What is Algebraic Combinatorics?
A general counting problem
Four properties
An algebraic approach
Summary

Algebraic Combinatorics
Using algebra to help one count

V. Reiner
Max and Rose Lorie Lecture Series
George Mason University
January 29, 2010
What is Algebraic Combinatorics?

A general counting problem

Four properties

An algebraic approach

Summary
Outline

1. What is Algebraic Combinatorics?
2. A general counting problem
3. Four properties
4. An algebraic approach
What is Algebraic Combinatorics?

A general counting problem

Four properties

An algebraic approach
What is Algebraic Combinatorics?

- **Combinatorics** is the study of finite or discrete objects, and their structure.
- Counting them is **enumerative combinatorics**.
- One part of **algebraic combinatorics** is using **algebra** to help you do enumerative combinatorics.
What is Algebraic Combinatorics?

- **Combinatorics** is the study of finite or discrete objects, and their structure.
- **Counting** them is **enumerative** combinatorics.
- One part of **algebraic combinatorics** is using **algebra** to help you do enumerative combinatorics.
What is Algebraic Combinatorics?

- Combinatorics is the study of finite or discrete objects, and their structure.
- Counting them is enumerative combinatorics.
- One part of algebraic combinatorics is using algebra to help you do enumerative combinatorics.
Example: enumerating subsets up to symmetry

We’ll explore an interesting family of examples:

Enumerating subsets, up to symmetry.

This has many interesting properties,

- some easier,
- some harder (without algebra!).
Example: enumerating subsets up to symmetry

We’ll explore an interesting family of examples:

Enumerating **subsets**, up to **symmetry**.

This has many interesting properties,

- some easier,
- some harder (without algebra!).
A group permuting the first n numbers

Let $[n] := \{1, 2, \ldots, n\}$, permuted by the **symmetric group** \mathfrak{S}_n on n letters.

Let G be any subgroup of \mathfrak{S}_n, thought of as some chosen symmetries.
A group permuting the first n numbers

Let $[n] := \{1, 2, \ldots, n\}$, permuted by the symmetric group \mathfrak{S}_n on n letters.

Let G be any subgroup of \mathfrak{S}_n, thought of as some chosen symmetries.
What is Algebraic Combinatorics?
A general counting problem
Four properties
An algebraic approach
Summary

EXAMPLE: $G=$ cyclic symmetry, with $n = 6$
Counting G-orbits of subsets

Let’s count the set

$$2^{[n]} := \{ \text{all subsets of } [n] \}$$

or equivalently,

black-white colorings of $[n]$,

but only **up to equivalence** by elements of G.

I.e. let’s count the G-orbits

$$2^{[n]} / G$$
Counting G-orbits of subsets

Let’s count the set

$$2^{[n]} := \{ \text{all subsets of } [n] \}$$

or equivalently,

black-white colorings of $[n]$,

but only up to equivalence by elements of G.

I.e. let’s count the G-orbits

$$2^{[n]} / G$$
EXAMPLE: black-white necklaces

For G the cyclic group of rotations as above, G-orbits of colorings of $[n]$ are sometimes called necklaces.
All the black-white necklaces for $n = 6$

In this case, $|2^n / G| = 14$.
More refined counting of G-orbits

Let’s even be more refined: count the sets

\[([n]_k) := \{ \text{all k-element subsets of } [n] \} \]

or equivalently,

black-white colorings of $[n]$ with k blacks,

but again only up to equivalence by elements of G.

I.e. we want to understand

\[c_k := |([n]_k) / G | \]

= number of G-orbits of black-white colorings of $[n]$ with k blacks.
More refined counting of G-orbits

Let’s even be more refined: count the sets

$\binom{[n]}{k} := \{ \text{all } k\text{-element subsets of } [n] \}$

or equivalently,

black-white colorings of $[n]$ with k blacks,

but again only up to equivalence by elements of G.

I.e. we want to understand

$$c_k := |\binom{[n]}{k} / G|$$

number of G-orbits of black-white colorings of $[n]$ with k blacks.
The refined necklace count for $n = 6$

Here $(c_0, c_1, c_2, c_3, c_4, c_5, c_6) = (1, 1, 3, 4, 3, 1, 1)$.
QUESTION: What can we say in general about the sequence $c_0, c_1, c_2, \ldots, c_n$?

AN ANSWER: They share many properties with the case where G is the trivial group, where the c_k are the binomial coefficients

$$\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n-1}, \binom{n}{n}.$$
The basic question

QUESTION: What can we say in general about the sequence $c_0, c_1, c_2, \ldots, c_n$?

