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Definition

• A knot K is an embedding of S1 into S3.

• The knot complement of K is the 3-manifold
M(K) = S3 \N(K).

• The knot group of K is ΓK = π1(M(K)).

Goal

To find essential surfaces in the complement of two-bridge
knots.
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Two-Bridge Knots

Definition

A two-bridge knot is a knot with diagram having two local
maxima.

• Every two-bridge knot can be associated to a reduced
fraction q/p ∈ (0, 1) with p, q both odd, called its
two-bridge normal form.

• q/p is given by the continued fraction expansion
[a1, . . . , ak] = q/p
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Presentation of Two-Bridge Knot Groups

Theorem (Maylands, 1974)

Given a two-bridge knot K = (p, q), Γq/p has the following
canonical presentation:

Γq/p = ⟨a, b | wa = bw⟩

where w is determined by p and q, and a and b are conjugate.

Example

For q/p = [1, 1, 4] = 5/9 we have

w = ab−1a−1bab−1a−1b

with

Γq/p = ⟨a, b | ab−1a−1bab−1a−1ba = bab−1a−1bab−1a−1b ⟩
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Representations of Two-Bridge Knot Groups

Corollary

Every irreducible representation ρ : Γq/p → SL2(C) is
determined by ρ(a) and ρ(b), which (up to conjugation) has the
form

ρ(a) =

[
α 1
0 1/α

]
and ρ(b) =

[
α 0
t 1/α

]
Therefore every representation ρ of Γq/p corresponds to a point
(α, t) ∈ C2 that satisfies ρ(wa) = ρ(bw).
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Character Varieties

We can rewrite the polynomial relation ρ(wa) = ρ(bw) in terms
of the traces of ρ(a) and ρ(ab−1): we define

x := tr(ρ(a)) = α+ 1/α

y := tr(ρ(ab−1)) = 2− t

Definition

The algebraic set X(Γq/p) in C2 defined by this polynomial in x
and y is called the character variety of Γq/p.

Example

The defining polynomial of X(Γ1/3) is x
2 − y − 1 = 0.
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Epimorphisms onto the trefoil knot

Definition

The rational number

q/p = [3, 2, . . . , 3, 2︸ ︷︷ ︸
n−many 2’s

, 3k]

is the two-bridge normal form of a knot whenever n+ k is odd.
We denote this knot by K(n, k).

Theorem (Ohtsuki-Riley-Sakuma, 2008)

For all n, k > 0 there exists an epimorphism

ΓK(n,k) ↠ Γ1/3

where Γ1/3 is the knot group of the trefoil knot.
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Intersection Points

Given an epimorphism ΓK(n,k) ↠ Γ1/3, every representation
Γ1/3 → SL2(C) will induce a representation ΓK(n,k) → SL2(C).
This implies the following:

Corollary

X(K(n, k)) always contain an irreducible component
x2 − y − 1 = 0, which corresponds to X(Γ1/3).

Goal

To describe the intersection points between x2 − y − 1 = 0 and
other components of X(K(n, k)).

However this is HARD!
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Horrific Example

Character variety of K(1, 2) = [3, 2, 6]

Moral of the story

This sucks. New approach needed.
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Farey Recursion

Definition

• For any p/q, r/s ∈ Q̂ = Q∪ {∞}, we call them a Farey pair
if ps− qr = ±1;

• For any Farey pair (p/q, r/s), we define their Farey sum to
be p

q ⊕
r
s = p+r

q+s .

