G(ℓ) ⊂ · · · ⊂ λ}.
Therefore,

F ′′ = {µ ⊂ · · · ⊂ G(ℓ−1) ⊂ · · · ⊂ ρ1 ⊂ ρ1 ∪ {b2} ⊂ ρ3 ⊂ · · · ⊂ G(ℓ) ⊂ · · · ⊂ λ}
is not a face, meaning that ρ1 ∪ {b2} is not a Young diagram, while ρ1 and ρ3 = ρ1 ∪ {b1, b2}
are Young diagrams. Consequently, boxes b1 and b2, which both are assigned ℓ in G, since
they both are in G(ℓ) \ G(ℓ−1), must either be in the same column or the same row. Hence,
G is not an increasing tableaux. □

Theorem 2.12 is a classical result about such order complexes.

Theorem 2.12 ([BB05, Theorem 2.7.7]). The order complex of the closed interval [µ, λ] of
Young’s lattice is piecewise-linear homeomorphic to a ball. Furthermore, the order complex
of the open interval (µ, λ) is piecewise-linear hoomeomorphic to either a ball or a sphere.

2.4. Simplicial Isomorphisms.

Definition 2.13. Let ∆1,∆2 be simplicial complexes with vertex sets V1, V2. An injection
f : V1 → V2 is a simplicial map of ∆1 on ∆2 if, for all S ∈ ∆1, {f(v) : v ∈ S} ∈ ∆2.
A bijection f : V1 → V2 is a simplicial isomorphism of ∆1 on ∆2 if f and f−1 are
simplicial maps.

Let B1, B2 be finite sets. Let f : B1 → B2 be a function. As an abuse of notation, define
f : 2B1 → 2B2 to be the map given by f(v) = {f(b) : b ∈ v}, and define f : 22

B1 → 22
B2 to

be the map given by f(S) = {f(v) : v ∈ S}. Note that, if f : B1 → B2 is an injection (resp.

bijection), then f : 2B1 → 2B2 and f : 22
B1 → 22

B2 are also injections (resp. bijections).
Propositions 2.14 and 2.15 are key technical tools of this report.

Proposition 2.14 (Element-to-element injection induces simplicial map). Let B1, B2 be
finite sets. Let ∆1,∆2 be simplicial complexes with vertex sets V1 ⊂ 2B1 , V2 ⊂ 2B2. Let
f : B1 → B2 be an injection. Assume that the injection f : 22

B1 → 22
B2 maps facets of ∆1

to faces of ∆2. Then, the image of V1 is a subset of V2 under the injection f : 2B1 → 2B2.
Moreover, the injection f : V1 → V2 is a simplicial map of ∆1 on ∆2.

We say that the simplicial map f : V1 → V2 of ∆1 on ∆2 is induced by the injection
f : B1 → B2. The main application of Proposition 2.14 is when B1, B2 are sets of boxes in
N×N (in particular, these sets of boxes are skew diagrams), V1, V2 are sets of skew diagrams,
and ∆1, ∆2 are (isomorphic to) simplicial subcomplexes of Young’s lattice.

Proof. First, we prove that the injection f : 22
B1 → 22

B2 maps faces of ∆1 to faces of ∆2.
Let S ∈ ∆1 be a face, contained by a facet F ∈ ∆1. Hence, f(S) = {f(v) : v ∈ S} ⊂ {f(v) :
v ∈ F} = f(F ). Since f(F ) is a face of ∆2, it follows that f(S) is a face of ∆2.
Second, we prove that the injection f : 2B1 → 2B2 maps vertices of V1 to vertices of V2.

Let v ∈ V1 be arbitrary. Hence, {v} ∈ ∆1, consequently f({v}) = {f(v)} ∈ ∆2, and finally
f(v) ∈ V2. We can now consider the restriction of f : 2B1 → 2B2 to the injection f : V1 → V2.
This restriction is a simplicial map of ∆1 on ∆2. □
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Proposition 2.15 (Element-to-element bijection induces simplicial isomorphism). Let B1,
B2 be finite sets. Let ∆1,∆2 be simplicial complexes with vertex sets V1 ⊂ 2B1 , V2 ⊂ 2B2. Let
f : B1 → B2 be a bijection. Assume that the bijection f : 22

B1 → 22
B2 bijects facets of ∆1 to

facets of ∆2. Then, the image of V1 is V2 under the bijection f : 2B1 → 2B2. Moreover, the
bijection f : V1 → V2 is a simplicial isomorphism of ∆1 on ∆2.

Proposition 2.15 follows from Proposition 2.14 by applying it on f and on f−1.

3. Simplicial Complexes from Dual Equivalence Classes and the Motivating
Conjecture

3.1. Simplicial Complexes from Dual Equivalence Classes. In this paper, the main
objects of study are the order complexes generated by shape sequences of standard skew
tableaux belonging to the same dual equivalence class.

Definition 3.1. Let T be a standard skew tableau of shape λ/µ. Let ∆tab(T ) be the
simplicial complex with facets given by the standard skew tableaux in the dual equivalence
class containing T . We call this the dual equivalence complex containing T .

Note that ∆tab(T ) is a simplicial subcomplex of ∆([µ, λ]).
The other notion of dual equivalence, defined on permutations rather than standard skew

tableaux, gives rise to an similar class of complexes. We first adapt a corresponding notion
of chains of tableaux to permutations.

Definition 3.2. Given a permutation w of [n], the shape sequence of w is the sequence
of nested sets

∅ ⊆ w−1([1]) ⊆ · · · ⊆ w−1([n− 1]) ⊆ w−1([n]).

Definition 3.3. Let Q be a standard straight tableau with n boxes. Let ∆word(Q) be the
simplicial complex generated by the shape sequences of permutations of [n] in the dual
equivalence class indexed by Q. We call this the dual equivalence complex indexed by
Q.

Lemma 3.4 explicitly transfers the similarities of dual equivalence on tableaux and on
permutations to this new setup of simplicial complexes.

Lemma 3.4. Let T be a standard skew tableau. Let Q be the recording tableau of wrow(T ).
Then ∆tab(T ) ∼= ∆word(Q).