AN ANSWER: They share many properties with the case where G is the trivial group, where the c_k are the binomial coefficients

$$
\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n-1}, \binom{n}{n}
$$
The binomial coefficients

Recall what binomial coefficient sequences look like:

\[
\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n-1}, \binom{n}{n}
\]

n = 0	1
n = 1	1 1
n = 2	1 2 1
n = 3	1 3 3 1
n = 4	1 4 6 4 1
n = 5	1 5 10 10 5 1
n = 6	1 6 15 20 15 6 1
PROPERTY 1 (the easy one)

SYMMETRY: For any permutation group G, one has $c_k = c_{n-k}$

This follows from
- complementing the subsets, or
- swapping the colors in the black-white colorings.
PROPERTY 1 (the easy one)

SYMmetry: For any permutation group G, one has $c_k = c_{n-k}$

This follows from
- complementing the subsets, or
- swapping the colors in the black-white colorings.
PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)

\[c_0 \leq c_1 \leq \ldots \leq c_{\frac{n}{2}} \geq \ldots \geq c_{n-1} \geq c_n \]

e.g.

\[1 \leq 1 \leq 3 \leq 4 \geq 3 \geq 1 \geq 1 \]

Nontrivial, but fairly easy with some algebra. Currently only known in general via various algebraic means.
PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)

\[c_0 \leq c_1 \leq \ldots \leq c_{\frac{n}{2}} \geq \ldots \geq c_{n-1} \geq c_n \]

e.g.

\[1 \leq 1 \leq 3 \leq 4 \geq 3 \geq 1 \geq 1 \]

Nontrivial, but fairly easy with some algebra.

Currently only known in general via various algebraic means.
PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)

\[c_0 \leq c_1 \leq \cdots \leq c_{\frac{n}{2}} \geq \cdots \geq c_{n-1} \geq c_n \]

e.g.

\[1 \leq 1 \leq 3 \leq 4 \geq 3 \geq 1 \geq 1 \]

Nontrivial, but fairly easy with some algebra. Currently only known in general via various algebraic means.
PROPERTY 3 (not so hard, but a bit surprising)

ALTERNATING SUM: (de Bruijn 1959)

\[c_0 - c_1 + c_2 - c_3 + \cdots \text{ counts self-complementary } G\text{-orbits.} \]

e.g. there are \(1 - 1 + 3 - 4 + 3 - 1 + 1 = 2 \)

self-complementary black-white necklaces for \(n = 6 \):
PROPERTY 3 (not so hard, but a bit surprising)

ALTERNATING SUM: (de Bruijn 1959)

\[c_0 - c_1 + c_2 - c_3 + \cdots \text{ counts self-complementary } G\text{-orbits.} \]

e.g. there are \(1 - 1 + 3 - 4 + 3 - 1 + 1 = 2 \) self-complementary black-white necklaces for \(n = 6 \):
Wait! How was that like binomial coefficients?

It’s easy to see that

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \cdots = (1 + (-1))^n = 0$$

and there are no self-complementary subsets S of $[n]$.
PROPERTY 4 (not so hard, but also a bit surprising)

GENERATING FUNCTION: (Redfield 1927, Polya 1937)

\[c_0 + c_1 q + c_2 q^2 + c_3 q^3 + \cdots + c_n q^n \]

is the average over all \(g \) in \(G \) of the very simple products

\[\prod_{\text{cycles } C \text{ of } g} (1 + q^{\lvert C \rvert}) \]
PROPERTY 4 (not so hard, but also a bit surprising)

GENERATING FUNCTION: (Redfield 1927, Polya 1937)

\[c_0 + c_1 q + c_2 q^2 + c_3 q^3 + \cdots + c_n q^n \]

is the average over all \(g \) in \(G \) of the very simple products

\[\prod_{\text{cycles } C \text{ of } g} (1 + q^{|C|}) \]
What is Algebraic Combinatorics?
A general counting problem
Four properties
An algebraic approach
Summary

\[\mathbf{G} = \{\begin{array}{ccccccc}
\end{array}\} \]

\[
(1 + q^1)^6 = q^0 + 6q^1 + 15q^2 + 20q^3 + 15q^4 + 6q^5 + q^6
\]

\[
(1 + q^6)^1 = q^0 + q^6
\]

\[
(1 + q^3)^2 = q^0 + 3q^2 + 3q^4 + q^6
\]

\[
(1 + q^2)^3 = q^0 + 2q^3 + q^6
\]

\[
(1 + q^3)^2 = q^0 + 2q^3 + q^6
\]

\[
(1 + q^6)^1 = q^0 + q^6
\]

\[
\begin{array}{ccccccc}
6q^0 & +6q^1 & +18q^2 & +24q^3 & +18q^4 & +6q^5 & +6q^6
\end{array}
\]

\[
\times \frac{1}{6}
\]

\[
1q^0 + 1q^1 + 3q^2 + 4q^3 + 3q^4 + q^5 + 1q^6
\]
What is Algebraic Combinatorics?

