Cluster Monomials in Graph LP Algebras

2023 Twin Cities REU in Combinatorics \& Algebra

Zeus Dantas e Moura
Ramanuja Charyulu Telekicherla Kandalam
Dora Woodruff
4 August 2023
Mentor: Pasha Pylyavskyy, TA: Robbie Angarone

Table of Contents

1. Background
2. Preliminaries
3. Progress

Background

Context

Cluster Algebras
Fomin and Zelevinsky (2002)

Context

Context

Preliminaries

Notation on drawings of directed graphs

Let Γ be a directed graph with vertex set $[n]=\{1, \ldots, n\}$.

Notation on drawings of directed graphs

Let Γ be a directed graph with vertex set $[n]=\{1, \ldots, n\}$.
If an edge is bidirected, we draw it without arrows.

Notation on drawings of directed graphs

Let Γ be a directed graph with vertex set $[n]=\{1, \ldots, n\}$.
If an edge is bidirected, we draw it without arrows.

If all edges of Γ are bidirected, we may say Γ is undirected.

Strongly Connectedness

A non-empty subset $I \subset[n]$ is strongly connected if for all $v, w \in I$, there is some directed path $v \rightarrow w$ within I.

Strongly Connectedness

A non-empty subset $I \subset[n]$ is strongly connected if for all $v, w \in I$, there is some directed path $v \rightarrow w$ within I.

A directed graph is partitioned into strongly connected components, maximally strongly connected subsets of vertices.

Strongly Connectedness (Examples 1/2)

All subsets are strongly connected except 24.

(4)

Strongly Connectedness (Example 2/2)

The strongly connected subsets are $1,2,3,4$, and 1234.

Nested Collections

A collection \mathcal{S} of subsets is nested if:
(Condition 1) For all $I, J \in \mathcal{S}$,

$$
I \cap J=\varnothing \quad \text { or } \quad I \subset J \quad \text { or } \quad I \subset J .
$$

(Condition 2) For any disjoint sets $I_{1}, l_{2}, \ldots, l_{i} \in \mathcal{S}$, these sets are the strongly connected components of their union.

Remark Condition 2 implies that $I \in \mathcal{S}$ must be strongly connected.

Nested Collections (Example 1/4)

A collection is nested if:
(1) $I \cap J=\varnothing$ or $I \subset J$ or $I \subset J$.
(2) Disjoint sets are the connected components of their union.

Claim $\{1,12,123,1234\}$ is nested.

Nested Collections (Example 2/4)

A collection is nested if:
(1) $I \cap J=\varnothing$ or $I \subset J$ or $I \subset J$.
(2) Disjoint sets are the connected components of their union.

Claim $\{12,23\}$ is NOT nested.

Nested Collections (Example 3/4)

A collection is nested if:
(1) $I \cap J=\varnothing$ or $I \subset J$ or $I \subset J$.
(2) Disjoint sets are the connected components of their union.

Claim $\{12,3\}$ is NOT nested, since the strongly connected components of $12 \cup 3$ are NOT 12 and 3 .

Nested Collections (Example 4/4)

A collection is nested if:
(1) $I \cap J=\varnothing$ or $I \subset J$ or $I \subset J$.
(2) Disjoint sets are the connected components of their union.

Claim $\{2,4,124\}$ is nested.

Acyclic Functions

We consider functions $f: I \subset[n] \rightarrow[n]$ such that, for all $v \in I$,

$$
f(v)=v \quad \text { or } \quad(v, f(v)) \text { is an edge of } \Gamma \text {. }
$$

Acyclic Functions

We consider functions $f: I \subset[n] \rightarrow[n]$ such that, for all $v \in I$,

$$
f(v)=v \quad \text { or } \quad(v, f(v)) \text { is an edge of } \Gamma \text {. }
$$

An acyclic function on I is a function f with no cycles (loops are allowed).

Weight of Function

The weight of a function f is

$$
w(f)=\prod_{i \in I} \tilde{X}_{f(i)}, \quad \text { where } \tilde{X}_{f(i)}= \begin{cases}X_{f(i)} & \text { if } f(i) \neq i \\ A_{f(i)} & \text { if } f(i)=i\end{cases}
$$

Multiply X_{j} for an edge $i \rightarrow j$, and multiply A_{i} for a loop $i \rightarrow i$.

Weight of Function

The weight of a function f is

$$
w(f)=\prod_{i \in I} \tilde{X}_{f(i)}, \quad \text { where } \tilde{X}_{f(i)}= \begin{cases}X_{f(i)} & \text { if } f(i) \neq i \\ A_{f(i)} & \text { if } f(i)=i\end{cases}
$$

Multiply X_{j} for an edge $i \rightarrow j$, and multiply A_{i} for a loop $i \rightarrow i$.

