
SYMMETRIC CHAIN DECOMPOSITION AND
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M. RAYMOND

Abstract. We show that Ding's partial order on maximal rook placements on

any Ferrers board has a symmetric chain decomposition and is EL-shellable.

As a consequence the partial order is Peck, and we show that it has M�obius

function values of �1; 0 or +1.

1. Introduction

A Ferrers board corresponds to an integer partition � = (�

1

� �

2

� ::: � �

m

>

0). The board can be drawn as rows of squares of lengths �

i

, such that the rows

are right justi�ed and the row of length �

i

is directly below the row of length �

i�1

.

Abusing terminology, we will denote the Ferrers board itself by �.

A subset � of � is a rook placement on � if no two squares (rooks) in � occupy

the same row or column.

Figure 1 gives an example of a rook placement on a Ferrers board.

Figure 1. A representation of a Ferrers board with 3 rooks on it.

Let R

r

�

be the set of all rook placements � with r rooks on board �. Let !

denote the maximal number of rooks that may be placed on board �. The set of

all maximal rook placements on board � is then denoted R

!

�

.

In the case ! = m, Ding [5, De�nition 4.28] placed an ordering on R

m

�

, which

we denote �

D

. In Section 2, we extend this to an order on R

!

�

in general. The two

main theorems of this paper are as follows:

Theorem 1. (R

!

�

;�

D

) has a symmetric chain decomposition.

Theorem 2. (R

!

�

;�

D

) is EL-shellable.

Key words and phrases. symmetric chain decomposition, EL-shellable, Ding order, Bruhat

order, Ferrer board.
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2 M. RAYMOND

The motivation for these results is that both are known to hold for the strong

Bruhat order on the symmetric group, which may be viewed as the special case

of Ding's order for rook placements on an n � n board. Ding [6] showed that R

m

�

is the inclusion ordering on the cells in a cell decomposition of a certain complex

projective variety which he called the partition variety M

�

=B. This generalizes

the fact that the strong Bruhat order gives the ordering of cells in the classical ag

manifold G=B. Theorems 1 and 2 further tighten the analogy between Ding's order

in general and the special case of strong Bruhat order.

Section 2 recalls Ding's partial order on rook placements as well as further def-

initions. It also shows that we may restrict ourselves to examining boards where

! = m and m is the number of rows in �. Section 3 proves Theorem 1. Section 4

proves Theorem 2, and as a consequence that the M�obius function, �(x; y) = 0 or

�1.

2. Definitions

De�nition 3. Given two rook placements � and � on a Ferrers board � we say

that � �

D

� if for � = s

1

; s

2

; :::; s

m

and � = t

1

; t

2

; :::; t

m

the relation s

i;k

� t

i;k

holds for all 1 � i � k � m where

� s

i

is the column index of the rook in row i of rook placement � and columns

are labeled right to left. If row i of rook placement � contains no rook, then

s

i

= 0.

� s

i;k

is the i-th entry in the increasing rearrangement of s

m

; s

m�1

; :::; s

m�k+1

.

The rules are similar for t

i

and t

i;k

in � .

Figure 2 illustrates an example of � >

D

� .

42301=50312

2

21

321

3210

53210

=

1

3210

43210

10

310

Figure 2. Two boards � and � of shape � are compared as in De�nition 3

De�nition 4. The symmetric group S

n

is in an obvious bijection with all maximal

rook placements on an n�n board. Strong Bruhat order uses the same comparison

order as De�nition 3. So, (S

n

;�

B

) is Ding order on n�n boards, i.e. (S

n

;�

B

) is

(R

n

n�n

;�

D

).
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In writing � as a permutation �

1

�

2

:::�

n

, each �

i

is the column index of the rook

in row i, where the column indices increase from left to right and the row numbers

increase from top to bottom. This is opposite to the column index given above for

the comparison method.