A general counting problem

Four properties

An algebraic approach

Summary
In the algebraic approach, instead of thinking of numbers like $|2^{[n]}/G|$ and $c_k = |\binom{[n]}{k}/G|$ as **cardinalities** of sets, one tries to re-interpret them as **dimensions** of vector spaces.

Hopefully these vector spaces are natural enough that one can prove

- **equalities** of cardinalities via vector space **isomorphisms**,
- **inequalities** via vector space **injections** or **surjections**,
- **identities** via **trace identities**, etc.
In the algebraic approach, instead of thinking of numbers like \(|2^{[n]} / G| \) and \(c_k = |([n]/G)| \) as cardinalities of sets, one tries to re-interpret them as dimensions of vector spaces.

Hopefully these vector spaces are natural enough that one can prove

- equalities of cardinalities via vector space isomorphisms,
- inequalities via vector space injections or surjections,
- identities via trace identities, etc.
In the algebraic approach, instead of thinking of numbers like $|2^\mathbb{Z}/G|$ and $c_k = \left|\binom{\mathbb{Z}}{k}/G\right|$ as cardinalities of sets, one tries to re-interpret them as dimensions of vector spaces.

Hopefully these vector spaces are natural enough that one can prove

- **equalities** of cardinalities via vector space isomorphisms,
- **inequalities** via vector space injections or surjections,
- **identities** via trace identities, etc.
Linearize!

In the algebraic approach, instead of thinking of numbers like $|2^{[n]} / G|$ and $c_k = |([n]_k) / G|$ as cardinalities of sets, one tries to re-interpret them as dimensions of vector spaces.

Hopefully these vector spaces are natural enough that one can prove

- **equalities** of cardinalities via vector space isomorphisms,
- **inequalities** via vector space injections or surjections,
- identities via trace identities, etc.
In the algebraic approach, instead of thinking of numbers like $|2^{[n]}/G|$ and $c_k = |([n]/G)|$ as **cardinalities** of **sets**, one tries to re-interpret them as **dimensions** of **vector spaces**.

Hopefully these vector spaces are natural enough that one can prove

- **equalities** of cardinalities via vector space **isomorphisms**,
- **inequalities** via vector space **injections** or **surjections**,
- **identities** via trace identities, etc.
Let $V = \mathbb{C}^2$ have a \mathbb{C}-basis

$$\{ w, b \}$$

white black

Then

$$V^\otimes n := \underbrace{V \otimes \cdots \otimes V}_{n \text{ tensor positions}}$$

has its tensor positions labelled by $[n]$, and has a \mathbb{C}-basis $\{ e_S \}$ indexed by

- black-white colorings of $[n]$, or
- subsets S of $[n]$.
Tensor products and colorings

Let $V = \mathbb{C}^2$ have a \mathbb{C}-basis

$$\{ w, b \}$$

white black

Then

$$V \otimes^n := V \otimes \cdots \otimes V$$

n tensor positions has its tensor positions labelled by $[n]$, and has a \mathbb{C}-basis $\{ e_S \}$ indexed by
- black-white colorings of $[n]$, or
- subsets S of $[n]$.
Tensor products and colorings

Let \(V = \mathbb{C}^2 \) have a \(\mathbb{C} \)-basis

\[
\{ \begin{array}{c}
\| \quad \| \\
\text{white} & \text{black}
\end{array}
\}
\]

Then

\[
V \otimes^n := \underbrace{V \otimes \cdots \otimes V}_{n \text{ tensor positions}}
\]

has its tensor positions labelled by \([n]\), and has a \(\mathbb{C} \)-basis \(\{e_S\} \) indexed by

- black-white colorings of \([n]\), or
- subsets \(S \) of \([n]\).
A typical basis tensor e_S