This operation has a geometric explanation on the Farey graph:
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Farey Recursion

Definition

Let R be any commutative ring. A function F : Q̂ → R is called
a Farey recursive function if for every Farey pair (α, γ) we have

F(γ ⊕ α⊕ α) = −F(γ) + F(α)F(γ ⊕ α)

Cool stuff! (Chesebro 2019)

The defining polynomial of X(ΓK(n,k)) can be generated
recursively using Farey recursion.
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Farey Recursion

Example

If we substitute y = x2 − 1 into the rest of the defining
polynomial of K(n, k), we get a polynomial p̃(x) that describes
the intersection points:

Knot p̃(x)

K(1, 2) 4x2 − 15
K(1, 4) 8x2 − 29
K(1, 6) 12x2 − 43

K(2, 1) 4x4 − 32x2 + 63
K(2, 3) 12x4 − 92x2 + 173
K(2, 5) 20x4 − 152x2 + 283

Upshot

Using Farey recursion, we found a general formula for p̃(x); it
follows that for all K(n, k), all coefficients of p̃(x) but the
constant term are even.
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P-adic valuation

Definition

Let F be a number field, and let OF denote the ring of integers
of F . Let P be a prime ideal of OF .
A discrete valuation vP on F as follows:

• For any x ∈ OF , let vP(x) = max{n ∈ Z≥0 : x ∈ Pn};
• For x ∈ F −OF , write x = a/b where a, b ∈ OF , and define
vP(x) = vP(a)− vP(b).

The discrete valuation vP is called the P-adic valuation on F .

Example

For F = Q we have OF = Z consider P = 2Z, then

v2(2) = 1, v2

(
4

5

)
= 2, v2(5) = 0, v2

(
1

2

)
= −1
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Algebraic non-integral representations

Definition

Let ρ : ΓK → SL2(F ) be a representation of ΓK where F is a
number field. We call ρ an algebraic non-integral (ANI)
representation if there exists some γ ∈ ΓK such that tr(ρ(γ)) is
not an algebraic integer. That is, there is a P-adic valuation vP
such that vP(tr(ρ(γ))) < 0.

Fact (Culler-Shalen, 1983)

Every ANI-representation of ΓK can detect essential surfaces in
the knot complement of K (via SL2-tree actions from
Bass-Serre theory).
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Algebraic non-integral representations

This leads to our first main theorem:

Theorem (B-D-G-K-S, 2023+)

For every two-bridge knot K(n, k), and every (x0, y0) ∈ C2 that
is an intersection point between x2 − y − 1 = 0 and another
component of X(ΓK(n,k)), every SL2(C)-representation ρ of
ΓK(n,k) corresponding to (x0, y0) is an ANI-representation.

In other words, every intersection point will detect essential
surfaces for K(n, k).
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Boundary slope

Definition

• A slope of K is an element a/b ∈ Q ∪ {∞}, which
corresponds to the element µaλb ∈ π1(∂M(K)).

• A boundary slope of K is a slope that appears in ∂S for an
essential surface S in M(K).
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Detecting boundary slopes

Although the detected essential surfaces may not be unique,
their boundary slope is unique:

Theorem (Schanuel-Zhang, 2001)

Let ρ : ΓK → SL2(F ) be an ANI-representation of ΓK with
respect to a P-adic valuation vP . Then there exists a unique
boundary slope γ of K such that vP(tr(ρ(γ))) ≥ 0, and γ is the
detected boundary slope.

For a fixed two-bridge knot K, (Hatcher-Thurston, 1985) gives
an explicit description of all the boundary slopes of K, so we
can calculate their traces and find the unique one with integral
trace.
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Detecting boundary slopes

Proposition (B-D-G-K-S, 2023+)

The set of all boundary slopes of K(n, k) is

{6k + 6a+ 10b | a+ b ≤ n} ∪ {6a+ 10b | a+ b ≤ n, 0 < a} ∪ {0}.

Example

The knot K(1, k) (where k is even) has exactly 5 boundary
slopes:

0, 6, 6k, 6k + 6, 6k + 10
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Detecting boundary slopes

Our second main theorem:

Theorem (B-D-G-K-S, 2023+)

For K(n, k), the detected boundary slope is 6n+ 6k.
That is, µ6(n+k)λ is a loop in the boundary corresponding to a
detected essential surface.
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