For � = �

1

�

2

... �

n

2 S

n

, let Inv

k

(�) :=j fj j �

j

> �

k

; j < kg j. Then,

Inv(�) :=

n

X

k=1

Inv

k

(�)(2.1)

is well known to be the rank of � in strong Bruhat order on S

n

.

The order relations given in De�nition 4 are de�ned by a comparison. An order

relation based on rook swaps is de�ned as follows:

De�nition 5. The covering relation �l

swap

� holds if � and � di�er by a swap of

2 rooks and Inv(�) + 1 = Inv(�). Then �

swap

is the transitive closure of l

swap

.

The following lemma is well known.

Lemma 6. �

B

and �

swap

on S

n

coincide.

See [4] for the proof and other references.

Ding de�ned an embedding of R

r

�

in S

n

where n = m + �

1

� r. This will be

used later to show (R

r

�

;�

D

) is an induced subposet of (S

n

;�

B

). The embedding,

f : R

r

�

! S

n

, is done by extending � on � to a rook placement (permutation) �

on an n � n board. Extending the board is done by locating the empty rows and

columns in �. For each empty column add a new row above the initial board. For

each empty row, add a new column to the right of the row extended board. Place

rooks in the new empty rows added above, by �nding the leftmost empty column

and putting a rook in that column of the �rst row, then �nding the next empty

column and putting a rook in that column of the second row. Repeat for all of the

new rows. Place rooks in the new empty columns in a similar fashion. Find the

topmost empty row and put a rook in that row of the leftmost empty column. Find

the new topmost empty row and put a rook in that row of the now leftmost empty

column. Repeat until there are no empty rows. This is illustrated in Figure 3.

1) 2) 3) 4)

Add 2 columns, since there are 2 blank rows

Add 3 rows, since there are 3 blank columns

12345678
13427685( )

Figure 3. Board � is extended to a permutation.

Lemma 7. The map f embeds (R

r

�

; <

D

) as an induced subposet of (S

n

; <

B

), in

the sense that � �

D

� for �; � 2 R

r

�

i� f(�) �

B

f(�) in S

n

.
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Proof. Bjorner and Brenti [4, corollary 5(iii)] showed that when doing comparisons

in Bruhat order, checking if f(�) �

B

f(�) requires checking r

i;k

� s

i;k

as given in

De�nition 3, but only doing so for i where r

i

> r

i�1

in f(�). Note that for i = 1

to = n �m this cannot occur. Also note that values �

1

+ 1 through n will be in

increasing order in f(�) and are the largest n��

1

values. Thus, these values cannot

be r

i

where r

i

> r

i�1

. Therefore, all comparisons which need to be checked are at

rows where the rook lies in the board �.
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a

b

1- b

m

m - a

1

Figure 4. R

!

�

� S

m�a

� S

�

1

�b

� S

�

1

+m�!

where ! = a+ b and

a and b are de�ned below.

Let ! be the maximal number of rooks that may be placed on board �. We next

describe a reduction which shows that we can work with the special case of ! = m.

Let a be the smallest integer such that �

a+1

= ! � a. Given board �, it can

be separated into three components, board � with a rows, board � with b columns

and an a � b rectangular board, where a is as de�ned above and b = ! � a. See

Figure 4.

Proposition 8.

R

!

�

�

=

R

a

�

�R

b

�

T

as posets, where here �

T

denotes the transpose operation on a board �, which is

ipping the board across the diagonal cutting through the upper right corner.

Proof. We have the following sequence of poset isomorphisms, explained below.

R

!

�

�

=

f(R

!

�

) � S

n

;where n = �

1

+m� !

�

=

f(R

a

�

)� f(R

b

�

) � S

�

1

�b

� S

m�a

�

=

f(R

a

�

)� f(R

b

�

T

) � S

�

1

�b

� S

m�a

�

=

R

a

�

�R

b

�

T

:

The �rst isomorphism follows from Lemma 7.

The second isomorphism follows since a placement � 2 R

!

