Cluster Monomials in Graph LP Algebras

2023 Twin Cities REU in Combinatorics & Algebra

Zeus Dantas e Moura Ramanuja Charyulu Telekicherla Kandalam Dora Woodruff 4 August 2023

Mentor: Pasha Pylyavskyy, TA: Robbie Angarone

- 1. Background
- 2. Preliminaries
- 3. Progress

Background

Cluster Algebras Fomin and Zelevinsky (2002)

Context

Fomin and Zelevinsky (2002)

Context

Preliminaries

Notation on drawings of directed graphs

Let Γ be a directed graph with vertex set $[n] = \{1, \ldots, n\}$.

Notation on drawings of directed graphs

Let Γ be a directed graph with vertex set $[n] = \{1, \ldots, n\}$.

If an edge is **bidirected**, we draw it without arrows.

Notation on drawings of directed graphs

Let Γ be a directed graph with vertex set $[n] = \{1, \ldots, n\}$.

If an edge is **bidirected**, we draw it without arrows.

If all edges of Γ are bidirected, we may say Γ is **undirected**.

Strongly Connectedness

A non-empty subset $I \subset [n]$ is **strongly connected** if for all $v, w \in I$, there is some directed path $v \to w$ within *I*.

Strongly Connectedness

A non-empty subset $I \subset [n]$ is **strongly connected** if for all $v, w \in I$, there is some directed path $v \to w$ within *I*.

A directed graph is partitioned into **strongly connected components**, maximally strongly connected subsets of vertices.

Strongly Connectedness (Examples 1/2)

All subsets are strongly connected except 24.

Strongly Connectedness (Example 2/2)

The strongly connected subsets are 1, 2, 3, 4, and 1234.

A collection \mathcal{S} of subsets is **nested** if:

(Condition 1) For all $I, J \in S$,

 $I \cap J = \emptyset$ or $I \subset J$ or $I \subset J$.

(Condition 2) For any disjoint sets $l_1, l_2, ..., l_i \in S$, these sets are the strongly connected components of their union.

Remark Condition 2 implies that $I \in S$ must be strongly connected.

- (1) $I \cap J = \emptyset$ or $I \subset J$ or $I \subset J$.
- (2) Disjoint sets are the connected components of their union.

Claim $\{1, 12, 123, 1234\}$ is nested.

- (1) $I \cap J = \emptyset$ or $I \subset J$ or $I \subset J$.
- (2) Disjoint sets are the connected components of their union.

Claim $\{12, 23\}$ is NOT nested.

- (1) $I \cap J = \emptyset$ or $I \subset J$ or $I \subset J$.
- (2) Disjoint sets are the connected components of their union.

Claim $\{12,3\}$ is NOT nested, since the strongly connected components of $12 \cup 3$ are NOT 12 and 3.

- (1) $I \cap J = \emptyset$ or $I \subset J$ or $I \subset J$.
- (2) Disjoint sets are the connected components of their union.

Claim $\{2, 4, 124\}$ is nested.

We consider functions $f: I \subset [n] \rightarrow [n]$ such that, for all $v \in I$,

$$f(v) = v$$
 or $(v, f(v))$ is an edge of Γ .

We consider functions $f: I \subset [n] \rightarrow [n]$ such that, for all $v \in I$,

$$f(v) = v$$
 or $(v, f(v))$ is an edge of Γ .

An **acyclic function** on I is a function f with no cycles (loops are allowed).

The **weight** of a function f is

$$w(f) = \prod_{i \in I} \tilde{X}_{f(i)}, \quad \text{where } \tilde{X}_{f(i)} = \begin{cases} X_{f(i)} & \text{if } f(i) \neq i \\ A_{f(i)} & \text{if } f(i) = i. \end{cases}$$

Multiply X_j for an edge $i \to j$, and multiply A_i for a loop $i \to i$.

The **weight** of a function f is

$$w(f) = \prod_{i \in I} \tilde{X}_{f(i)}, \quad \text{where } \tilde{X}_{f(i)} = \begin{cases} X_{f(i)} & \text{if } f(i) \neq i \\ A_{f(i)} & \text{if } f(i) = i. \end{cases}$$

Multiply X_j for an edge $i \to j$, and multiply A_i for a loop $i \to i$.