Proof. Let λ/µ be the shape of T , and let n = |λ/µ|, the number of boxes in T . We identify
the vertices of ∆tab(T ) with skew shapes skewed by µ. Let f be the bijection from [n] to the
skew diagram of λ/µ that sends i to the ith box of the skew diagram of λ/µ in row reading
order. Let f be the bijection from the skew diagram of λ/µ to [n] that sends the ith box of
the skew diagram of λ/µ in row reading order to i. Note that f sends the shape sequence
of a standard skew tableau S to the shape sequence of the reading word of S. Therefore, it
maps the facets of ∆tab(T ) to the facets of ∆word(Q). From Proposition 2.15, f induces a
simplicial isomorphism of ∆tab(T ) on ∆word(Q). □

Lemma 3.4 presents two notations for the simplicial complexes arising from dual equiv-
alence classes. Consequently, in each context, we opt for the notation that best suits our
purposes. In-text, we may abuse language and refer to both as a dual equivalence com-
plex if the method of referring to such a complex is clear, as they refer to isomorphic
notions.
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3.2. The Motivating Conjecture.

Conjecture 3.5 (False). Let Q be a standard straight tableaux. Then, ∆word(Q) is homeo-
morphic to a ball.

This conjecture is motivated by the fact that all tableaux of a straight shape λ form a
dual equivalence class [Hai92, Proposition 2.4] and that the order complex associated to
λ is homeomorphic to a ball [Bjö80, Theorem 2.7.7]. Furthermore, JDT preserves dual
equivalence classes [Hai92, Lemma 2.11]. Therefore, one might guess that JDT induces
isomorphisms of the simplicial complexes associated to dual equivalence classes, and thus
that after rectifying a skew shape via JDT, the resulting isomorphic simplicial complex is
homeomorphic to a ball.

By exhaustive computation, ∆word(Q) is shellable, thus homeomorphic to a ball, for all
standard straight tableaux Q with at most 6 boxes. However, there are standard straight
tableaux Q for which ∆word(Q) is not shellable; computed exhaustively, all counterexamples
with 7 boxes are displayed in Figure 5, and all counterexamples with 8 boxes are displayed
in Figure 6.

1 2 3 7
4 6
5

1 4 5
2 6
3
7

Figure 5. Tableaux Q with 7 boxes that are counterexamples of Conjec-
ture 3.5

1 2 3 7 8
4 6
5

1 2 3 4 8
5 7
6

1 3 5 7
2 4 8
6

1 2 5 7
3 4 8
6

1 3 5 6
2 4 8
7

1 2 5 6
3 4 8
7

1 3 5 7
2 6
4 8

1 3 4 7
2 6
5 8

1 3 4 8
2 7
5
6

1 2 4 8
3 7
5
6

1 2 3 8
4 7
5
6

1 4 5 8
2 6
3
7

1 2 3 8
4 6
5
7

1 4 5 7
2 6
3
8

1 2 3 7
4 6
5
8

1 4 5 6
2 7
3
8

1 3 5 6
2 7
4
8

1 2 5 6
3 7
4
8

1 2 5
3 6 8
4
7

1 2 4
3 6 8
5
7

1 3 7
2 4
5 8
6

1 2 7
3 4
5 8
6

1 3 6
2 4
5 8
7

1 2 6
3 4
5 8
7

1 5 6
2 7
3
4
8

1 4 5
2 6
3
7
8

Figure 6. Tableaux Q with 8 boxes that are counterexamples of Conjec-
ture 3.5

Letting Q being the second tableau in Figure 5, we explicitly show that the simplicial
complex ∆word(Q) is not Cohen-Macaulay, and hence not homeomorphic to a ball, which
disproves the motivating conjecture.

To look at ∆word(Q) for

Q =

1 4 5
2 6
3
7

,

consider a word w such that Q(w) = Q — for our purposes, consider w = 4325761. We may
compute the dual equivalence class of w and [w]D, and by taking the inverses of these words
(as permutations), we may compute the shape sequences that form the facets of ∆word(Q).
Here is a list of all these inverted words:
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3247651 3274651 3276415 3276451 3427651 3472651 3476215
3476251 3724651 3726415 3726451 3742165 3742615 3742651
3746215 3746251 3762145 3762415 3762451 7321465 7321645
7324165 7324615 7324651 7326145 7326415 7326451 7342165
7342615 7342651 7346215 7346251 7362145 7362415 7362451

One easy computational check we can perform to determine whether or not a simplicial
complex is shellable is to test if the simplicial complex is also Cohen-Macaulay, defined in
Definition 3.7.

Definition 3.6. The link of a face F ∈ ∆ is the simplicial complex link∆(F ) consisting of
all faces G ∈ ∆ such that G ∩ F = ∅ and G ∪ F ∈ ∆.

Definition 3.7. A simplicial complex ∆ is Cohen-Macaulay if for every F ∈ ∆ and
i < dim link∆(F ), the relative homology group H̃i(link∆(F )) = 0.

For Q =

1 4 5
2 6
3
7

, consider the following face F ′ in ∆word(Q):

F ′ = {{3} , {3, 7} , {2, 3, 4, 6, 7} , {1, 2, 3, 4, 6, 7}} .

The link of this face is a collection of edges:

{2, 3, 7}

{2, 3, 6, 7}

{3, 6, 7}

{2, 3, 4, 7}

{3, 4, 7}

{3, 4, 6, 7}

The zeroth reduced homology of this link is nontrivial since it has two connected components.
Taking the suspension on this by the vertices {3} and {7} lifts to nontrivial first homology,
and taking the suspension again by the vertices {1, 2, 3, 4, 6, 7} and {2, 3, 4, 5, 6, 7} gives
nontrivial second homology. In any case, this simplicial complex is not Cohen-Macaulay.

From [Wac04], triangulations of a ball or a sphere must be Cohen-Macaulay, so this sim-
plicial complex is not homeomorphic to a ball or a sphere.

4. Operations on Indexing Tableaux

Note that the two indexing tableaux with 7 boxes in Figure 5, which contradict Conjecture
3.5, are transposes of each other. Moreover, they are self-evacuating tableaux (evacuation
is defined in Definition 4.2)2. This observation motivates Question 4.1.

Question 4.1. Which operations on indexing tableaux give isomorphic dual equivalence
complexes?

In this section, we show that transposition and evacuation are operations which produce
these isomorphisms.

2This observation was due to Vic Reiner.
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4.1. Evacuation. We first describe the process of evacuation on straight tableaux. Evacu-
ation can be defined in several equivalent ways; we follow the definition from [But94].

Definition 4.2. Let T be a straight standard tableau with n boxes. Replace each entry j
of T with j∗ = n + 1 − j, rotate the tableau 180◦, and rectify the resulting standard skew
tableau to obtain a standard straight tableau, called the evacuation of T , denoted by ϵ(T ).

Example 4.3. This example shows the steps of evacuation; the leftmost tableau is T and
the rightmost is ϵ(T ).