Remark For cycles, $w(f)=\prod_{i \in I} X_{i}$.

Variables Y_{I}

Given a subset I, we define

$$
Y_{I}=\frac{1}{\prod_{i \in I} X_{i}} \cdot \sum_{\substack{\text { acyclic } \\ f: I \rightarrow[n]}} w(f)
$$

Variables Y_{I}

Given a subset I, we define

$$
Y_{I}=\frac{1}{\prod_{i \in I} X_{i}} \cdot \sum_{\substack{\text { acyclic } \\ f: I \rightarrow[n]}} w(f)
$$

Variables Y_{I}

Given a subset I, we define

$$
Y_{I}=\frac{1}{\prod_{i \in I} X_{i}} \cdot \sum_{\substack{\text { acyclic } \\ f: I \rightarrow[n]}} w(f)
$$

After calculations, we have

$$
Y_{13}=Y_{1} Y_{3}-1
$$

Graph LP Algebra (Lam and Pylyavskyy (2016b))

Given a directed graph Γ, its associated graph LP algebra \mathcal{A}_{Γ} can be described as the algebra generated by

$$
\left\{X_{1}, \ldots, X_{n}\right\} \cup\left\{Y_{I} \mid I \text { is strongly connected }\right\},
$$

with coefficient ring $R=\mathbb{Z}\left[A_{1}, \ldots, A_{n}\right]$.

Structure of Clusters

Theorem (Lam and Pylyavskyy (2016b))

The graph LP algebra \mathcal{A}_{Γ} has:

- cluster variables

$$
\left\{X_{1}, \ldots, X_{n}\right\} \cup\left\{Y_{I} \mid I \text { is strongly connected }\right\}
$$

- clusters of the form

$$
\left\{X_{i_{1}}, \ldots, X_{i_{k}}\right\} \cup\left\{Y_{I} \mid I \in \mathcal{S}\right\}
$$

where \mathcal{S} is some maximal nested collection on $\Gamma \backslash\left\{i_{1}, i_{2} \ldots i_{k}\right\}$.
The Y-variables are supported by the nested collection \mathcal{S}.
A cluster monomial is a monomial with variables from the same cluster.

Example of Cluster Monomials

Nested set	Cluster	Cluster Monomial
\varnothing	$\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$	$X_{1}^{2} X_{2}$
2,4	$\left\{X_{1}, X_{3}, Y_{2}, Y_{4}\right\}$	$X_{3} Y_{2} Y_{4}^{3}$
$1,12,123,1234$	$\left\{Y_{1}, Y_{12}, Y_{123}, Y_{1234}\right\}$	$Y_{1} Y_{123}^{5} Y_{1234}$

A monomial of only Y-variables is a cluster monomial if it is supported by a nested collection \mathcal{S}.

Primary Conjecture (Lam and Pylyavskyy (2016b))

Recall that \mathcal{A}_{Γ} is generated by the cluster variables, and that a cluster monomial is a monomial with variables from the same cluster.

Conjecture (Lam and Pylyavskyy (2016b))

(1) Cluster monomials are a linear basis for \mathcal{A}_{Γ} over $R=\mathbb{Z}\left[A_{1}, \ldots, A_{n}\right]$.
(1a) Cluster monomials span \mathcal{A}_{Γ}.
(1b) Cluster monomials are linarly independent.
(2) Any monomial in the cluster variables of \mathcal{A}_{Γ} can be expressed as a R-linear combination of cluster monomials with positive coefficients.

We prove (1a) and make progress towards (2).

Example of Positivity

Recall that, in a previous example, we computed

$$
Y_{13}=\frac{\left(A_{1}+X_{2}+X_{3}+X_{4}\right)\left(X_{1}+X_{2}+A_{3}+X_{4}\right)-X_{1} X_{3}}{X_{1} X_{3}}=Y_{1} Y_{3}-1 .
$$

Note that $Y_{1} Y_{3}$ is a monomial in the cluster variables, but $Y_{1} Y_{3}$ is NOT a cluster monomial.

Still,

$$
Y_{1} Y_{3}=Y_{13}+1,
$$

so $Y_{1} Y_{3}$ is a positive linear combination of cluster monomials.

Progress

Main Quest

The monomials in the cluster variables of \mathcal{A}_{Γ} which are more challenging to decompose are monomials consisting only of Y-variables.

Very Hard Question How to decompose

$$
Y_{l_{1}} Y_{l_{2}} \cdots Y_{l_{k}} ?
$$

Main Quest

The monomials in the cluster variables of \mathcal{A}_{Γ} which are more challenging to decompose are monomials consisting only of Y-variables.