Remark For cycles, $w(f) = \prod_{i \in I} X_i$.

Variables Y₁

Given a subset I, we define

$$Y_{I} = \frac{1}{\prod_{i \in I} X_{i}} \cdot \sum_{\substack{\text{acyclic} \\ f: I \to [n]}} w(f)$$

Variables Y₁

Given a subset I, we define

$$Y_{I} = \frac{1}{\prod_{i \in I} X_{i}} \cdot \sum_{\substack{\text{acyclic} \\ f: I \to [n]}} w(f)$$

2

Variables Y₁

Given a subset I, we define

$$Y_{I} = \frac{1}{\prod_{i \in I} X_{i}} \cdot \sum_{\substack{\text{acyclic} \\ f: I \to [n]}} w(f)$$

After calculations, we have

$$Y_{13} = Y_1 Y_3 - 1.$$

Given a directed graph $\Gamma,$ its associated graph LP algebra \mathcal{A}_Γ can be described as the algebra generated by

 $\{X_1, \ldots, X_n\} \cup \{Y_I \mid I \text{ is strongly connected}\},\$

with coefficient ring $R = \mathbb{Z}[A_1, \ldots, A_n]$.

Theorem (Lam and Pylyavskyy (2016b))

The graph LP algebra \mathcal{A}_{Γ} has:

• cluster variables

 $\{X_1,\ldots,X_n\} \cup \{Y_I \mid I \text{ is strongly connected}\},\$

clusters of the form

$$\{X_{i_1},\ldots,X_{i_k}\}\cup\{Y_I\mid I\in\mathcal{S}\}$$

where S is some maximal nested collection on $\Gamma \setminus \{i_1, i_2 \dots i_k\}$. The Y-variables are supported by the nested collection S.

A cluster monomial is a monomial with variables from the same cluster.

Example of Cluster Monomials

A monomial of only Y-variables is a cluster monomial if it is supported by a nested collection S.

Recall that \mathcal{A}_{Γ} is generated by the cluster variables, and that a **cluster monomial** is a monomial with variables from the same cluster.

Conjecture (Lam and Pylyavskyy (2016b))

(1) Cluster monomials are a linear basis for A_Γ over R = Z[A₁,..., A_n].
(1a) Cluster monomials span A_Γ.
(1b) Cluster monomials are linearly independent.

(1b) Cluster monomials are linarly independent.

(2) Any monomial in the cluster variables of A_{Γ} can be expressed as a *R*-linear combination of cluster monomials with **positive coefficients**.

We prove (1a) and make progress towards (2).

Example of Positivity

Recall that, in a previous example, we computed

$$Y_{13} = \frac{(A_1 + X_2 + X_3 + X_4)(X_1 + X_2 + A_3 + X_4) - X_1 X_3}{X_1 X_3} = Y_1 Y_3 - 1.$$

Note that $Y_1 Y_3$ is a monomial in the cluster variables, but $Y_1 Y_3$ is NOT a cluster monomial.

Still,

$$Y_1Y_3 = Y_{13} + 1,$$

so Y_1Y_3 is a positive linear combination of cluster monomials.

Progress

The monomials in the cluster variables of A_{Γ} which are more challenging to decompose are monomials consisting only of *Y*-variables.

Very Hard Question How to decompose

 $Y_{I_1}Y_{I_2}\cdots Y_{I_k}?$

The monomials in the cluster variables of A_{Γ} which are more challenging to decompose are monomials consisting only of *Y*-variables.

Very Hard Question How to decompose

 $Y_{I_1}Y_{I_2}\cdots Y_{I_k}?$

Hard Question How to decompose

 $Y_I Y_J$?

Remark When Γ is undirected, it is enough to answer the second.