T =
1 3

2
replace entries−−−−−−−−→ 3 1

2
rotate 180◦−−−−−−→ 2

1 3
rectify−−−→ 1 2

3
= ϵ(T )

Theorem 4.4. Let Q be a straight standard tableaux. Then, ∆word(Q) ∼= ∆word(ϵ(Q)).

Proof. Recall that vertices v of ∆word(Q) are subsets of [n], since they are elements of shape
sequences of permutations. Define the reverse complement map f : 2[n] → 2[n] by

f(v) = {a∗ : a /∈ v}.
Let S be a facet in ∆word(Q). There exists a permutation w with recording tableau Q

such that S is the shape sequence of w. Explicitly, S is the set consisting of

∅, {w−1(1)}, . . . , {w−1(1), . . . , w−1(n− 1)}, {w−1(1), . . . , w−1(n− 1), w−1(n)}.
Hence, f(S) is the set consisting of

{w−1(1)∗, w−1(2)∗, . . . , w−1(n)∗}, {w−1(2)∗, . . . , w−1(n)∗}, . . . , {w−1(n)∗}, ∅,

that is,

{w∗−1(1∗), w∗−1(2∗), . . . , w∗−1(n∗)}, {w∗−1(2∗), . . . , w∗−1(n∗)}, . . . , {w∗−1(n∗)}, ∅.

Note that this corresponds to the elements of the shape sequence of w∗ = w∗
n · · ·w∗

2w
∗
1.

Now, the Duality Theorem [Ful97, p. 184] says that RS(w∗) = (ϵ(P ), ϵ(Q)). Hence, w∗

is a permutation in the dual equivalence class indexed by ϵ(Q), and thus f(S) is a face in
∆word(ϵ(Q)).

Therefore, f is a simplicial map. By the same argument applied to ϵ(Q), f−1 is also a
simplicial map, which finally implies that f is an simplicial isomorphism between ∆word(Q)
and ∆word(ϵ(Q)). □

Example 4.5. Take Q to be 1 3
2

; then, we previously computed ϵ(Q) = 1 2
3

in Example

4.3.
The permutations with recording tableau Q are 312 and 213, whose shape sequences are,

respectively, ∅, 2, 23, 123 and ∅, 2, 12, 123. The permutations with recording tableau ϵ(Q)
are 132 and 231, whose shape sequences are, respectively, ∅, 1, 13, 123 and ∅, 3, 13, 123. The
simplicial isomorphism f : 2[n] → 2[n], defined in the proof of Theorem 4.4, sends

∅ 7→ 1∗2∗3∗ = 123, 1 7→ 2∗3∗ = 12, 2 7→ 1∗3∗ = 13, 3 7→ 1∗2∗ = 23,

12 7→ 3∗ = 1, 13 7→ 2∗ = 2, 23 7→ 1∗ = 3, 123 7→ ∅.

Hence, the simplicial isomorphism f sends the facet in ∆word(Q) corresponding to 312 to the
facet in ∆word(ϵ(Q)) corresponding to 132, and sends the facet in ∆word(Q) corresponding to
213 to the facet in ∆word(ϵ(Q)) corresponding to 231.
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4.2. Transposition. We may use the above result for evacuation to show that transposition
on Q-tableaux is also a simplicial isomorphism.

Theorem 4.6. Let Q be a standard straight tableaux. Then ∆word(Q) ∼= ∆word(Q
⊤).

Proof. Recall that vertices v of ∆word(Q) are subsets of [n], since they are elements of shape
sequences of permutations. Define the complement map g : 2[n] → 2[n] by

g(v) = [n] \ v.

Let S be a facet in ∆word(Q). There exists a permutation w with recording tableau Q
such that S is the shape sequence of w. Explicitly, S is the set consisting of

∅,
{
w−1(1)

}
, . . . ,

{
w−1(1), . . . , w−1(n− 1)

}
,
{
w−1(1), . . . , w−1(n− 1), w−1(n)

}
.

Hence, f(S) is the set consisting of{
w−1(1), . . . , w−1(n− 1), w−1(n)

}
,
{
w−1(2), . . . , w−1(n− 1), w−1(n)

}
, . . . ,

{
w−1(n)

}
,∅,

that is

∅,
{
w−1(n)

}
, . . . ,

{
w−1(2), . . . , w−1(n− 1), w−1(n)

}
,
{
w−1(1), . . . , w−1(n− 1), w−1(n)

}
.

As a shape sequence, this is generated from taking prefixes of the permutation w−1w0, where
w0 is the reversal permutation n, . . . , 2, 1, which we see corresponds to the shape sequence
of the permutation w0w.
It is a fact that if RS(w) = (P,Q), then for the reversal of w, wrev = ww0 where w0 is the

reversal permutation, we have that RS(ww0) = (P⊤, ϵ(Q⊤)) ([Ful97, p.208]). Applying the
Duality Theorem and replacing w with w∗, we see that RS(w∗w0) = RS(w0w) = (ϵ(P⊤), Q⊤),
so indeed Q(w0w) = Q⊤. As such, g(S) is a facet in ∆word(Q

⊤), and therefore g is a simplicial
map.

Using the same argument as above, we see that g−1 is similarly a simplicial map, so g is
a simplicial isomorphism between ∆word(Q) and ∆word(Q

⊤).
□

Example 4.7. For a slightly larger example, consider Q =
1 2 3

4
, so Q⊤ =

1 4

2

3

. The

words such that RS(w) = Q are 2341, 1342, and 1243. Inverting and taking prefixes gives the
vertex set {∅, {1} , {4} , {1, 2} , {1, 4} , {1, 2, 4} , {1, 2, 3, 4}}. On the other hand, the words
such that RS(w) = Q⊤ are 3214, 4213, and 4312. Doing the same procedure gives the vertex
set {∅, {3} , {2, 3} , {3, 4} , {1, 2, 3} , {2, 3, 4} , {1, 2, 3, 4}}, which consists of the complements
of the vertices in ∆word(Q) by Theorem 4.6. One can check that taking the complements
also sends facets to facets – for instance, the facet {∅, {4} , {1, 4} , {1, 2, 4} , {1, 2, 3, 4}} is
sent to the facet {∅, {3} , {2, 3} , {1, 2, 3} , {1, 2, 3, 4}}. Doing this for the other two facets
illustrates that this is indeed an isomorphism.

