Simplicial Complexes and Jeu de Taquin Theory

2023 Twin Cities REU in Combinatorics & Algebra

Zeus Dantas e Moura Bryan Lu Dora Woodruff

3 August 2023

Mentor: Daoji Huang, TA: Carolyn Stephen

1. Background

Jeu de taquin theory

Simplicial complexes and Young's lattice

2. Progress

The Motivating Conjecture Operations on Indexing Tableaux Special Indexing Tableaux *K*-jdt and Interior Faces

Background

A **standard tableau** is a filling of the boxes of a diagram with [*n*] such that:

- each number is used once;
- numbers increase from left to right;
- numbers increase from top to bottom.

The **reading word** $w_r(T)$ of T is obtained by reading the rows of T, from the last row to the first row.

Example

$$w_{\rm r} \left(\begin{array}{c|c|c} 1 & 2 & 5 & 7 \\ \hline 3 & 4 & \\ \hline 6 & \end{array} \right) = 6341257.$$

The reading word of a standard tableau is a permutation.

Jeu de taquin is an algorithm that turns a skew tableau into a straight tableau.

Each jeu de taquin move slides a removed box out of the diagram.

The Robinson-Schensted correspondence (RS) is a bijection:

 $\begin{array}{ccc} \text{permuations } w & \xrightarrow{RS} & \text{straight standard tableaux } (P,Q) \\ \text{of } [n] & \text{of a same shape } \lambda \text{ of size } n \end{array}$

Notation *P*: insertion tableau; *Q*: recording tableau.

The Robinson-Schensted correspondence (RS) is a bijection:

 $\begin{array}{ccc} \text{permuations } w & \xrightarrow{RS} & \text{straight standard tableaux } (P,Q) \\ \text{of } [n] & \text{of a same shape } \lambda \text{ of size } n \end{array}$

Notation *P*: insertion tableau; *Q*: recording tableau.

Example

$$w = 12534 \quad \stackrel{RS}{\longleftrightarrow} \quad P(w) = \boxed{\begin{array}{c|c} 1 & 2 & 3 & 5 \\ \hline 4 & \end{array}}, \quad Q(w) = \boxed{\begin{array}{c|c} 1 & 2 & 3 & 4 \\ \hline 5 & \end{array}}$$

Definition (Haiman (1992))

Permutations w, z are **dual equivalent** if Q(w) = Q(z).

Tableaux S, T of same shape are **dual equivalent** if $w_r(S) \sim w_r(T)$.

Definition (Haiman (1992))

Permutations w, z are **dual equivalent** if Q(w) = Q(z). Tableaux S, T of same shape are **dual equivalent** if $w_r(S) \sim w_r(T)$.

Example

Dual equivalence classes are indexed by their recording tableaux Q.

Fact Jeu de taquin moves preserve dual equivalence classes.

Definition

An **abstract simplicial complex** Δ is a family of sets, called **faces**, closed by inclusion, that is

if $F \subset G \in \Delta$, then $F \in \Delta$.

Facets are maximal elements of Δ .

Let P be a poset.

A chain is a totally ordered subset of elements $x_1 < x_2 < \cdots < x_k$. The order complex $\Delta(P)$ is the simplicial complex whose faces are chains of P.

Young's Lattice

Young's Lattice is the poset whose elements are Young diagrams, where the ordering is given by inclusion.

We consider finite closed intervals $[\mu, \lambda]$ of Young's lattice.

A maximal chain in $[\mu, \lambda]$ is related to a standard tableau of shape λ/μ .

Theorem (Björner and Brenti (2005, Theorem 2.7.7))

The order complex $\Delta([\mu, \lambda])$ is piecewise-linear homeomorphic to a ball.

Example

Consider the order complex $\Delta([\Box, \square))$:

Definition

Let Q be a straight standard tableau. The **dual equivalence complex** $\Delta(Q)$ is the complex with facets corresponding to tableaux T in a dual equivalence class indexed by Q.

Remark Up to isomorphism, $\Delta(Q)$ does not depend on the choice of dual equivalence class.

Dual Equivalence Complex Example

The dual equivalence class

is indexed by $Q = \frac{1 \ 2 \ 4}{3 \ 5}$.