Example of Techniques: Disjoint Case

Theorem (D., T., W. (2023)) Let $I \cap J = \emptyset$. Then,

$$Y_{I}Y_{J} = \sum_{\mathcal{C}} Y_{(I\cup J)\setminus\mathcal{C}},$$

where C ranges over families of disjoint cycles which are not in I nor in J.

Example of Techniques: Disjoint Case

Theorem (D., T., W. (2023)) Let $I \cap J = \emptyset$. Then,

$$Y_{I}Y_{J} = \sum_{\mathcal{C}} Y_{(I\cup J)\setminus\mathcal{C}},$$

where C ranges over families of disjoint cycles which are not in I nor in J.

Example

Then, using the Theorem,

 $Y_{13}Y_{24} = Y_{1234} + Y_{34} + Y_{23} + Y_{14} + Y_{12} + 2Y_4 + 2Y_2 + 4.$

Sketch for the Disjoint Case

$$Y_{I}Y_{J} = \sum_{\mathcal{C}} Y_{(I\cup J)\setminus\mathcal{C}}$$

We associate a pair of acyclic functions (f_l, f_j) with their union.

However, the union may have some disjoint cycles.

By adding "correction terms' for these cycles, we get the identity.

Theorem (D., T., W. (2023))

For all directed graphs Γ , cluster monomials span \mathcal{A}_{Γ} over R.

Idea We prove the identity

$$\underbrace{\left(\sum_{\mathcal{C} \text{ in } I} Y_{I \setminus \mathcal{C}}\right)}_{\text{any function in } J} \underbrace{\left(\sum_{\mathcal{C} \text{ in } J} Y_{J \setminus \mathcal{C}}\right)}_{\text{any function in } I \cup J} = \underbrace{\left(\sum_{\mathcal{C} \text{ in } I \cup J} Y_{I \cup J \setminus \mathcal{C}}\right)}_{\text{any function in } I \cup J} \underbrace{\left(\sum_{\mathcal{C} \text{ in } I \cap J} Y_{I \cap J \setminus \mathcal{C}}\right)}_{\text{any function in } I \cup J}$$

and isolate the term $Y_I Y_J$ that appears in LHS.

Positivity for Trees

Theorem (D., T., W. (2023))

If Γ is an undirected tree or cycle, then \mathcal{A}_{Γ} satisfies positivity.

Sketch It suffices to have a formula for $Y_I Y_J$. For trees, we have

$$Y_I Y_J = \sum_{\mathcal{P}} Y_{I \cup J \setminus \mathcal{P}} Y_{I \cap J \setminus \mathcal{P}}$$

where \mathcal{P} ranges over families of disjoint paths "traveling from I to J".

 $Y_{1245}Y_{2356} = Y_{123456}Y_{25} + Y_{456}Y_5 + Y_{123}Y_2 + Y_{43} + Y_{16} + 1$

- We can decompose Y_IY_J when |I ∩ J| = 0, 1, or 2. How can we do it in general?
 - $Y_I Y_J$: undirected case.
 - $Y_{l_1} Y_{l_2} \cdots Y_{l_k}$: directed case.
- If not in general, how can we do it for special graphs, for example
 - planar graphs,
 - graphs with small maximum degree, etc.
- Prove that cluster monomials are linearly independent, hence form a basis.

- Thanks to our mentor Pasha Pylyavskyy and TA Robbie Angarone.
- Thanks to the UMN Math Dept. Faculty & Staff for their support.
- This project was partially supported by RTG grant NSF/DMS-1745638.
- Zeus was supported by Haverford College funding.

References

- Fomin, Sergey and Andrei Zelevinsky (Apr. 1, 2002). "Cluster Algebras I: Foundations". In: Journal of the American Mathematical Society 15.2, pp. 497–529. arXiv: math/0104151.
- Lam, Thomas and Pavlo Pylyavskyy (2016a). "Laurent Phenomenon Algebras". In: *Cambridge Journal of Mathematics* 4.1, pp. 121–162. arXiv: 1206.2611 [math].
- (2016b). "Linear Laurent Phenomenon Algebras". In: International Mathematics Research Notices 2016.10, pp. 3163–3203. arXiv: 1206.2612 [math].