5. Special Tableaux Families

We now pivot to investigating which straight tableaux Q index dual equivalence complexes
that are homeomorphic to balls. We study four classes of such special tableaux.
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5.1. Dual Reading Tableaux. In this subsection, we show that a special class of tableaux,
dual reading tableaux , index (via RSK) simplicial complexes which are homeomorphic to
balls. Dual reading tableaux were first defined by Edelman and Greene [EG87]:

Definition 5.1 ([EG87]). Let λ be a straight Young diagram. Then, the (unique) dual
reading tableau of shape λ, Q(λ), is constructed by the following process:

(i) Label the boxes of λ with 1, 2, . . . , n in the order of the row reading word.
(ii) Sort the columns in increasing order.

label−−→
4 5 6 7

2 3

1

sort−−→
1 3 6 7

2 5

4

Figure 7. Algorithm for obtaining the dual reading tableau of shape (4, 2, 1),
the rightmost tableau in the figure.

In [EG87], the motivation for looking at such tableaux is a nice RSK property they exhibit.
The same property will be useful to us:

Lemma 5.2 ([EG87, Lemma 6.16]). For any tableau P of shape λ, we have

RS(wrow(P )) = (P,Q(λ)).

Now, we can prove the main result of this subsection:

Theorem 5.3. If Q is the dual reading tableau of shape λ, then ∆word(Q) is isomorphic to
∆([∅, λ]) and thus homeomorphic to a ball.

Proof. We will apply Proposition 2.15 to give an isomorphism ∆word(Q) → ∆([∅, λ]). As in
the previous application of Proposition 2.15, let µ1 \ µ2 be some skew shape, and consider
the dual equivalence class of tableaux of shape µ1 \ µ2 indexed by Q; let B1 be the set of
boxes of µ1 \ µ2, and let B2 be the set of boxes of λ. We define f : B1 → B2 to send the ith
box of B1, where the order is given by the row reading order, to the ith box of λ. Since f is
a bijection, by Proposition 2.15 it suffices to show that f maps facets to facets.

A facet of the dual equivalence complex is given by a standard tableau T of shape µ1 \µ2.
Applying JDT to T , by Lemma 5.2, we obtain the tableau P whose row reading word is
wrow(T ). Thus, on facets, f restricts to JDT, which maps standard Young tableaux to
standard Young tableaux, and thus facets to facets, as desired. □

5.2. Rectangular Tableaux. The main result of this section is:

Theorem 5.4. Let Q be a standard tableau of rectangular shape λ. Then ∆word(Q) is
isomorphic, as a simplicial complex, to the order complex ∆[∅, λ]. Moreover, for any skew
tableau T that rectifies to a rectangular tableau, any JDT move on T yielding a tableau T ′

is the restriction of a simplicial isomorphism ∆tab(T ) → ∆tab(T
′).

By [Bjö80], this implies that ∆(Q) for Q standard of rectangular shape is homeomorphic
to a ball.

We start by proving a lemma about RSK and rectangular tableaux.
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Lemma 5.5. Let P,Q be standard tableaux of the same rectangular shape. Let Qflip be
obtained by reflecting Q through a horizontal axis, and let w be the word obtained by reading
the entries of P in the order of the boxes of Qflip. Then, RS(w) = (P,Q).

Example 5.6. Let

P =

1 2 4 5

3 7 8 9

4 10 11 12

Q =

1 2 3 9

4 6 8 11

5 7 10 12

Then,

Qflip =

5 7 10 12

4 6 8 11

1 2 3 9

and

RS−1(P,Q) = [4, 10, 11, 3, 1, 7, 2, 8, 12, 5, 9, 6].

Proof. First, assume that Q is row superstandard. Then, w is just the standard row reading
word of P . Furthermore, when λ is a rectangle we see that Q(λ) is row superstandard.
Therefore, by [EG87, Lemma 6.16], we have RS(w) = (P,Q), as desired.
Now inductively that for some w whose insertion tableau is P , RS(w) gives us (P,Q),

where w is obtained by reading the entries of P in an order a1, a2 . . . ak given by the order of
the boxes of Qflip. Applying some Knuth move to w transposes two of its consecutive entries,
giving a new order a1, a2 . . . ai+1, ai . . . ak on the entries of P . However, by lemma 2.11 of
[Hai92], applying a Knuth move to w alters the recording table Q by a dual equivalence move,
swapping the corresponding boxes i, i + 1. Thus, the new order a1, a2 . . . ai+1, a + i . . . ak of
the entries of P is still given by the order of the boxes of the recording tableau.
Knuth moves preserve the insertion tableau P , and furthermore every word w with in-

sertion tableau P can be obtained by applying Knuth moves to the row reading word of
P [Ful97, Chapter 4]. Thus, this argument inductively shows the claim for all w such that
RS(w) gives tableaux with rectangular shapes, as desired.

□

Now, we can prove Theorem 5.4:

Proof. Let Q be a rectangular shape λ with m rows, n columns, and entries indexed by
qi,j. Let be any skew shape µ1 \ µ2 with n boxes, and consider the dual equivalence class of
tableaux of shape µ1 \ µ2 indexed by Q. We will use Proposition 2.15 to give a simplicial
isomorphism from the simplicial complex defined by this dual equivalence class to the order
complex ∆([∅, λ]).
Let B1 be the set of boxes of µ1 \ µ2 and let B2 be the set of boxes of λ. Let f : B1 → B2

send the ith box of µ1 \ µ2 (in the row reading order) to the box in B2 that contains i in Q.
Since f is a bijection, by Proposition 2.15, it suffices to show that f maps facets to facets.
A facet of the first simplicial complex is just a standard tableau T of shape µ1\µ2. Suppose

that T rectifies to P , a standard tableau of shape λ. Then, we know that

RS(wrow(T )) = (P,Q).

Furthermore, by Lemma 5.5, we know that the ith box of T is sent to the ith box of
P , in the reading order defined by the Q. Thus, f(T ) is just the rectification of T under
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any sequence of JDT moves. Since this is a standard tableau of shape λ, f(T ) is a facet of
∆([∅, λ]).
Furthermore, suppose T rectifies to a a rectangular tableau of shape λ. Then, by the

above, there is a simplicial isomorphism f : ∆tab(T ) → ∆([∅, λ]) which restricts to JDT
on the facets of ∆tab(T ). After applying any JDT move to obtain T ′, we still have that
T ′ rectifies to a rectangular tableau of shape λ. Therefore, there is similarly a simplicial
isomorphism g which restricts to JDT on the facets of ∆tab(T

′). Then, the map

g−1 ◦ f : ∆tab(T ) → ∆tab(T
′)

is a simplicial isomorphism, and on facets of T , it restricts to the JDT move we applied to T
to obtain T ′. Therefore, every JDT move on T is the restriction of a simplicial isomorphism
∆word(T ) → ∆word(T

′), as desired. □

5.3. Linear Slides and Superstandard Tableaux.

5.3.1. Linear Slides. A row (resp. column) slide is a slide such that the inserted box
and the removed box are in the same row (resp. column). A linear slide is either a row
slide or a column slide. Note that the row-ness, column-ness, and linear-ness of a slide from
T to T ′ are determined by shapeT and shapeT ′. Refer to Figure 8 for an example of a linear
slide.