Note that $\Delta(Q)$ has vertices \square , \blacksquare , that are in every face. Ignoring them, $\Delta(Q)$ is:

Conjecture

Let Q be a straight tandard tableau. The simplicial complex $\Delta(Q)$ is homeomorphic to a ball.

Shellability:

- Examine the combinatorial structure of these simplicial complexes, and show that they are **shellable**.
- Any simplicial complex which is pure, subthin, and shellable is homeomorphic to a ball.
- This is how Björner's proof for Young's lattice goes.

Simplicial isomorphisms:

- We know that subcomplexes Δ([μ, λ]) of the order complex are homeomorphic to balls.
- Find a simplicial isomorphism to $\Delta([\mu, \lambda])$?
- *Jeu de taquin moves* preserve dual equivalence classes. Maybe it induces simplicial isomorphisms?

Progress

Proposition (D., L., W. (2023))

Let Q be a standard tableau with at most 6 boxes. The simplicial complex $\Delta(Q)$ is homeomorphic to a ball.

For the choices of

 $\Delta(Q)$ is not Cohen-Macaulay, hence cannot be homeomorphic to a ball. \odot

Note that

are transposes of each other, and are self-evacuating.

Evacuation

Definition

Let Q be a straight standard tableau with n boxes. The **evacuation** of Q, $\epsilon(Q)$, is obtained by:

- Replacing each entry j with n + 1 j.
- Rotating the tableau 180°.
- Rectifying the resulting standard skew tableau.

Example

$$T = \underbrace{\begin{array}{c}1 & 2 & 4\\3 & 5\end{array}}_{3 & 5} \xrightarrow{\text{replace}} \underbrace{\begin{array}{c}5 & 4 & 2\\3 & 1\end{array}}_{3 & 1} \xrightarrow{\text{rotate}} \underbrace{\begin{array}{c}1 & 3\\2 & 4 & 5\end{array}}_{2 & 4 & 5} \xrightarrow{\text{rectify}} \underbrace{\begin{array}{c}1 & 3 & 5\\2 & 4\end{array}}_{2 & 4} = \epsilon(T)$$

Evacuation

Definition

Let Q be a straight standard tableau with n boxes. The **evacuation** of Q, $\epsilon(Q)$, is obtained by:

- Replacing each entry j with n + 1 j.
- Rotating the tableau 180°.
- Rectifying the resulting standard skew tableau.

Example

$$T = \underbrace{\begin{array}{c}1 & 2 & 4\\3 & 5\end{array}}_{3 & 5} \xrightarrow{\text{replace}} \underbrace{\begin{array}{c}5 & 4 & 2\\3 & 1\end{array}}_{3 & 1} \xrightarrow{\text{rotate}} \underbrace{\begin{array}{c}1 & 3\\2 & 4 & 5\end{array}}_{2 & 4 & 5} \xrightarrow{\text{rectify}} \underbrace{\begin{array}{c}1 & 3 & 5\\2 & 4\end{array}}_{2 & 4} = \epsilon(T)$$

Theorem (D., L., W. (2023))

Let Q be a straight standard tableau. Then,

$$\Delta(Q) \cong \Delta(\epsilon(Q)) \cong \Delta(Q^{\top}).$$

For which recording tableaux Q, is $\Delta(Q)$ homeomorphic to a ball?

What are the things that are homeomorphic to a ball?

What are the things that are homeomorphic to a ball?

What are the things that are homeomorphic to a ball? $\Delta([\mu,\lambda])$

What are the things that are homeomorphic to a ball? $\Delta([\varnothing,\lambda])$

What are the things that are homeomorphic to a ball? $\Delta([\emptyset, \lambda])$: facets are straight standard tableaux of shape λ .

Bijection of Boxes Lemma

If a bijection f of the boxes of two diagrams that bijects facets (a.k.a. standard tableaux) of two subcomplexes, then f induces a simplicial isomorphism between the complexes.

Any straight standard tableaux of shape λ are dual equivalent.

Any straight standard tableaux of shape λ are dual equivalent.

 $\Delta([\emptyset, \lambda])$ has facets in a dual equivalence class. What's the Q?

Any straight standard tableaux of shape λ are dual equivalent.

 $\Delta([\emptyset, \lambda])$ has facets in a dual equivalence class. What's the Q?

