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Preliminaries



Notation on drawings of directed graphs

Let Γ be a directed graph with vertex set [n] = {1, . . . , n}.

If an edge is bidirected, we draw it without arrows.
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If all edges of Γ are bidirected, we may say Γ is undirected.
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Strongly Connectedness

A non-empty subset I ⊂ [n] is strongly connected if for all v ,w ∈ I ,

there is some directed path v → w within I .

Γ
I
v

w

A directed graph is partitioned into strongly connected components,

maximally strongly connected subsets of vertices.

Γ

−→
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Strongly Connectedness (Examples 1/2)
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All subsets are strongly connected except 24.
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Strongly Connectedness (Example 2/2)
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The strongly connected subsets are

1, 2, 3, 4, and 1234.
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Nested Collections

A collection S of subsets is nested if:

(Condition 1) For all I , J ∈ S,

I ∩ J = ∅ or I ⊂ J or I ⊂ J.

(Condition 2) For any disjoint sets I1, I2, . . . , Ii ∈ S, these sets are the

strongly connected components of their union.

Remark Condition 2 implies that I ∈ S must be strongly connected.
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Nested Collections (Example 1/4)

A collection is nested if:

(1) I ∩ J = ∅ or I ⊂ J or I ⊂ J.

(2) Disjoint sets are the connected components of their union.
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Claim {1, 12, 123, 1234} is nested.
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Nested Collections (Example 2/4)

A collection is nested if:

(1) I ∩ J = ∅ or I ⊂ J or I ⊂ J.

(2) Disjoint sets are the connected components of their union.
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Claim {12, 23} is NOT nested.
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Nested Collections (Example 3/4)

A collection is nested if:

(1) I ∩ J = ∅ or I ⊂ J or I ⊂ J.

(2) Disjoint sets are the connected components of their union.
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Claim {12, 3} is NOT nested, since the strongly connected

components of 12 ∪ 3 are NOT 12 and 3.
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Nested Collections (Example 4/4)

A collection is nested if:

(1) I ∩ J = ∅ or I ⊂ J or I ⊂ J.

(2) Disjoint sets are the connected components of their union.
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Claim {2, 4, 124} is nested.
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Acyclic Functions

We consider functions f : I ⊂ [n] → [n] such that, for all v ∈ I ,

f (v) = v or (v , f (v)) is an edge of Γ.

An acyclic function on I is a function f with no cycles (loops are

allowed).
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Weight of Function

The weight of a function f is

w(f ) =
∏
i∈I

X̃f (i), where X̃f (i) =

{
Xf (i) if f (i) ̸= i

Af (i) if f (i) = i .

Multiply Xj for an edge i → j , and multiply Ai for a loop i → i .

w

 1

2

3

4

I1

2

3

4

 = X4X3A3, w

 1

2

3

4

I1

2

3

4

 = X2X3X1.

Remark For cycles, w(f ) =
∏

i∈I Xi .
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Variables YI

Given a subset I , we define

YI =
1∏

i∈I Xi
·
∑

acyclic
f :I→[n]

w(f )
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Y13 =
(A1 + X2 + X3 + X4)(X1 + X2 + A3 + X4)− X1X3

X1X3

After calculations, we have

Y13 = Y1Y3 − 1.
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Graph LP Algebra (Lam and Pylyavskyy (2016b))

Given a directed graph Γ, its associated graph LP algebra AΓ can be

described as the algebra generated by

{X1, . . . ,Xn} ∪ {YI | I is strongly connected},

with coefficient ring R = Z[A1, . . . ,An].
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Structure of Clusters

Theorem (Lam and Pylyavskyy (2016b))

The graph LP algebra AΓ has:

• cluster variables

{X1, . . . ,Xn} ∪ {YI | I is strongly connected},

• clusters of the form

{Xi1 , . . . ,Xik} ∪ {YI | I ∈ S}

where S is some maximal nested collection on Γ \ {i1, i2 . . . ik}.
The Y -variables are supported by the nested collection S.

A cluster monomial is a monomial with variables from the same cluster.
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Example of Cluster Monomials

2

3

1

4

Nested set Cluster Cluster Monomial

∅ {X1,X2,X3,X4} X 2
1X2

2, 4 {X1,X3,Y2,Y4} X3Y2Y
3
4

1, 12, 123, 1234 {Y1,Y12,Y123,Y1234} Y1Y
5
123Y1234

A monomial of only Y -variables is a cluster monomial if it is supported

by a nested collection S.
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Primary Conjecture (Lam and Pylyavskyy (2016b))

Recall that AΓ is generated by the cluster variables, and that

a cluster monomial is a monomial with variables from the same cluster.