Very Hard Question How to decompose

$$
Y_{l_{1}} Y_{l_{2}} \cdots Y_{l_{k}} ?
$$

Hard Question How to decompose

$$
Y_{I} Y_{J} ?
$$

Remark When 「 is undirected, it is enough to answer the second.

Example of Techniques: Disjoint Case

Theorem (D., T., W. (2023))
Let $I \cap J=\varnothing$. Then,

$$
Y_{I} Y_{J}=\sum_{\mathcal{C}} Y_{(I \cup J) \backslash \mathcal{C}},
$$

where \mathcal{C} ranges over families of disjoint cycles which are not in I nor in J .

Example of Techniques: Disjoint Case

Theorem (D., T., W. (2023))
Let $I \cap J=\varnothing$. Then,

$$
Y_{l} Y_{J}=\sum_{\mathcal{C}} Y_{(I \cup J) \backslash \mathcal{C}},
$$

where \mathcal{C} ranges over families of disjoint cycles which are not in I nor in J.

Example

(1)

Then, using the Theorem,

$$
Y_{13} Y_{24}=Y_{1234}+Y_{34}+Y_{23}+Y_{14}+Y_{12}+2 Y_{4}+2 Y_{2}+4
$$

Sketch for the Disjoint Case

$$
Y_{I} Y_{J}=\sum_{\mathcal{C}} Y_{(I \cup J) \backslash \mathcal{C}}
$$

We associate a pair of acyclic functions $\left(f_{l}, f_{J}\right)$ with their union.

However, the union may have some disjoint cycles.

By adding "correction terms' for these cycles, we get the identity.

Cluster Monomials Span \mathcal{A}_{Γ}

Theorem (D., T., W. (2023))
For all directed graphs Γ, cluster monomials span \mathcal{A}_{Γ} over R.
Idea We prove the identity

$$
\underbrace{\left(\sum_{\mathcal{C} \text { in } I} Y_{\Omega \backslash \mathcal{C}}\right)}_{\text {any function in } I \text { any function in } J} \underbrace{\left(\sum_{\mathcal{C} \text { in } J} Y_{J \backslash \mathcal{C}}\right)}_{\text {any function in } I \cup J}=\underbrace{\left(\sum_{\mathcal{C} \text { in } I \cup J} Y_{I \cup J \backslash \mathcal{C}}\right)}_{\text {any function in } I \cap J}
$$

and isolate the term $Y_{I} Y_{J}$ that appears in LHS.

Positivity for Trees

Theorem (D., T., W. (2023))

If Γ is an undirected tree or cycle, then \mathcal{A}_{Γ} satisfies positivity.
Sketch It suffices to have a formula for $Y_{I} Y_{J}$. For trees, we have

$$
Y_{I} Y_{J}=\sum_{\mathcal{P}} Y_{I \cup J \backslash \mathcal{P}} Y_{I \cap J \backslash \mathcal{P}}
$$

where \mathcal{P} ranges over families of disjoint paths "traveling from $/$ to J ".

$$
Y_{1245} Y_{2356}=Y_{123456} Y_{25}+Y_{456} Y_{5}+Y_{123} Y_{2}+Y_{43}+Y_{16}+1
$$

Further Work

- We can decompose $Y_{I} Y_{J}$ when $|I \cap J|=0,1$, or 2 .

How can we do it in general?

- $Y_{1} Y_{J}$: undirected case.
- $Y_{l_{1}} Y_{l_{2}} \cdots Y_{l_{k}}$: directed case.
- If not in general, how can we do it for special graphs, for example
- planar graphs,
- graphs with small maximum degree, etc.
- Prove that cluster monomials are linearly independent, hence form a basis.

Acknowledgements

- Thanks to our mentor Pasha Pylyavskyy and TA Robbie Angarone.
- Thanks to the UMN Math Dept. Faculty \& Staff for their support.
- This project was partially supported by RTG grant NSF/DMS-1745638.
- Zeus was supported by Haverford College funding.

References

References

是 Fomin, Sergey and Andrei Zelevinsky (Apr. 1, 2002). "Cluster Algebras I: Foundations". In: Journal of the American Mathematical Society 15.2, pp. 497-529. arXiv: math/0104151.
Lam, Thomas and Pavlo Pylyavskyy (2016a). "Laurent Phenomenon Algebras". In: Cambridge Journal of Mathematics 4.1, pp. 121-162. arXiv: 1206.2611 [math].

- (2016b). "Linear Laurent Phenomenon Algebras". In: International Mathematics Research Notices 2016.10, pp. 3163-3203. arXiv: 1206.2612 [math].