1

• 4

2 6

3 5

→

1

2 4

5 6

3

Figure 8. Example of a column slide.

Lemma 5.7. Let T be a standard skew tableau. Let T ′ be obtained from T via a slide on a
corner b. Suppose such a slide is a row (resp. column). Then, for all standard skew tableau
U dual equivalent to T , the slide from U on b is also row (resp. column).

Proof. Let U be a standard skew tableau dual equivalent to T . Let U ′ be obtained from U
via a slide on b. Hence, shapeU = shapeT and, by Proposition 2.6(ii), shapeU ′ = shapeT ′.
Therefore, since row-ness (resp. column-ness) only depends on the shape of the tableaux,
the slide from U to U ′ is also row (resp. column). □

Theorem 5.8. Let T be a standard skew tableau. Let T ′ be obtained from T via a linear
slide. Then, ∆tab(T ) ∼= ∆tab(T

′).

Proof. Assume T ′ is obtained from T by performing the sliding algorithm on an inner corner
b0. Assume that the algorithm slides the entry of box bi to box bi−1, for all i ∈ [k], where k
is the number of slid boxes. Define the bijection f that maps bi to bi−1, for all i ∈ [k], and
otherwise fixes a box.

Lemma 5.7 guarantees that f(U) is obtained from U by performing the same sliding
algorithm on the inner corner b0, since a row (resp. column) slide must slide all boxes in
the row (resp. column) of b0 leftward (resp. upward). In other words, f induces a bijection
between the facets of ∆tab(T ) and the facets of ∆tab(T

′), which, by Proposition 2.15, implies
that f induces a simplicial isomorphism of ∆tab(T ) on ∆tab(T

′). □
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Corollary 5.9. Let T be a standard skew tableau. If T rectifies to the standard straight
tableau P using only linear slides, then ∆tab(T ) ∼= ∆tab(P ). Moreover, ∆tab(T ) is homeo-
morphic to a ball.

Corollary 5.9 follows by repeatedly applying Theorem 5.8 and using that ∆tab(P ) is home-
omorphic to a ball since P is a standard straight tableau.

5.3.2. Superstandard Recording Tableaux. The row superstandard tableau of shape λ
is the standard tableau of shape λ with numbers in increasing order when reading row by
row, from the top row to the bottom row, from left to right. The column superstandard
tableau of shape λ is the standard tableau of shape λ with numbers in increasing order
when reading column by column, from the leftmost column to the rightmost column, from
bottom to top. Refer to Figure 8 for an example of a row and column superstandard tableau.

1 2 3

4 5

6 7

8

1 5 8

2 6

3 7

4

.

Figure 9. The row and column superstandard tableaux of shape (3, 2, 2, 1).

The main result of this subsection is:

Theorem 5.10. Let Q be a column superstandard tableau of shape λ. Then ∆(Q) is isomor-
phic as a simplicial complex to ∆[∅, λ]. By [Bjö80, Theorem 2.7.7], this implies that ∆(Q)
is homeomorphic to a ball. Furthermore, there is an isomorphism induced by a sequence of
JDT moves.

To prove this theorem, we use the following lemma:

Lemma 5.11. Let Q be a column superstandard tableau, and let T be a skew tableau where
the ith column of T is a shifted copy of the ith the corresponding column at Q. In other words,

Q = · · · and T = . .
.

.

Any rectification process starting at T ends at Q and only uses column slides.

Proof. Since Q is a column superstandard tableau, all entries in the ith column of Q are
smaller than the entries in the (i + 1)th column of Q, and the number of boxes in the ith

column of Q is greater than or equal to the number of boxes in the (i + 1)th column of Q.
By construction of T , the analogous results for T also hold.

The proof is by induction on the number of inner boxes of T .
If T has 0 inner boxes, that is, T is straight, then T = Q and the only rectification is the

empty one, which vacuously only uses column slides.
Otherwise, assume that the result is true for any tableau T ′ with fewer inner boxes than

T . Consider the first slide of a given rectification of T , and an intermediate step of such
sliding algorithm. If there is a box below the hole, either its entry will be smaller than the
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entry to the right of the hole, or there is no entry to the right of the hole; in either case,
algorithm slides the box below the hole upwards. If there is not a box below the hole, then
there’s also not a box to the right of the hole (otherwise the column of the right of the hole’s
column would have more boxes than the hole’s column), hence the sliding algorithm stops.
Therefore, the first slide of the given rectification is a column slide.

After the first (column) slide T → T ′, the resulting tableau T ′ has one less inner box
than T and satisfies the conditions of the induction hypothesis. Therefore, by the induction
hypothesis, the remaining slides of the given rectification are also column slides, as desired.

By induction, the result follows. □

Now we can prove the theorem:

Proof. Let Q be a column superstandard tableau of shape λ. We prove this theorem by
giving a chain of simplicial isomorphisms to ∆([∅, λ]) induced by a certain sequence of jdt
moves.

It is a folklore fact that RS(wcol(Q)) = (Q,Q). First, let T be the skew tableau of n
disjoint diagonal boxes with reading word wcol(Q). We can perform jdt moves to get T into
the form of Lemma 5.11 without changing the reading word of T , and so by Lemma 3.4, this
sequence of jdt moves induces a simplicial isomorphism.

Now, by Lemma 5.11, we can finish rectifying T by performing only column slides, and
by Corollary 5.9, we are done.

□

Corollary 5.12. Row superstandard tableaux index simplicial complexes which are homeo-
morphic to balls.

Proof. The transpose of a row superstandard tableau is a column superstandard tableau;
therefore by Theorem 5.10 and Lemma 4.6, we are done. □

Example 5.13. Consider the column superstandard Q of shape (2, 2, 1), which has column
reading word 32154.

4

5

1

2

3

→

4

1 5

2

3

→
1 4

2 5

3

Figure 10. Starting with the diagonal tableau T with reading word 32154,
we first apply a sequence of jdt moves to get T ′ into the form of Lemma 5.11.
Then, we perform one column slide to the first column to finish rectifying to
Q. Each of the jdt moves induces a simplicial isomorphism.