Conjecture (Lam and Pylyavskyy (2016b))

(1) Cluster monomials are a linear basis for AΓ over R = Z[A1, . . . ,An].

(1a) Cluster monomials span AΓ.

(1b) Cluster monomials are linarly independent.

(2) Any monomial in the cluster variables of AΓ can be expressed as a

R-linear combination of cluster monomials with positive coefficients.

We prove (1a) and make progress towards (2).
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Example of Positivity

Recall that, in a previous example, we computed

Y13 =
(A1+X2+X3+X4)(X1+X2+A3+X4)−X1X3

X1X3
= Y1Y3 − 1.

1

2

3

4

Note that Y1Y3 is a monomial in the cluster variables,

but Y1Y3 is NOT a cluster monomial.

Still,

Y1Y3 = Y13 + 1,

so Y1Y3 is a positive linear combination of cluster monomials.
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Progress



Main Quest

The monomials in the cluster variables of AΓ which are more challenging

to decompose are monomials consisting only of Y -variables.

Very Hard Question How to decompose

YI1YI2 · · ·YIk?

Hard Question How to decompose

YIYJ?

Remark When Γ is undirected, it is enough to answer the second.
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Example of Techniques: Disjoint Case

Theorem (D., T., W. (2023))

Let I ∩ J = ∅. Then,

YIYJ =
∑
C

Y(I∪J)\C ,

where C ranges over families of disjoint cycles which are not in I nor in J.

Example
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Then, using the Theorem,

Y13Y24 = Y1234 + Y34 + Y23 + Y14 + Y12 + 2Y4 + 2Y2 + 4.
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Sketch for the Disjoint Case

YIYJ =
∑
C

Y(I∪J)\C

We associate a pair of acyclic functions (fI , fJ) with their union.

→

However, the union may have some disjoint cycles.

→

By adding “correction terms’ for these cycles, we get the identity.
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Cluster Monomials Span AΓ

Theorem (D., T., W. (2023))

For all directed graphs Γ, cluster monomials span AΓ over R.

Idea We prove the identity(∑
C in I

YI\C

)
︸ ︷︷ ︸
any function in I

(∑
C in J

YJ\C

)
︸ ︷︷ ︸
any function in J

=

( ∑
C in I ∪ J

YI∪J\C

)
︸ ︷︷ ︸
any function in I ∪ J

( ∑
C in I ∩ J

YI∩J\C

)
︸ ︷︷ ︸
any function in I ∩ J

and isolate the term YIYJ that appears in LHS.
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Positivity for Trees

Theorem (D., T., W. (2023))

If Γ is an undirected tree or cycle, then AΓ satisfies positivity.

Sketch It suffices to have a formula for YIYJ . For trees, we have

YIYJ =
∑
P

YI∪J\PYI∩J\P

where P ranges over families of disjoint paths “traveling from I to J”.

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

Y1245Y2356 = Y123456Y25 + Y456Y5 + Y123Y2 + Y43 + Y16 + 1
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Further Work

• We can decompose YIYJ when |I ∩ J| = 0, 1, or 2.

How can we do it in general?

• YIYJ : undirected case.

• YI!YI2 · · ·YIk : directed case.

• If not in general, how can we do it for special graphs, for example

• planar graphs,

• graphs with small maximum degree, etc.

• Prove that cluster monomials are linearly independent, hence form a

basis.

26



Acknowledgements

• Thanks to our mentor Pasha Pylyavskyy and TA Robbie Angarone.

• Thanks to the UMN Math Dept. Faculty & Staff for their support.

• This project was partially supported by RTG grant

NSF/DMS-1745638.

• Zeus was supported by Haverford College funding.

27



References

References

Fomin, Sergey and Andrei Zelevinsky (Apr. 1, 2002). “Cluster

Algebras I: Foundations”. In: Journal of the American Mathematical

Society 15.2, pp. 497–529. arXiv: math/0104151.

Lam, Thomas and Pavlo Pylyavskyy (2016a). “Laurent Phenomenon

Algebras”. In: Cambridge Journal of Mathematics 4.1, pp. 121–162.

arXiv: 1206.2611 [math].

— (2016b). “Linear Laurent Phenomenon Algebras”. In:

International Mathematics Research Notices 2016.10, pp. 3163–3203.

arXiv: 1206.2612 [math].

28

https://arxiv.org/abs/math/0104151
https://arxiv.org/abs/1206.2611
https://arxiv.org/abs/1206.2612

	Background
	Preliminaries
	Progress
	References