�

can have no rook in

the (m � a) � (�

1

� b) rectangle as we now explain. If a rook were in the smaller

a� b rectangle, as shown in Figure 4, then it would occupy both one of the top a
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rows and one of the rightmost b columns, thus prohibiting all ! rooks from being

placed. In f(�) 2 f(R

!

�

) there will be no rooks in the extended board in the region

above �'s rightmost b columns or to the right of �'s topmost a rows, since those

rows and columns are already occupied in �. Thus, the (m � a) � (�

1

� b) corner

of f(�) has no rooks.

There is no ambiguity about working with the Cartesian product Bruhat order

on S

�

1

�b

�S

m�a

in place of the Bruhat order on S

n

as we now explain. The rooks

in S

m�a

which are the rooks in the lower m�a rows of S

n

all lie to the right of the

rooks in S

�

1

�b

which are the rooks in the upper �

1

� b rows of S

n

. Thus, when the

rows are compared as in De�nition 3 for Bruhat order on S

n

, the lower m� a rows

will always remain the lower m � a rows when doing a comparison of the bottom

m� a+ k rows. This allows separate comparisons for the top �

1

� b rows and the

bottom m� a rows as in S

�

1

�b

� S

m�a

.

The third isomorphism follows since the transpose operation corresponds to � 7!

�

�1

, it is an automorphism of Bruhat order and f(R

b

�

T

)

�

=

f(R

b

�

).

The �nal isomorphism follows again from Lemma 7.

De�nition 9. For � a rook placement on �, de�ne

l

�;k

(�) := �

�;k

(�) + �

�;k

(�) + 

�;k

(�)

where r

k

is the rook in the row k of � and

�

�;k

(�) is the number of blank rows above row k

�

�;k

(�) is the number of rooks both above and to the right of r

k

and



�;k

(�) is the number of blank columns to the right of r

k

's column.

If there is no rook in row k, then l

�;k

(�) = 0:

De�ne l

�

(�) :=

P

m

k=1

l

�;k

(�).

Corollary 10. For any rook placement � on any board �, we have

l

�

(�) = Inv(f(�)):

Proof.

Inv

k

(f(�)) =

�

l

�;k

(�) if row k has a rook of �;

0 otherwise.

Now compare the de�nition of l

�

(�) and equation (2.1) and the corollary follows.

Ding proved the following:

Lemma 11. R

m

�

is ranked with rank function l

�

(�).

3. Symmetric Chain Decomposition

In this section we show that R

!

�

has a symmetric chain decomposition. We begin

by recalling some de�nitions.

Let P be a �nite ranked poset of rank n and P

i

the set of elements at rank i.

A subset A of P is an antichain if for all a; b 2 A, a 6� b and b 6� a.

P is Sperner if the size of the largest antichain in P is equal to the size of its

maximal rank.

P is rank symmetric if jP

i

j = jP

n�i

j.
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P is rank unimodal if jP

o

j � jP

1

j � ::: � jP

k

j � jP

k+1

j � ::: � jP

n

j for some k,

0 � k � n.

P is strongly Sperner if the size of the largest union of k antichains in P is the

sum of the sizes of the k largest ranks.

A symmetric chain decomposition (SCD) of P is a disjoint set of unre�nable

chains which cover P such that each chain that starts at rank i of the poset ends

at rank n� i.

It is obvious that if P has an SCD then it is rank symmetric and rank unimodal.

It is also not hard to show that if P has an SCD then it is strongly Sperner. Posets

which are rank symmetric, rank unimodal and strongly Sperner are called Peck.

So, having an SCD implies Peck.

The following proposition is obvious:

Proposition 12. Assume g : P

1

! P

2

, is order preserving, rank preserving, bijec-

tive and P

1

has an SCD. Then P

2

has an SCD.

Recall that m is the number of rows in �.

Theorem 13. The Ding order on R

m

�

has an SCD and thus is Peck.

Proof. We shall show that R

m

�

has an encoding mapping it to a product of chains.