E.g. For $n = 6$ and the subset $S = \{1, 4, 5\}$, one has the basis element of $V^\otimes 6$

$$e_{\{1, 4, 5\}} = b \otimes w \otimes w \otimes b \otimes b \otimes w$$

or for short, just

$$e_{\{1, 4, 5\}} = bwwbbw$$
A typical basis tensor e_S

E.g. For $n = 6$ and the subset $S = \{1, 4, 5\}$, one has the basis element of $V^\otimes 6$

$$e_{\{1,4,5\}} = b \otimes w \otimes w \otimes b \otimes b \otimes w$$

or for short, just

$$e_{\{1,4,5\}} = bwwbbw$$
Quick tensor product reminder

Recall tensor products are **multilinear**, that is, linear in each tensor factor.

E.g. for any constants c_1, c_2 in \mathbb{C} one has

$$b \otimes w \otimes (c_1 \cdot w + c_2 \cdot b) \otimes b \otimes b \otimes w$$

$$= c_1 \cdot (b \otimes w \otimes w \otimes b \otimes b \otimes w)$$

$$+ c_2 \cdot (b \otimes w \otimes b \otimes b \otimes b \otimes w)$$
Recall tensor products are *multilinear*, that is, linear in each tensor factor.

E.g. for any constants c_1, c_2 in \mathbb{C} one has

\[b \otimes w \otimes (c_1 \cdot w + c_2 \cdot b) \otimes b \otimes b \otimes w = c_1 \cdot (b \otimes w \otimes w \otimes b \otimes b \otimes w) + c_2 \cdot (b \otimes w \otimes b \otimes b \otimes b \otimes w) \]
The subspace of G-invariants

The subgroup G of \mathfrak{S}_n acts on $V \otimes \underbrace{n}_{\text{tensor}}$ by **permuting the tensor positions**.

Consider the subspace of G-invariants

$$(V \otimes \underbrace{n}_{\text{tensor}})^G.$$

This has a \mathbb{C}-basis naturally indexed by

- G-orbits of black-white colorings of $[n]$, or
- G-orbits of subsets S of $[n]$.
The subspace of G-invariants

The subgroup G of \mathfrak{S}_n acts on $V^\otimes n$ by **permuting the tensor positions**.

Consider the subspace of **G-invariants**

$$(V^\otimes n)^G.$$

This has a \mathbb{C}-basis naturally indexed by

- G-orbits of black-white colorings of $[n]$, or
- G-orbits of subsets S of $[n]$.
The subspace of G-invariants

The subgroup G of \mathfrak{S}_n acts on $V \otimes^n$ by *permuting the tensor positions*.

Consider the subspace of *G-invariants*

$$(V \otimes^n)^G.$$

This has a \mathbb{C}-basis naturally indexed by

- G-orbits of black-white colorings of $[n]$, or
- G-orbits of subsets S of $[n]$.

Example

E.g. for $n = 6$ with $G = \text{cyclic rotations}$, the element

$$wwbwwb + bwwbww + wbwwbw \in (V \otimes 6)^G$$

corresponds to the necklace shown:

CONCLUSION: $|2^n/G| = \dim_{\mathbb{C}} (V \otimes n)^G$
E.g. for $n = 6$ with $G =$ cyclic rotations, the element

$$wwbwwb + bwwbww + wbwwbw \in \left(V \otimes^6 \right)^G$$

corresponds to the necklace shown:

CONCLUSION: $|2^n/G| = \dim_{\mathbb{C}} \left(V \otimes^n \right)^G$
Better yet, if one defines subspaces

\[V_k \otimes n := \mathbb{C}\text{-span of } \{e_S \text{ with } |S| = k \} \]

then

- one has a direct sum decomposition \(V \otimes n = \bigoplus_{k=0}^{n} V_k \otimes n \),
- the group \(G \) acts on each \(V_k \otimes n \), and
- \(c_k := |([n]) / G| = \dim_{\mathbb{C}} (V_k \otimes n)^G \).
Interpreting the c_k’s

Better yet, if one defines subspaces

$$V_k^\otimes n := \mathbb{C}\text{-span of } \{e_S \text{ with } |S| = k\}$$

then

- one has a direct sum decomposition $V^\otimes n = \bigoplus_{k=0}^n V_k^\otimes n$,
- the group G acts on each $V_k^\otimes n$, and
- $c_k := |\binom{[n]}{k}/G| = \dim_{\mathbb{C}} (V_k^\otimes n)^G$.
Interpreting the c_k's

Better yet, if one defines subspaces

$$V_k^n := \mathbb{C}\text{-span of } \{e_S \text{ with } |S| = k\}$$

then

- one has a direct sum decomposition $V^n = \bigoplus_{k=0}^{n} V_k^n$,
- the group G acts on each V_k^n, and
- $c_k := |\binom{[n]}{k}/G| = \dim_{\mathbb{C}} (V_k^n)^G$.

