Simplicial Complexes and
 Jeu de Taquin Theory

2023 Twin Cities REU in Combinatorics \& Algebra

Zeus Dantas e Moura
Bryan Lu
Dora Woodruff
3 August 2023
Mentor: Daoji Huang, TA: Carolyn Stephen

Table of Contents

1. Background

Jeu de taquin theory
Simplicial complexes and Young's lattice
2. Progress

The Motivating Conjecture
Operations on Indexing Tableaux
Special Indexing Tableaux
K-jdt and Interior Faces

Background

Young Diagram

Straight diagram

$\lambda=(4,4,2,2)$

$$
\mu=(2,1,1)
$$

Skew diagram

$$
\lambda / \mu=(4,4,2,2) /(2,1,1)
$$

$\lambda / \mu=(4,4,2,2) /(2,1,1)$

Young Tableaux

A standard tableau is a filling of the boxes of a diagram with $[n]$ such that:

- each number is used once;
- numbers increase from left to right;
- numbers increase from top to bottom.

1	2	5	6
3	4		

Reading Word

The reading word $w_{r}(T)$ of T is obtained by reading the rows of T, from the last row to the first row.

Example

The reading word of a standard tableau is a permutation.

Jeu de Taquin (JDT)

Jeu de taquin is an algorithm that turns a skew tableau into a straight tableau.

Each jeu de taquin move slides a removed box out of the diagram.

Robinson-Schensted Correspondence

The Robinson-Schensted correspondence $(R S)$ is a bijection:

| permuations w
 of $[n]$ | $\stackrel{R S}{\longleftrightarrow}$ |
| :---: | :---: | :---: |\quad| straight standard tableaux (P, Q) |
| :---: |
| of a same shape λ of size n |

Notation $\quad P$: insertion tableau; Q : recording tableau.

Robinson-Schensted Correspondence

The Robinson-Schensted correspondence $(R S)$ is a bijection:

| permuations w
 of $[n]$ | $\stackrel{R S}{\longleftrightarrow}$ |
| :---: | :---: | :---: |\quad| straight standard tableaux (P, Q) |
| :---: |
| of a same shape λ of size n |

Notation $\quad P$: insertion tableau; Q : recording tableau.

Example

$w=12534 \quad \stackrel{R S}{\longleftrightarrow} P(w)=$| 1 | 2 | 3 | 5 |
| :--- | :--- | :--- | :--- |
| 4 | | | |,$Q(w)=$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 5 | | | |

Dual Equivalence

Definition (Haiman (1992))

Permutations w, z are dual equivalent if $Q(w)=Q(z)$.
Tableaux S, T of same shape are dual equivalent if $w_{r}(S) \sim w_{r}(T)$.

Dual Equivalence

Definition (Haiman (1992))

Permutations w, z are dual equivalent if $Q(w)=Q(z)$.
Tableaux S, T of same shape are dual equivalent if $w_{r}(S) \sim w_{r}(T)$.

Example

Dual equivalence classes are indexed by their recording tableaux Q.
Fact Jeu de taquin moves preserve dual equivalence classes.

Simplicial Complexes

Definition

An abstract simplicial complex Δ is a family of sets, called faces, closed by inclusion, that is

$$
\text { if } F \subset G \in \Delta, \quad \text { then } F \in \Delta
$$

Facets are maximal elements of Δ.

Order Complexes

Let P be a poset.
A chain is a totally ordered subset of elements $x_{1}<x_{2}<\cdots<x_{k}$.
The order complex $\Delta(P)$ is the simplicial complex whose faces are chains of P.

$$
\begin{gathered}
\text { 0-dim: } A, B, C, D . \\
A<B, \\
B<C, \\
\text { 1-dim: } \\
B<D, \\
A<C, \\
A<D . \\
\text { 2-dim: } \\
A<B<C, \\
A<B<D .
\end{gathered}
$$

Young's Lattice

Young's Lattice is the poset whose elements are Young diagrams, where the ordering is given by inclusion.

We consider finite closed intervals $[\mu, \lambda$] of Young's lattice.

A maximal chain in $[\mu, \lambda]$ is related to a standard tableau of shape λ / μ.

$$
\{\square, \square, \square, \square, \square \square\} \quad \leftrightarrow \quad{ }^{2} 3
$$

Motivating Theorem

Theorem (Björner and Brenti (2005, Theorem 2.7.7))
The order complex $\Delta([\mu, \lambda])$ is piecewise-linear homeomorphic to a ball.

Example

Consider the order complex $\Delta([\square, \square])$:

Dual Equivalence Complexes

Definition

Let Q be a straight standard tableau. The dual equivalence complex $\Delta(Q)$ is the complex with facets corresponding to tableaux T in a dual equivalence class indexed by Q.

Remark Up to isomorphism, $\Delta(Q)$ does not depend on the choice of dual equivalence class.