A product of chains has an SCD and Proposition 12 will be shown to apply to the

inverse mapping.

We will de�ne a map h : R

m

�

!M = C(�

m

)�C(�

m�1

�1)� :::�C(�

1

�m+1)

where � is a rook placement on board �, and the poset C(n) is the set f0; 1; 2; :::; ng

linearly ordered as usual. Let h(�) = (i

1

; i

2

; :::; i

m

) where i

k

= l

�;k

(�) as de�ned

in De�nition 9 to be the contribution to the length function of the rook in the k

th

row of board �. Note that 0 � i

k

� �

k

� (m� k + 1).

We will show that Proposition 12 applies to h

�1

by showing it to be bijective,

rank preserving and order preserving.

h

�1

: M ! R

m

�

is de�ned by the following algorithm: given (i

1

; i

2

; :::; i

m

) 2 M ,

in the bottom row of �, a rook is placed in the (i

m

+ 1)

st

blank column from the

right edge. In the next row a rook is placed in the (i

m�1

+1)

st

blank column from

the right edge. Continue for rooks in rows k = m� 2 through 1 by putting a rook

in the (i

k

+ 1)

st

blank column from the right edge.

-1h   (1435) =

Figure 5. h

�1

:M ! R

m�n

.

Figure 5 gives an example of h

�1

acting on an element in M .

Since (i

1

; i

2

; :::; i

m

) has a rank of

P

k

i

k

=

P

k

l

�;k

(�), the map h

�1

is rank

preserving.

To show h

�1

is order preserving it su�ces to show that a cover relation in M is

mapped by h

�1

to a Ding order relation in R

m

�

.

Let � = h

�1

(i

1

; i

2

; :::; i

k

; i

k+1

; :::; i

m

) and � = h

�1

(i

1

; i

2

; :::; i

k

+ 1; i

k+1

; :::; i

m

)

We shall show that � <

D

� .



THESIS 7

By Lemma 7 it is su�cient to show that f(�) <

B

f(�), where f is the extension

function given in Section 2. Note that since the map f extending a rook placement

� to an n�n board does not depend on the shape �, it su�ces to show h

�1

meets

the necessary criteria when � is rectangular of shape m� n.

Since h

�1

is rank-preserving, we will have Inv(f(�)) = Inv(f(�))+1. Hence by

Lemma 6, if f(�) and f(�) di�er by a swap of 2 rooks, then f(�) covers f(�) in

strong Bruhat order.

1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

ij ij

k'

k

k'

k

m m

12345
12345
12345
12345
12345
12345
12345
12345

12345
12345
12345
12345
12345
12345
12345

1234
1234
1234
1234
1234
1234
1234

1234
1234
1234
1234
1234
1234
1234
1234

Figure 6. Increasing a single i is a swap.

By de�nition h(f(�)) equals (

n�m

z }| {

0; 0; � � � ; 0; i

1

; i

2

; :::i

k

; i

k+1

; :::i

m

) and h(f(�)) equals

(

n�m

z }| {

0; 0; � � � ; 0; i

1

; i

2

; :::i

k

+1; i

k+1

; :::i

m

). Increasing i

k

moves r

k

to the next available

column to the left at the m�k+1

th

step of creation, by the description of h

�1

. Call

the column r

k

was originally in i and the one it moved to j. Since f(�) and f(�)

are permutations, column j must contain a rook. Call the row this rook occupies

k

0

. The row must be above row k by the description of h

�1

.

We want to show that placements f(�) and f(�) di�er by the column swap

(ij). Let f(�

0

) be the permutation obtained from f(�) by swapping the rooks in

columns i and j. Let f(�) = s

1

s

2

:::s

n

and f(�

0

) = s

0

1

s

0

2

:::s

0

n

such that s

i

and s

0

i

are the column indexes of the rooks in row i of f(�) and f(�

0

) respectively. Note

that s

i

= s

0

i

for all i 6= k or k

0

and s

k

= s

0

k

0

; s

k

0

= s

0

k

. It su�ces for us to show

h(f(�

0

)) = h(f(�)), since then f(�

0

) = f(�).