V. Reiner
Algebraic Combinatorics
Better yet, if one defines subspaces

\[V_k^n := \mathbb{C}\text{-span of } \{e_S \text{ with } |S| = k\} \]

then

- one has a direct sum decomposition \(V^n = \bigoplus_{k=0}^{n} V_k^n \),
- the group \(G \) acts on each \(V_k^n \), and
- \(c_k := |\binom{[n]}{k}/G| = \dim_{\mathbb{C}} (V_k^n)^G \).
This gives a good framework for understanding the c_k. We’ve naturally **linearized** this picture:
Silly proof of Property 1: SYMMETRY

We want to show

\[c_k = c_{n-k} \]

Or equivalently,

\[\dim_\mathbb{C} (V_k^n)^G = \dim_\mathbb{C} (V_{n-k}^n)^G. \]

So we’d like a \(\mathbb{C} \)-linear isomorphism

\[(V_k^n)^G \rightarrow (V_{n-k}^n)^G. \]
Silly proof of Property 1: SYMMETRY

We want to show

\[c_k = c_{n-k} \]

Or equivalently,

\[\dim \mathbb{C} (V_k \otimes n)^G = \dim \mathbb{C} (V_{n-k} \otimes n)^G. \]

So we’d like a \(\mathbb{C} \)-linear isomorphism

\[(V_k \otimes n)^G \rightarrow (V_{n-k} \otimes n)^G. \]
Silly proof of Property 1: SYMMETRY

We want to show

\[c_k = c_{n-k} \]

Or equivalently,

\[\dim \mathbb{C} (V_k^\otimes n)^G = \dim \mathbb{C} (V_{n-k}^\otimes n)^G. \]

So we’d like a \(\mathbb{C} \)-linear isomorphism

\[(V_k^\otimes n)^G \rightarrow (V_{n-k}^\otimes n)^G. \]
Any \mathbb{C}-linear map

$$t : V \rightarrow V$$

gives rise to a \mathbb{C}-linear map

$$t : V \otimes^n \rightarrow V \otimes^n$$

acting \textit{diagonally}, i.e. the same in each tensor position.
Schur-Weyl duality

Such maps commute with the G-action permuting the tensor positions.

$$v_1 \otimes v_2 \otimes v_3 \xrightarrow{t} t(v_1) \otimes t(v_2) \otimes t(v_3)$$

$$\downarrow g = (12) \quad \downarrow g = (12)$$

$$v_2 \otimes v_1 \otimes v_3 \xrightarrow{t} t(v_2) \otimes t(v_1) \otimes t(v_3)$$
Schur-Weyl duality

Such maps **commute** with the G-action permuting the tensor positions.

\[v_1 \otimes v_2 \otimes v_3 \xrightarrow{t} t(v_1) \otimes t(v_2) \otimes t(v_3) \]

\[\downarrow g = (12) \quad \downarrow g = (12) \]

\[v_2 \otimes v_1 \otimes v_3 \xrightarrow{t} t(v_2) \otimes t(v_1) \otimes t(v_3) \]
Silly proof of SYMMETRY (cont’d)

Let $t : V \to V$ swap the basis elements $\{w, b\}$, so on tensors it also swaps them, e.g.

$$t(bwbbwb) = wbwwbw.$$

Note that $t^2 = 1$, so t gives a \mathbb{C}-linear isomorphism

$$V^\otimes_k \to V^\otimes_{n-k}$$

which restricts to a \mathbb{C}-linear isomorphism

$$(V_k^\otimes)^G \to (V_{n-k}^\otimes)^G,$$

as desired to show $c_k = c_{n-k}$. QED
Let \(t : V \rightarrow V \) swap the basis elements \(\{w, b\} \), so on tensors it also swaps them, e.g.

\[
t(bwbbwb) = wbwwbw.
\]

Note that \(t^2 = 1 \), so \(t \) gives a \(\mathbb{C} \)-linear isomorphism

\[
V_k \otimes^n \rightarrow V_{n-k} \otimes^n
\]

which restricts to a \(\mathbb{C} \)-linear isomorphism

\[
(V_k \otimes^n)^G \rightarrow (V_{n-k} \otimes^n)^G,
\]

as desired to show \(c_k = c_{n-k} \). QED
Silly proof of SYMMETRY (cont’d)