Dual Equivalence Complex Example

The dual equivalence class
is indexed by $Q=\begin{array}{lll}1 & 2 & 2 \\ 3 & 5\end{array}{ }^{4}$.
Note that $\Delta(Q)$ has vertices $巴, \Pi, \Pi$ that are in every face. Ignoring them, $\Delta(Q)$ is:

Starting Conjecture

Conjecture

Let Q be a straight tandard tableau. The simplicial complex $\Delta(Q)$ is homeomorphic to a ball.

Proof Techniques

Shellability:

- Examine the combinatorial structure of these simplicial complexes, and show that they are shellable.
- Any simplicial complex which is pure, subthin, and shellable is homeomorphic to a ball.
- This is how Björner's proof for Young's lattice goes.

Simplicial isomorphisms:

- We know that subcomplexes $\Delta([\mu, \lambda])$ of the order complex are homeomorphic to balls.
- Find a simplicial isomorphism to $\Delta([\mu, \lambda])$?
- Jeu de taquin moves preserve dual equivalence classes. Maybe it induces simplicial isomorphisms?

Progress

Small Cases for the Conjecture

Proposition (D., L., W. (2023))

Let Q be a standard tableau with at most 6 boxes. The simplicial complex $\Delta(Q)$ is homeomorphic to a ball.

Counterexamples ${ }^{(}$

For the choices of

$$
Q=\begin{array}{l|l|l|l}
\hline 1 & 2 & 3 & 7 \\
4 & 6 & & \\
\hline 5 & & \text { or } \quad Q=\begin{array}{|l|l|l|}
\hline 1 & 4 & 5 \\
\hline 2 & 6 \\
\hline 3 & & \\
\hline 7 & & \\
\hline
\end{array} . . .
\end{array}
$$

$\Delta(Q)$ is not Cohen-Macaulay, hence cannot be homeomorphic to a ball. ${ }^{\circ}$

More Counterexamples, with 8 boxes

Evacuation and Transposition on Counterexamples

Note that

are transposes of each other, and are self-evacuating.

Evacuation

Definition

Let Q be a straight standard tableau with n boxes.
The evacuation of $Q, \epsilon(Q)$, is obtained by:

- Replacing each entry j with $n+1-j$.
- Rotating the tableau 180°.
- Rectifying the resulting standard skew tableau.

Example

Evacuation

Definition

Let Q be a straight standard tableau with n boxes.
The evacuation of $Q, \epsilon(Q)$, is obtained by:

- Replacing each entry j with $n+1-j$.
- Rotating the tableau 180°.
- Rectifying the resulting standard skew tableau.

Example

Theorem (D., L., W. (2023))
Let Q be a straight standard tableau. Then,

$$
\Delta(Q) \cong \Delta(\epsilon(Q)) \cong \Delta\left(Q^{\top}\right) .
$$

Framing the updated goal

For which recording tableaux Q, is $\Delta(Q)$ homeomorphic to a ball?

Framing the updated goal

For which recording tableaux Q,
is $\Delta(Q)$ isomorphic to something that is homeomorphic to a ball?

Framing the updated goal

For which recording tableaux Q,
is $\Delta(Q)$ isomorphic to something that is homeomorphic to a ball?

What are the things that are homeomorphic to a ball?

Framing the updated goal

For which recording tableaux Q,
is $\Delta(Q)$ isomorphic to something that is homeomorphic to a ball?

What are the things that are homeomorphic to a ball?

Framing the updated goal

For which recording tableaux Q,

 is $\Delta(Q)$ isomorphic to something that is homeomorphic to a ball?What are the things that are homeomorphic to a ball?

$$
\Delta([\mu, \lambda])
$$

Framing the updated goal

For which recording tableaux Q,

 is $\Delta(Q)$ isomorphic to something that is homeomorphic to a ball?What are the things that are homeomorphic to a ball?

$$
\Delta([\varnothing, \lambda])
$$

Framing the updated goal

For which recording tableaux Q, is $\Delta(Q)$ isomorphic to something that is homeomorphic to a ball?

What are the things that are homeomorphic to a ball?
$\Delta([\varnothing, \lambda])$: facets are straight standard tableaux of shape λ.

A Key Technical Lemma

Bijection of Boxes Lemma

If a bijection f of the boxes of two diagrams that bijects facets (a.k.a. standard tableaux) of two subcomplexes, then f induces a simplicial isomorphism between the complexes.

Dual Reading Tableaux

Lemma (Haiman (1992))
Any straight standard tableaux of shape λ are dual equivalent.

Dual Reading Tableaux

Lemma (Haiman (1992))
Any straight standard tableaux of shape λ are dual equivalent.
$\Delta([\varnothing, \lambda])$ has facets in a dual equivalence class. What's the Q ?