5.4. Friendly Tableaux. For this last class of tableaux, we study a specific subset of hook
tableaux that index dual equivalence complexes that are homeomorphic to balls. This re-
quires us to describe some specific kinds of skew tableaux that have these nice indexing
tableaux in detail and study their properties.
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x+ y = k

Figure 11. Example of a diagonal diagram of height k.

For this section, diagrams live in Z×Z. A diagonal diagram of height k consists of a
subset of {(x, y) : x+ y = k} connected via adding ±(1,−1), using matrix-like coordinates.
A double diagonal diagram consists of the union of two diagonals, one of height k,

called the lower diagonal , and one of height k + 1, called the upper diagonal .

Figure 12. Example of a double diagonal diagram. Its lower diagonal is in
blue and its upper diagonal is in red.

Given a word w = w1w2 · · ·wn, a triplet (wi−1, wi, wi+1) is a valley if wi−1 > wi < wi+1,
and is a peak if wi−1 < wi > wi+1. A no-valley (resp. no-peak) word is a word with no
valleys (resp. peaks).

Definition 5.14. A friendly tableau is a standard tableau on a double diagonal diagram
such that:

(i) All entries in the lower diagonal are smaller than all entries in the upper diagonal.
(ii) The reading word of the restriction of the tableau to the lower diagonal does not have

a valley.
(iii) The reading word of the restriction of the tableau to the upper diagonal does not

have a peak.
(iv) The maximum entry of the lower diagonal is adjacent to the minimum entry of the

upper diagonal. These entries are called the lower friend and upper friend ,
respectively.

For example,

9

2 8

4 7

5 6

3 10

1

is a friendly tableau, since [1, 3, 5, 2, 4] has no valleys, [10, 6, 7, 8, 9] has no peaks, and the
friends 5 and 6 are adjacent.
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Proposition 5.15. Any no-valley word can be obtained as the reading word of a friendly
tableau of a shape with upper diagonal of size 1; and conversely, the reading word of any
friendly tableau of a shape with upper diagonal of size 1 is a no-valley word.

For example, the no-valley word 135642 is the reading word of the friendly tableau

2

4

5 6

3

1

.

Proposition 5.16. Any no-peak word can be obtained as the reading word of a friendly
tableau of a shape with lower diagonal of size 1; and conversely, the reading word of any
friendly tableau of a shape with lower diagonal of size 1 is a no-peak word.

For example, the no-peak word 641235 is the reading word of the friendly tableau

5

3

1 2

4

6

.

Proposition 5.17. Let D be a double diagonal diagram. The set of friendly tableaux on D
forms a dual equivalence class.

Proof. Let n be the number of boxes in the double diagonal diagram, with k boxes in the
lower diagonal.

First, we prove that elementary dual equivalence transformations preserve friendliness,
that is, if T is a friendly tableau, and T ′ is obtained from T via an elementary dual equivalence
transformation, then T ′ is also a friendly tableau.

Note that an elementary dual equivalence transformation cannot swap the friends k and k+
1, since they are consecutive in wrow(T ). If such elementary dual equivalence transformation
swaps elements of {1, 2, . . . , k − 1}, then the only condition to check is (ii), which is still
satisfied. If such elementary dual equivalence transformation swaps elements of {k + 1, k +
2, . . . , n}, then the only condition to check is (iii), which is still satisfied. If such elementary
dual equivalence transformation swaps k − 1 and k, then the conditions to check are (ii),
which is still satisfied, and (iv), which is still satisfied because the upper friend k + 1 must
be adjacent to both k−1 and the lower friend k in order for the elementary dual equivalence
transformation to be allowed, hence the friends are still adjacent. If such elementary dual
equivalence transformation swaps k + 1 and k + 2, then the conditions to check are (iii),
which is still satisfied, and (iv), which is still satisfied because the lower friend k must be
adjacent to both k+2 and the upper friend k+1 in order for the elementary dual equivalence
transformation to be allowed, hence the friends are still adjacent.

Second, we prove that any two friendly tableau of equal shapes are dual equivalent.
Note that, by only performing elementary dual equivalence transformations that swap

elements of {1, 2, . . . , k − 1}, one can obtain any no-valley word in the lower diagonal with
the lower friend in its position. Similarly, by only performing elementary dual equivalence
transformations that swap elements of {k+1, k+2, . . . , n}, one can obtain any no-peak word
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in the upper diagonal with the upper friend in its position. Finally, by performing elementary
dual equivalence transformations that swap k− 1 and k, and k+1 and k+2, one can obtain
friendly tableaux where the friends occupy any possible pair of adjacent boxes. □

Definition 5.18. An zig-zag tableau is a hook-shaped standard straight tableau with n
boxes such that there exists k ≤ ℓ ≤ n such that:

• all entries in [k] are in the first row or in the first column;
• consecutive entries in [k, ℓ] alternate between being in the first row and being in the
first column; and

• all entries in [ℓ, n] are in the first row or in the first column.

For example,

1 2 3 4 6 8 10

5

7

9

11

12

13

14

is a zig-zag tableau, where k = 4 and ℓ = 11.

Proposition 5.19. The recording tableau of the reading word of a friendly tableau is a zig-
zag tableau; and conversely, any zig-zag tableau is the recording tableau of the reading word
of some friendly tableau.

Sketch. We may subdivide any friendly tableau T into three (possibly empty) sections – one
disconnected diagonal of boxes in the upper diagonal, one disconnected diagonal of boxes
in the lower diagonal, and a connected component of boxes consisting of boxes from the
upper and lower diagonals. WLOG suppose the entries of the upper diagonal are in the
bottom-left of T , and suppose the entries of the lower diagonal are in the upper-right of
T . Then since wrow(T ) reads off these bottom entries in order, the corresponding recording
tableau for wrow(T ) corresponds to a line of consecutive entries across the top row of the
tableau, since these entries are in ascending order. Next, the block of connected entries must
start with an entry from the upper diagonal, and alternates between small entries that will
be inserted into the top row and large entries that will bump each other down in the first
column under RS. We can see this as a result of the relative ordering of the entries in this
connected block because the upper diagonal is a word with exactly 1 peak and the lower
diagonal is a word with 1 valley, as the extrema of each diagonal must be contained within
this connected section. Finally, depending on the last-inserted entry in the top row, the
remaining large entries in the disconnected upper-right diagonal will either be inserted in
that row (if that entry came from the upper diagonal) or will bump entries down in the first
column (if the last inserted entry came from the lower diagonal). Based on the placement
of each new inserted entry under Schensted insertion, this matches exactly the description
of the zig-zag hook tableaux.