Let \(t : V \to V \) swap the basis elements \(\{w, b\} \), so on tensors it also swaps them, e.g.

\[
t(bwbbwb) = wbwwbw.
\]

Note that \(t^2 = 1 \), so \(t \) gives a \(\mathbb{C} \)-linear isomorphism

\[
V_k \otimes^n \to V_{n-k} \otimes^n
\]

which restricts to a \(\mathbb{C} \)-linear isomorphism

\[
(V_k \otimes^n)^G \to (V_{n-k} \otimes^n)^G,
\]

as desired to show \(c_k = c_{n-k} \). QED
Silly proof of SYMMETRY (cont’d)

Let $t : V \rightarrow V$ swap the basis elements $\{w, b\}$, so on tensors it also swaps them, e.g.

$$t(bwbbwb) = wbwwbw.$$

Note that $t^2 = 1$, so t gives a \mathbb{C}-linear isomorphism

$$V_k \otimes^n \rightarrow V_{n-k}$$

which restricts to a \mathbb{C}-linear isomorphism

$$(V_k \otimes^n)^G \rightarrow (V_{n-k} \otimes^n)^G,$$

as desired to show $c_k = c_{n-k}$. QED
We want to show that

\[c_0 - c_1 + c_2 - c_3 + \cdots \]

counts **self-complementary** \(G\)-orbits.

Begin with this observation:

PROPOSITION: The number of **self-complementary** \(G\)-orbits is the **trace** of the color-swapping map \(t\) from before, when it acts on \((V \otimes n)^G\).
We want to show that
\[c_0 - c_1 + c_2 - c_3 + \cdots \]
counts **self-complementary** \(G\)-orbits.

Begin with this observation:

PROPOSITION: The number of **self-complementary** \(G\)-orbits is the \textit{trace} of the color-swapping map \(t\) from before, when it acts on \((V \otimes n)^G\).
Proof.

- t permutes the basis of $(V^\otimes n)^G$ indexed by G-orbits of black-white colorings, and
- t fixes such a basis element if and only if this G-orbit is self-complementary. QED

For example, with $n = 6$ and $G = \text{cyclic rotation}$, t fixes this basis element of $(V^\otimes 6)^G$

$$wbwbwb + bwwwwb + bbwwwb + bbbwww + wbbbbw + wwwbbw$$

as it is a sum over the t-stable G-orbit shown below:
Not-so-silly proof (cont’d)

Proof.
- \(t\) permutes the basis of \((V \otimes n)^G\) indexed by \(G\)-orbits of black-white colorings, and
- \(t\) fixes such a basis element if and only if this \(G\)-orbit is self-complementary. QED

For example, with \(n = 6\) and \(G\) = cyclic rotation, \(t\) fixes this basis element of \((V \otimes 6)^G\):

\[
wwwbwb + bwwwb + bbwbb + bbwbw + wbbww + wwbwb
\]

as it is a sum over the \(t\)-stable \(G\)-orbit shown below:
Not-so-silly proof (cont’d)

Proof.

- t permutes the basis of $(V^\otimes n)^G$ indexed by G-orbits of black-white colorings, and
- t fixes such a basis element if and only if this G-orbit is self-complementary. QED

For example, with $n = 6$ and $G =$ cyclic rotation, t fixes this basis element of $(V^\otimes 6)^G$

$$wwwbwb + bwwwwb + bbwwwb + bbbwww + wbbbbw + wwwbbw$$

as it is a sum over the t-stable G-orbit shown below:
What does this have to do with $c_0 - c_1 + c_2 - \cdots$?

Well, inside $GL(V)$,

$$t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad s = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- are both diagonalizable and have eigenvalues $+1, -1$,
- so they must be **conjugate** within $GL(V)$,
- so t, s must act on $V^\otimes n$ and on $(V^\otimes n)^G$ by \mathbb{C}-linear maps which are conjugate.
What does this have to do with $c_0 - c_1 + c_2 - \cdots$?
Well, inside $GL(V)$,

$$t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad s = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

are both diagonalizable and have eigenvalues $+1, -1$,
so they must be conjugate within $GL(V)$,
so t, s must act on $V^\otimes n$ and on $(V^\otimes n)^G$ by \mathbb{C}-linear maps which are conjugate.
What does this have to do with $c_0 - c_1 + c_2 - \cdots$? Well, inside $GL(V)$,

$$t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad s = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

are both diagonalizable and have eigenvalues $+1, -1$, so they must be **conjugate** within $GL(V)$, so t, s must act on $V^\otimes n$ and on $(V^\otimes n)^G$ by \mathbb{C}-linear maps which are conjugate.
What does this have to do with $c_0 - c_1 + c_2 - \cdots$?
Well, inside $GL(V)$,

$$
 t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad s = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
$$