It is easy to see that for p � k

0

or p > k, we have

l

n�n;p

(f(�

0

)) = l

n�n;p

(f(�)) = l

n�n;p

(f(�))

For k

0

< p < k, by construction, r

p

< r

k

0

or r

p

> r

k

so we have

l

n�n;p

(f(�

0

)) = l

n�n;p

(f(�)) = l

n�n;p

(f(�))

For p = k we have

l

n�n;p

(f(�

0

)) = l

n�n;p

(f(�)) + 1 = l

n�n;p

(f(�))

Thus h(f(�

0

)) = h(f(�)) as desired.

Recall that ! is the maximum number of rooks that may be placed on �. We

may now prove

Theorem 1(R

!

�

;�

D

) has a symmetric chain decomposition.
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Proof. [1, Theorem 3.6.1] states that if two posets P

1

and P

2

each have an SCD

then P

1

�P

2

has an SCD. Therefore by Proposition 8 and Theorem 13, R

!

�

has an

SCD.

Remark.

In the very special case of a rectangular m� n board, Peckness of R

m

m�n

can be

deduced from a result of Stanley. For notation, let (W;S) be a Coxeter system for

which W is a Weyl group. Let J � S so each coset wW

J

of W

J

in W contains a

unique element w

J

of minimal length. Let W

J

be the set of minimal length coset

representatives w

J

.

Theorem 14. [10, Theorem 3.1] In the above situation, the Bruhat order restricted

to W

J

is Peck.

In our case, if W = S

n

and J = f(n� 1; n); (n� 2; n� 1); :::; (n�m� 1; n�m)g

then W

J

= R

m

m�n

.

Stanley's method uses the fact that Bruhat ordering on W

J

gives the inclusion

ordering on the cells in a cell decomposition of a smooth complex projective variety,

namely a partial ag manifoldG=P

J

. Peckness then follows from the Hard Lefschetz

Theorem for smooth varieties.

As was mentioned in the introduction, Ding has also shown that his ordering R

m

�

is the ordering on the cells in a cell decomposition of a complex projective variety

which he calls the partition variety M

�

=B. In deducing Peckness via the hard

Lefschetz Theorem, Stanley has pointed out (see e.g. [11]) that it is not strictly

necessary for the variety to be smooth. It need only satisfy the weaker condition

of being a V -variety, that is, it looks locally like C

n

=G for some �nite subgroup

G � GL(n; C ). In light of this and Theorem 1, we conjecture the following:

Conjecture 15. Ding's partition varieties M

�

=B are always V -varieties.

4. EL-shellability

In this section we show that R

!

�

is EL-shellable. We begin by recalling some

terminology from [3].

An edge labeling of P is an assignment of labels from some linearly ordered set �

to the edges of its Hasse diagram. Given a; b two unre�nable chains with the same

end points in P , we say that a <

L

b if the �rst edges in the rising chains a and b

where the edge i 2 a di�ers from the edge j 2 b, has i <

�

j. A chain is rising if

each edge in the chain precedes the edge above it in the linear order.

The de�nition of EL-labeling as given by Bj�orner [3], is: For every interval [x; y]

in P ,

i there exists a unique rising chain c in [x; y], and

ii c <

L

c

0

for all maximal chains c

0

in [x; y].

A �nite graded poset is lexicographically shellable (EL- shellable) if it has an EL-

labeling.

Edelman in [8] showed that the Bruhat order of the symmetric group is EL-

shellable. He did this by de�ning a labeling with a natural order on the edges of

the poset. Label the edge � <

B

�

0

by the transposition (i; j), i < j, which satis�es

(i; j)� = �

0

. For example, 3214 is covered by 3412 and their common edge would

be labeled 24. The labels are ordered as follows: label ij precedes label kl if i < k

or if i = k then j < l. For example in the strong Bruhat order on S

4

with � = 2134
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and �

0

= 4231, 2134 < 2314 < 2341 < 3241 < 4231 is a rising chain since its edge

labeling is (13; 14; 23; 34).