Formally, what's the recording tableau of the reading word of a straight standard tableau of shape $\lambda?$

Any straight standard tableaux of shape λ are dual equivalent.

 $\Delta([\emptyset, \lambda])$ has facets in a dual equivalence class. What's the Q?

Formally, what's the recording tableau of the reading word of a straight standard tableau of shape λ ? The *dual reading tableaux* of shape λ .

1	3	4	8	13	14
2	6	7	12		
5	10	11			
9					

Proposition (D., L., W. (2023))

If Q is a dual reading tableau, then $\Delta(Q)$ is homeomorphic to a ball.

If Q is a column superstandard tableau, $\Delta(Q)$ is homeomorphic to a ball.

1	5	8	11	13	14
2	6	9	12		
3	7	10			
4					

Since $\Delta(Q) \cong \Delta(Q^{\top})$, it also holds for a row superstandard tableau.

Fact Q is the recording tableaux of $w_r(T) = 321546$.

That is, $\Delta(Q)$ is (isomorphic to) the complex with facets corresponding to the tableaux dual equivalent to T.

- Idea 1 Linear slides move the same boxes in S as in T.
- Idea 2 Apply "Bijection of Boxes Lemma".

Hence, $\Delta(Q) \cong \Delta([\emptyset, \lambda])$, which is homeomorphic to a ball.

(2/2)

If Q has a rectangular shape λ , then $\Delta(Q) \cong \Delta([\emptyset, \lambda])$, which is homeomorphic to a ball.

If Q has a rectangular shape λ , then $\Delta(Q) \cong \Delta([\emptyset, \lambda])$, which is homeomorphic to a ball.

Lemma

$$\begin{array}{c} P & Q \\ \hline a & b & c & d \\ \hline e & f & g & h \\ \hline i & j & k & l \end{array} \xrightarrow{\left(\begin{array}{c} 1 & 2 & 3 & 9 \\ \hline 4 & 6 & 8 & 11 \\ \hline 5 & 7 & 10 & 12 \end{array} \xrightarrow{\left(\begin{array}{c} RS \\ \hline \end{array} \right)} \left[i, j, k, e, a, f, b, g, l, c, h, d\right] \end{array}$$

The permutation w is obtained by reading P in the order defined by

$$Q^{\mathsf{flip}} = \frac{5 \ 7 \ 1012}{4 \ 6 \ 8 \ 11}$$

With "Bijection of Boxes Lemma," we have $\Delta([\emptyset, \lambda]) \cong \Delta(Q)$.

If Q is an alternating hook-shaped tableau, then $\Delta(Q)$ is homeomorphic to a ball.

Why? We don't use "Bijection of Boxes Lemma."

K-**jeu de taquin** is an analogue of jdt that operates on increasing tableaux.

Interior faces of $\Delta(Q)$ are indexed by increasing tableaux.

Interior faces:

If a jeu de taquin move at a box induces a simplicial isomorphism, K-jdt "at that box" is the induced map on the interior faces.

Interior faces:

- Do all hook tableaux index shellable complexes?
- Do all sequences of jeu de taquin slides induce simplicial isomorphisms on dual equivalence complexes?
- Provide a more complete classification of which tableaux index complexes homeomorphic to balls.
- Does jdt being a simplicial isomorphism have to do with *Q* being a **unique rectification target**?

- Thanks to our mentor Daoji Huang and TA Carolyn Stephen.
- Thanks to Vic Reiner and Pasha Pylyavskyy for helpful remarks.
- Thanks to the UMN Math Dept. Faculty & Staff for their support.
- This project was partially supported by RTG grant NSF/DMS-1745638.
- Zeus was supported by Haverford College funding.

Thank you

References

- Björner, Anders and Francesco Brenti (2005). *Combinatorics of Coxeter Groups*. Graduate Texts in Mathematics 231. New York, NY: Springer. 363 pp. ISBN: 978-3-540-44238-7.
- Fulton, William (1997). Young Tableaux: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts 35. Cambridge, England: Cambridge University Press. 260 pp. ISBN: 978-0-521-56144-0.
- Haiman, Mark D. (Apr. 2, 1992). "Dual Equivalence with Applications, Including a Conjecture of Proctor". In: Discrete Mathematics 99.1, pp. 79–113. ISSN: 0012-365X. DOI: 10.1016/0012-365X(92)90368-P.