□
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Example 5.20. Consider the friendly tableau

T =

2 9

4 5

3 6

1 7

8

.

Note that wrow(T ) = 817364529 and

Q(wrow(T )) =

1 3 5 7 9

2

4

6

8

which is a zig-zag tableau where all of the entries of [1] are in the first row/column, and the
entries [1, 9] alternate between being in the first row and column.

The funneling of a diagonal diagram D of height k is the diagonal of height k − 1
consisting of all boxes directly above to some box in D and directly to the left of some box
in D. The funneling of a non-empty diagonal diagram decreases the number of boxes by one.

Figure 13. Example of funneling. The light blue diagonal diagram is the
funneling of the dark blue diagonal diagram.

The spreading of a diagonal diagram D of height k is the diagonal of height k − 1
consisting of all boxes directly above to some box in D or directly to the left of some box in
D. The spreading of a non-empty diagonal diagram increases the number of boxes by one.

Figure 14. Example of spreading. The light red diagonal diagram is the
spreading of the dark red diagonal diagram.

The lowering of a double diagonal diagram is the union of the funneling of its lower
diagonal and the spreading of its upper diagonal. Note that the lowering of a double diagonal
diagram preserves the number of boxes.

Theorem 5.21. If D is a double diagonal diagram and D′ is the lowering of D, then the
simplicial complex generated by the shape sequences of the friendly tableaux of shape D is
isomorphic to the simplicial complex of the shape sequences of the friendly tableaux of shape
D′.
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→

Figure 15. Example of lowering. The light red diagonal diagram is the
spreading of the dark red diagonal diagram.

Sketch. Let ∆,∆′ be simplicial complex generated by the shape sequences of the friendly
tableaux of shape D,D′. Hence, a vertex of ∆,∆′ is a shape in the shape sequence of some
friendly tableau T of shape D,D′.

Let L,L′ and U,U ′ be the lower and upper diagonals of D,D′. Let n be the number
of boxes in D, and let i be the number of boxes in L. We explicitly define the simplicial
isomorphism f .

Consider an arbitrary shape S ∈ V (∆) with k < i− 1 boxes. Hence, S is the set of boxes
whose entries are {1, . . . , k} in some friendly tableau T of shape D, which must be a subset of
the lower diagonal L of D. Consider the complement L−S, which is the set of boxes whose
entries are {k + 1, . . . , i} in T . By the no-valley property, L− S is connected via diagonals.
Hence, it splits S into two (not necessarily non-empty sides): one to the northeast of L− S
and another to the southwest of L− S. We declare f(S) to consist of the boxes directly to
the right of the boxes of S to the northeast of L− S and of the boxes directly above to the
boxes of S to the southwest of L− S.

→

Figure 16. Isomorphism when S has less than i− 1 boxes.

Consider an arbitrary shape S ∈ V (∆) with i−1 boxes. Hence, S is the set of boxes whose
entries are {1, . . . , i− 1} in some friendly tableau T of shape D, which must be a subset of
the lower diagonal L of D. Consider the complement L− S, which is the singleton with the
box whose entry is i in T . Hence, L−S splits S into two (not necessarily non-empty sides):
one to the northeast of L − S and another to the southwest of L − S. We declare f(S) to
consist of the boxes directly to the right of the boxes of S to the northeast of L− S and of
the boxes directly above to the boxes of S to the southwest of L − S, as well as L − S. In
other words, f(S) = L′ ∪ (L− S).

→

Figure 17. Isomorphism when S has i− 1 boxes.

Note that the only shape in V (∆) with i boxes is L. We define f(L) = L′, the only shape
in V (∆′) with i− 1 boxes.
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→

Figure 18. Isomorphism when S has i boxes.

Consider an arbitrary shape S ∈ V (∆) with k > i boxes. Hence, S is the set of boxes
whose entries are {1, . . . , k} in some friendly tableau T of shape D. Therefore, S ⊃ L Then,
S−L ⊂ U consists the boxes whose entries are {i+1, . . . , k} in T . By the no-peak property,
S is connected via diagonals. We declare f(S) to consist of the boxes in L′ and the boxes in
the spreading of S − L.

→

Figure 19. Isomorphism when S more than i boxes.

Now, f is a simplicial isomorphism of ∆ on ∆′, because it bijects the friendly tableaux T
of diagram D and the friendly tableaux T ′ of diagram D′. □

6. Relationships with K-JDT

Given our simplicial isomorphisms established thus far for jeu de taquin slides acting
on ∆word(Q) for certain special Q-tableaux, one might ask if these isomorphisms give us
interesting substructure on the subfaces of ∆word(Q). An analogue of jeu de taquin called
K-jeu de taquin was introduced in [TY09] by Thomas and Yong, which acts on increasing
tableaux.

Definition 6.1. A alternating ribbon is a connected skew tableau with no 2× 2 subbox
filled with exactly two symbols such that any two adjacent boxes are filled with different
symbols.

Definition 6.2. Let T be an increasing tableau and C be a set of its inner corners, each
of which is filled with a •. Then the K-jeu de taquin slide on this set of inner corners
is given by the following algorithm – if the entries in I range from 1 up to m for m ≤ |I|,
keep track of a collection of sets of boxes {Bi}mi=1 with B1 = C, and for every 1 ≤ i ≤ m (in
increasing) order:

(i) Let Ti be the boxes in T with entry i. Form the union of alternating ribbons consisting
of a subset of the boxes of I containing the boxes Bi (which should currently contain
•s) and Ti.

(ii) For all sets of edge-connected boxes in Bi ∪ Ti, swap the positions of the symbols in
each connected component. Let Bi+1 be the new positions of the •s.
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Example 6.3. As an example, consider the increasing tableau I =

• 1 2

• 2

2

. Consider

the following K-jeu de taquin slide with the shown bullets:

• 1 2

• 2

2

swap with 1s−−−−−−−→
1 • 2

• 2

2

swap with 2s−−−−−−−→ 1 2

2

As such, recalling Proposition 2.11, one might ask whether or not K-jdt appears acting
on the interior faces of ∆word(Q):

Question 6.4. Given a standard skew tableau T with reading word w, where RS(w) =
(P,Q). Suppose some sequence of jdt moves on T on a set of inner corners C yields a
tableau T ′, with a simplicial isomorphism ∆tab(T ) ∼= ∆tab(T

′). Does K-jdt with bullets at
C on the increasing tableaux corresponding to the interior faces of ∆tab(T ) correspond to
the interior faces of ∆tab(T

′)?

For certain Q for which we have explicit simplicial isomorphisms, we can answer this
question.