• are both diagonalizable and have eigenvalues $+1, -1$,
• so they must be **conjugate** within $GL(V)$,
• so t, s must act on $V^\otimes n$ and on $(V^\otimes n)^G$ by \mathbb{C}-linear maps which are conjugate.
Recall that $\text{Tr}(AB) = \text{Tr}(BA)$ implies conjugate transformations have the same trace:

$$\text{Tr}(PAP^{-1}) = \text{Tr}(P^{-1} \cdot PA) = \text{Tr}(A).$$

Thus s, t must act with the same trace on $(V^\otimes n)^G$.

We know from the previous Proposition that this trace for t is the number of self-complementary G-orbits.

So it suffices to apply the following fact with $q = -1$...
Recall that $Tr(AB) = Tr(BA)$ implies **conjugate transformations** have the **same trace**:

$$Tr(PAP^{-1}) = Tr(P^{-1} \cdot PA) = Tr(A).$$

Thus s, t must act with the **same trace** on $(V \otimes^n)^G$.

We know from the previous Proposition that this trace for t is the number of self-complementary G-orbits.

So it suffices to apply the following fact with $q = -1...$
Recall that $\text{Tr}(AB) = \text{Tr}(BA)$ implies **conjugate transformations** have the **same trace**:

$$\text{Tr}(PAP^{-1}) = \text{Tr}(P^{-1} \cdot PA) = \text{Tr}(A).$$

Thus s, t must act with the **same trace** on $(V \otimes n)^G$.

We know from the previous Proposition that this trace for t is the number of self-complementary G-orbits.

So it suffices to apply the following fact with $q = -1$...
PROPOSITION: For any eigenvalue q in \mathbb{C}, the element $s(q) = \begin{bmatrix} 1 & 0 \\ 0 & q \end{bmatrix}$ acts on $(V^\otimes n)^G$ with trace

$$c_0 + c_1 q + c_2 q^2 + \cdots + c_n q^n.$$

In particular, for $q = -1$, the element $s = s(-1)$ acts with trace

$$c_0 - c_1 + c_2 - \cdots.$$
PROPOSITION: For any eigenvalue q in \mathbb{C}, the element $s(q) = \begin{bmatrix} 1 & 0 \\ 0 & q \end{bmatrix}$ acts on $(V^\otimes n)^G$ with trace

$$c_0 + c_1 q + c_2 q^2 + \cdots + c_n q^n.$$

In particular, for $q = -1$, the element $s = s(-1)$ acts with trace

$$c_0 - c_1 + c_2 - \cdots.$$
Proof.

- \(s(q)\) fixes \(w\).
- \(s(q)\) scales \(b\) by \(q\).
- Hence \(s(q)\) scales any \(e_S\) in which \(|S| = k\) by \(q^k\), e.g.

\[
s(q)(bwbbbw) = qb \otimes w \otimes qb \otimes qb \otimes qb \otimes w = q^4 \cdot bwbbbw.
\]

- Hence \(s(q)\) scales all of \(V_k \otimes^n\) by \(q^k\),
- and therefore scales all of \((V_k \otimes^n)^G\) by \(q^k\).
- So \(s(q)\) acts on \((V \otimes^n)^G = \bigoplus_k (V_k \otimes^n)^G\) with trace \(\sum_k c_k q^k\).

QED
Not-so-silly proof (cont’d)

Proof.

- \(s(q)\) fixes \(w\).
- \(s(q)\) scales \(b\) by \(q\).

Hence \(s(q)\) scales any \(e_S\) in which \(|S| = k\) by \(q^k\), e.g.

\[
s(q)(bwbbbw) = q b \otimes w \otimes q b \otimes q b \otimes q b \otimes w = q^4 \cdot bwbbbw.
\]

Hence \(s(q)\) scales all of \(V_k^ \otimes n\) by \(q^k\),

and therefore scales all of \((V_k^ \otimes n)^G\) by \(q^k\).