Bj�orner [3] discusses how EL-shellability can be inherited by subposets.

Proposition 16. Assume P is a ranked poset with an EL-labeling and Q � P

has the property that for all x < y 2 Q the unique rising chain from x to y in

P is completely contained in Q. Then the EL-labeling of P restricted to Q is an

EL-labeling of Q.

Recall m is the number of rows in �.

Theorem 17. The poset R

m

�

under Ding's order is EL-Shellable.

Proof. In this proof we identify R

m

�

with its image f(R

m

�

) � S

n

. By Proposition 16,

it would su�ce to exhibit an EL-labeling for S

n

where the unique rising chain

between x and y with both in R

m

�

is contained in the subposet R

m

�

. The labeling

described above on S

n

[8] can be used on the subposet; however, the same ordering

of the labels will not work. A similar ordering, � can be applied which is an EL-

labeling on both S

n

and the subposet R

m

�

: edge ij precedes edge kl if j > l or if

j = l then i > k.

2578 |3154
1678 |3254
1678 |3245
1378 |6245
1378 |4265
1378 |4256
1348 |7256
1348 |5276

Figure 7. Unique rising chain in the ordering �.

We next describe the unique rising chain in S

n

. (The correctness of this descrip-

tion follows from the same veri�cation as in [8]. Given � and � such that � <

B

� ,

we must describe the next step �

0

in the unique rising chain from � to � . Let �(i)

be the i

th

value in � and �

�1

(a) be the position in � of the value a and let �(i) and

�

�1

(a) be de�ned similarly. Move up from � to �

0

by the following method. Let a

be the largest value in � such that �

�1

(a) 6= �

�1

(a), and let b be the largest value

such that �(�

�1

(a)) � b < a and �

�1

(a) � �

�1

(b) < �

�1

(a). Then �

0

= (a; b)�. In

Figure 7 the permutation associated with the extended board is written in one line

notation with the values to the left of the bar in the extended board and the values

to the right of the bar in the shape �. As shown in Figure 7, if � = 2678j3154

and � = 1348j5276, then the �rst edge label on the unique rising chain from � to

� would be 57, i.e. �

0

= (57)�. This is because a = 7, �

�1

(a) = 7 and �

�1

(a) = 3

gives b = 5 by �(�

�1

(a)) = 4 � b < a = 7 and �

�1

(a) = 3 � �(b) < �(a) = 7.

If instead we had sigma = 1678j3254 and � as before, then 12 would be the next

transposition since 1 is the largest value between 1 and 2 in a position between 1

and 6.

There are two conditions on a permutation � in S

n

required for it to lie in f(R

m

�

):
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(1) The extended board f(�) must contain all of the rooks in the non-extended

part of the board (the bottom m rows) within the original shape � at each

swap and

(2) for the rooks in the extended part of the board (the top n�m rows,)

�(1) < �(2) < ::: < �(n�m):

We need to show that a swap from � to �

0

given by the algorithm above will not

create a permutation �

0

which violates either of these conditions.

First we show that �

0

will not violate condition (1). Let a be the largest value

such that �

�1

(a) 6= �

�1

(a). Let b = �(�

�1

(a)). It follows that b < a. Label

values c

i

< a where �

�1

(a) � �

�1

(c

i

) < �

�1

(a) such that c

1

< c

2

< ::: < c

p

. The

algorithm produces a swap between a and c

p

to get from rook placement � to rook

placement �

0

. In order for �

0

to be a legal rook placement on board f(�) we need

� to contain a cell at row �

�1

(a) and column c

p

.

?

2 3 41
c c c c

b c a

a

a

p

Figure 8. For � to be greater than � in Ding order, cell

(�

�1

(a); c

p

) must exist in board �. The X's are rooks in � and

the dot is a rook in � .