Dual Reading Tableaux

Lemma (Haiman (1992))

Any straight standard tableaux of shape λ are dual equivalent.
$\Delta([\varnothing, \lambda])$ has facets in a dual equivalence class. What's the Q ?
Formally, what's the recording tableau of the reading word of a straight standard tableau of shape λ ?

Dual Reading Tableaux

Lemma (Haiman (1992))

Any straight standard tableaux of shape λ are dual equivalent.
$\Delta([\varnothing, \lambda])$ has facets in a dual equivalence class. What's the Q ?
Formally, what's the recording tableau of the reading word of a straight standard tableau of shape λ ? The dual reading tableaux of shape λ.

1	3	4	8	13\|14
2	6	7	12	
5	10	11		
9				

Proposition (D., L., W. (2023))
If Q is a dual reading tableau, then $\Delta(Q)$ is homeomorphic to a ball.

Superstandard Tableaux

Theorem (D., L., W. (2023))
If Q is a column superstandard tableau, $\Delta(Q)$ is homeomorphic to a ball.

1	5	8	11	13\|14
2	6	9	12	
3		10		
4				

Since $\Delta(Q) \cong \Delta\left(Q^{\top}\right)$, it also holds for a row superstandard tableau.

Idea for Superstandard Tableaux: Linear Slides

$$
Q=\frac{\sqrt{1466}}{\frac{2}{3}} \quad T=\frac{\frac{4}{\frac{4}{5}}}{\frac{1}{\frac{1}{2}}}
$$

Fact $\quad Q$ is the recording tableaux of $w_{r}(T)=321546$.
That is, $\Delta(Q)$ is (isomorphic to) the complex with facets corresponding to the tableaux dual equivalent to T.

Idea for Superstandard Tableaux: Linear Slides

Idea 1 Linear slides move the same boxes in S as in T.
Idea 2 Apply "Bijection of Boxes Lemma".
Hence, $\Delta(Q) \cong \Delta([\varnothing, \lambda])$, which is homeomorphic to a ball.

Rectangular Tableaux

Theorem (D., L., W. (2023))
If Q has a rectangular shape λ, then $\Delta(Q) \cong \Delta([\varnothing, \lambda])$, which is homeomorphic to a ball.

Rectangular Tableaux

Theorem (D., L., W. (2023))

If Q has a rectangular shape λ, then $\Delta(Q) \cong \Delta([\varnothing, \lambda])$, which is homeomorphic to a ball.

Lemma

The permutation w is obtained by reading P in the order defined by

$$
Q^{\text {flip }}=\begin{array}{|c|c|c|c|}
\hline 5 & 7 & 10 & 12 \\
\hline 4 & 6 & 8 & 11 \\
\hline 1 & 2 & 3 & 9 \\
\hline
\end{array}
$$

With "Bijection of Boxes Lemma," we have $\Delta([\varnothing, \lambda]) \cong \Delta(Q)$.

(Some) Hooks

Theorem (D., L., W. (2023))
If Q is an alternating hook-shaped tableau, then $\Delta(Q)$ is homeomorphic to a ball.

Why? We don't use "Bijection of Boxes Lemma."

K-jdt and Interior Faces

K-jeu de taquin is an analogue of jdt that operates on increasing tableaux.

Interior faces of $\Delta(Q)$ are indexed by increasing tableaux.
Interior faces:

K-jdt and Interior Faces

Theorem (D., L., W. (2023))
If a jeu de taquin move at a box induces a simplicial isomorphism, K - jdt "at that box" is the induced map on the interior faces.

Interior faces:

Future Directions

- Do all hook tableaux index shellable complexes?
- Do all sequences of jeu de taquin slides induce simplicial isomorphisms on dual equivalence complexes?
- Provide a more complete classification of which tableaux index complexes homeomorphic to balls.
- Does jdt being a simplicial isomorphism have to do with Q being a unique rectification target?

Acknowledgements

- Thanks to our mentor Daoji Huang and TA Carolyn Stephen.
- Thanks to Vic Reiner and Pasha Pylyavskyy for helpful remarks.
- Thanks to the UMN Math Dept. Faculty \& Staff for their support.
- This project was partially supported by RTG grant NSF/DMS-1745638.
- Zeus was supported by Haverford College funding.

Thank you

References

Björner, Anders and Francesco Brenti (2005). Combinatorics of Coxeter Groups. Graduate Texts in Mathematics 231. New York, NY: Springer. 363 pp. ISBN: 978-3-540-44238-7.
Fulton, William (1997). Young Tableaux: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts 35. Cambridge, England: Cambridge University Press. 260 pp. ISBN: 978-0-521-56144-0.
回 Haiman, Mark D. (Apr. 2, 1992). "Dual Equivalence with Applications, Including a Conjecture of Proctor". In: Discrete Mathematics 99.1, pp. 79-113. IsSN: 0012-365X. Doi:
10.1016/0012-365X (92) 90368-P.