Proposition 6.5. Let Q be column superstandard and T be a skew tableau where the ith
column of T is a shifted copy of the ith corresponding column of Q. Then each column slide
induces K-jdt moves on the interior faces of ∆tab(T ).

Proof. Take an increasing tableau I of shape T corresponding to an interior face of ∆tab(T ).
Consider WLOG a column-slide in the leftmost column of I. Since T was a superstandard
tableau with its columns shifted vertically to make it skew, we can see that for any given
box b in this column of I, no other box above its current row in the column to its right
has the same entry as it. Suppose not – since I is increasing, all of the boxes from b to
the bottom of this column must be the same number and so in particular b must be the
last row in its column and the column to the right must have the same height as the first
column to achieve this. However, the condition that I be increasing causes a contradiction,
either by the column to right not having strictly increasing entries or that the rows become
non-increasing.

As such, the K-jeu de taquin move in this column is then forced to do the same box slides
as the jeu de taquin move, since as we progress through the numbers in order, we never have
a bullet with the same numbers below and to the right of it. Therefore, the K-jeu de taquin
moves continue to give increasing tableaux which correspond to interior faces of the resulting
simplicial complexes. □

Proposition 6.6. Let T be a standard skew tableau, and let T ′ be obtained from T ′ via
one slide. Assume that the function f of boxes satisfying f(T ) = T ′ induces a simplicial
isomorphism from ∆tab(T ) on ∆tab(T

′). Then, for any interior tableau I ∈ ∆tab(T ), the
tableau f(I) ∈ ∆tab(T

′) can be obtained from I by performing the K-sliding algorithm on b0.

Proof. Assume T ′ is obtained from T by performing the sliding algorithm on an inner corner
b0. Assume that the algorithm slides the entry of box bi to box bi−1, for all i ∈ [k], where
k is the number of sliden boxes. Hence, the bijection f maps bi to bi−1, for all i ∈ [k], and
otherwise fixes a box.
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Let ci be the box distinct from bi below or to the right of bi−1. Hence, the entry of T in
the box ci (if it exists) is smaller than the entry of T in the box bi. Moreover, since f induces
a simplicial isomorphism, for all standard skew tableau S dual equivalent to T , the tableau
f(S) is obtained from S via a slide on b0, and consequently, the entry of S in the box ci (if
it exists) is smaller than the entry of S in the box bi.
Let I ∈ ∆tab(T ) be an interior face. Hence, f(I) ∈ ∆tab(T

′) is an interior face. In
particular, this implies that f(I) is an increasing tableau. Since ci (if it exists) is in below
or to the right of bi−1, then the entry of F (I) in the box ci (if it exists) is smaller than the
entry of f(I) in the box bi−1, and, consequently, the entry of I in the box ci (if it exists) is
smaller than the entry of I in the box bi.

Therefore, when we perform the K-sliding algorithm from I on b0, the bullet first swaps
with the entry in b1 but not with the entry in c1 (if it exists), and so on, until it swaps
with the entry in bk but not with the entry in ck (if it exists), which ultimately outputs the
tableau f(I), as desired. □

6.1. Unique Rectification Targets. A salient feature of K-jeu de taquin is that, unlike
jeu de taquin, the order in which subsets of the inner corners are chosen does matter. In
particular, under two different orders of K-jeu de taquin slides, the same skew tableau may
rectify to straight tableaux of different shapes. However, a remarkable fact is that certain
classes of tableaux form unique rectification targets :

Definition 6.7. A standard straight tableau T is a unique rectification target if for any
increasing tableau T ′, if T ′ rectifies to T under some sequence of K-jdt slides, then T ′

rectifies to T under any sequence of K-jdt slides.

In [TY09, Theorem 1.2], it is shown that all superstandard tableaux are unique rectification
targets. Furthermore, in [Gae+16, Corollary 66] it is shown that all rectangular tableaux are
unique rectification targets. Since our work also shows that superstandard and rectangular
tableaux index simplicial complexes homeomorphic to balls, the following conjecture may be
a natural guess:

Conjecture 6.8 (False). Let T be a standard skew tableau such that Q(wrow(T )) is a unique
rectification target. Let T ′ be obtained from T by a slide on a inner corner b. Then, there
is an isomorphism f : V (∆(T )) → V (∆(T ′)) such that the induced map f̃ : ∆(T ) → ∆(T )
sends an interior face of ∆(T ) (necessarily an increasing tableau) to an interior face of ∆(T ′)
via the K-slide on the inner corner b.

The conjecture is false, and here’s a counterexample. Let

T =
1 4
5

2 3 6

.

Note that

Q(wrow(T )) =
1 2 3
4 6
5
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is a unique rectification target. The only possible slide from T is the following

1 4
• 5

2 3 6

→
1 4

3 5
2 6

= T ′.

However, note that

I =
1 2

• 2
1 2 3

→
1 2

2 3
1 3

= I ′,

but I is in the boundary of ∆tab(T ), while I
′ is an interior face of ∆tab(T

′), hence the K-jeu
de taquin process cannot be induced by a simplicial isomorphism.

7. Further Work

There are many directions in which this line of research could be continued. Below are
some problems that remain unsolved at the time of writing this report:

Problem 7.1. Our work on friendly tableaux shows that some hook-shaped standard ta-
bleaux index complexes homeomorphic to balls. Do all hook-shaped standard tableaux do
so?

Problem 7.2. In the specific case of skew tableaux that rectify to a rectangular shape,
we showed that all JDT moves induce simplicial isomorphisms of the corresponding dual
equivalence classes. In the case of dual equivalence classes indexed by column superstandard
tableaux, our proof shows that many sequences of JDT moves induce simplicial isomor-
phisms, but not necessarily all. However, for all superstandard tableaux with ≤ 10 boxes,
by exhaustive search we showed that all JDT moves induce simplicial isomorphisms. Is this
statement true in general?

Problem 7.3. We can generate exhaustive lists of Q-tableaux whose ∆word(Q) do not give
rise to shellable or Cohen-Macaulay simplicial complexes. We currently have partial results
as to why certain subclasses of Q do give these nice desirable complexes, but are there ways
to determine which dual equivalence complexes do not without computing their topological
structure explicitly? Can we characterize these Q-tableaux by way of pattern-avoidance?

Problem 7.4. Our Conjecture 6.8 seems to indicate that the Q-tableaux that give rise to
simplicial isomorphisms upon jeu de taquin slides are a smaller subset of those tableaux
that give rise to unique rectification targets. Is the property of a Q-tableau giving rise to
simplicial isomorphisms under jeu de taquin slides stronger than being a URT?
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