Assume board � does not contain cell (�

�1

(a); c

p

), the cell in row �

�1

(a) and

column c

p

. Then � must be contained within the n � n board with the lower left

c

p

� �

�1

(a) corner removed.

We shall show that when the comparisons are done as in De�nition 3,

s

p;n��

�1

(a)+1

� t

p;n��

�1

(a)+1

:

We shall show that the failure is due to � having p rooks in rows weakly below

�

�1

(a) that are weakly to the left of column c

p

, and � having at most p � 1 such

rooks.

There are p rooks weakly to the left of column c

p

in �. These were labeled

c

1

; c

2

; :::; c

p

. Any row at or below �

�1

(a) cannot have rooks in columns weakly left

of c

p

. Since all rooks in rows �

�1

(a) through �

�1

(a) of � to the left of column a

were accounted for by the c

i

's, all other rooks in this region are in columns strictly

to the right of a. They then occupy the same positions in � and in � , because a

was the smallest value such that �

�1

(a) 6= �

�1

(a). Since �(�

�1

(a)) = c

i

for some

i � p and �(�

�1

(a)) = a with a > c

p

, there can only be p� 1 rooks weakly below

row �

�1

(a) in columns at or to the left of column c

p

.
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It follows that a rook in � must be in the removed c

p

��

�1

(a) corner. Therefore

the cell (�

�1

(a); c

p

) must exist on board �. Hence, condition (1) holds.

Next we show that �

0

does not violate condition (2), i.e.

�

0

(1) < �

0

(2) < ::: < �

0

(n�m):

Both � and � obey condition (2). We shall consider two cases:

Case 1: (�

0

)

�1

(a) � n�m. Then �

0

(i) = �(i) for all i < n�m.

Case 2: (�

0

)

�1

(a) < n �m. Then for i < (�

0

)

�1

(a) it follows that �

0

(i) = �(i), and

for a > �(i) and if i > (�

0

)

�1

(a) it follows that �

0

(i) = �(i) and a < �(i).

In both cases �

0

(1) < �

0

(2) < ::: < �

0

(n�m).

We may now prove

Theorem 2 : the poset R

!

�

under Ding's order is EL-shellable.

Proof. [3, Theorem 4.3] states that if P and Q are bounded �nite posets, then

P �Q is EL-shellable if and only if both P and Q are EL-shellable. Therefore by

Proposition 88 and Theorem 17,R

!

�

is shellable.

We shall now explain how Theorem 2 allows us to compute the M�obius function

of (R

�

;�

D

).

Lemma 18. [9, Prop 3.8.6] The M�obius function, �(x; y) equals the reduced Euler

characteristic, ~�(�(x; y)), of the simplicial complex �(x; y) of chains in the open

interval (x; y).

(b)(a)

Figure 9. Intervals of length 2.

Corollary 19. For �; � 2 R

m

�

, the M�obius function

�(�; �) =

�

(�1)

l(�)�l(�)

if [�; � ]

D

�

=

[f(�); f(�)]

B

0 otherwise.

Proof. Bj�orner showed [2] that in an EL-shellable poset with all intervals of length

2 as in Figure 9 (a) and (b), that for � < � with l(�) � l(�) � 2, �(x; y) is

homeomorphic to:

�

S

l(�)�l(�)�2

if all length 2 intervals in [�; � ] look like (a)

B

l(�)�l(�)�2

if any length 2 interval in [�; � ] looks like (b)

where S

d

is the d-dimensional sphere, and B

d

is the d-dimensional ball.

The poset R

m

�

will have length 2 intervals all of type (a) or (b) of Figure 9, since

(S

n

;�

B

) has all length two intervals of type (a). Type (b) occurs when one of the

permutations in the interval [�; � ] does not have its rooks all on the board �. The

reduced Euler characteristic of S

l(�)�l(�)�2

is (�1)

l(�)�l(�)

and of B

l(�)�l(�)�2

is

0.
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