So \(s(q)\) acts on \((V^ \otimes n)^G = \bigoplus_k (V_k^ \otimes n)^G\) with trace \(\sum_k c_k q^k\).

QED
Proof.

- $s(q)$ fixes w.
- $s(q)$ scales b by q.
- Hence $s(q)$ scales any e_S in which $|S| = k$ by q^k, e.g.

$$s(q)(bwbbbw) = qb \otimes w \otimes qb \otimes qb \otimes qb \otimes w = q^4 \cdot bwbbbw.$$

- Hence $s(q)$ scales all of $V_k^\otimes n$ by q^k.
- and therefore scales all of $(V_k^\otimes n)^G$ by q^k.
- So $s(q)$ acts on $(V^\otimes n)^G = \bigoplus_k (V_k^\otimes n)^G$ with trace $\sum_k c_k q^k$.

QED
Not-so-silly proof (cont’d)

Proof.

- \(s(q) \) fixes \(w \).
- \(s(q) \) scales \(b \) by \(q \).
- Hence \(s(q) \) scales any \(e_S \) in which \(|S| = k \) by \(q^k \), e.g.

\[
 s(q)(bwbbbw) = qb \otimes w \otimes qb \otimes qb \otimes qb \otimes w = q^4 \cdot bwbbbw.
\]

- Hence \(s(q) \) scales all of \(V_k^\otimes n \) by \(q^k \),
- and therefore scales all of \((V_k^\otimes n)^G \) by \(q^k \).
- So \(s(q) \) acts on \((V^\otimes n)^G = \bigoplus_k (V_k^\otimes n)^G \) with trace \(\sum_k c_k q^k \).

QED
Not-so-silly proof (cont’d)

Proof.

- $s(q)$ fixes w.
- $s(q)$ scales b by q.
- Hence $s(q)$ scales any e_S in which $|S| = k$ by q^k, e.g.

$$s(q)(bwbbbw) = q b \otimes w \otimes q b \otimes q b \otimes q b \otimes w = q^4 \cdot bwbbbw.$$

- Hence $s(q)$ scales all of V_k^n by q^k.
- and therefore scales all of $(V_k^n)^G$ by q^k.
- So $s(q)$ acts on $(V^n)^G = \bigoplus_k (V_k^n)^G$ with trace $\sum_k c_k q^k$.

QED
Not-so-silly proof (cont’d)

Proof.

- $s(q)$ fixes w.
- $s(q)$ scales b by q.
- Hence $s(q)$ scales any e_S in which $|S| = k$ by q^k, e.g.

$$s(q)(bwbbbw) = qb \otimes w \otimes qb \otimes qb \otimes qb \otimes w = q^4 \cdot bwbbbw.$$

- Hence $s(q)$ scales all of $V_k \otimes^n$ by q^k,
- and therefore scales all of $(V_k \otimes^n)^G$ by q^k.
- So $s(q)$ acts on $(V \otimes^n)^G = \bigoplus_k (V_k \otimes^n)^G$ with trace $\sum_k c_k q^k$.

QED
A proof of Property 2: UNIMODALITY

We want to show that for $k < \frac{n}{2}$, one has

$$c_k \leq c_{k+1}$$

So we’d like a \mathbb{C}-linear injective map

$$(V_k \otimes^n)^G \hookrightarrow (V_{k+1} \otimes^n)^G.$$

Maybe we should look for an injective map

$$V_k \otimes^n \hookrightarrow V_{k+1} \otimes^n$$

that commutes with the action of \mathfrak{S}_n on tensor positions, and hence with every G?
A proof of Property 2: UNIMODALITY

We want to show that for \(k < \frac{n}{2} \), one has

\[
c_k \leq c_{k+1}
\]

So we’d like a \(\mathbb{C} \)-linear injective map

\[
(V_k \otimes^n)^G \hookrightarrow (V_{k+1} \otimes^n)^G.
\]

Maybe we should look for an injective map

\[
V_k \otimes^n \hookrightarrow V_{k+1} \otimes^n
\]

that commutes with the action of \(S_n \) on tensor positions, and hence with every \(G \).
A proof of Property 2: UNIMODALITY

We want to show that for $k < \frac{n}{2}$, one has

$$c_k \leq c_{k+1}$$

So we'd like a \mathbb{C}-linear injective map

$$(V_k \otimes^n)^G \hookrightarrow (V_{k+1} \otimes^n)^G.$$

Maybe we should look for an injective map

$$V_k \otimes^n \hookrightarrow V_{k+1} \otimes^n$$

that commutes with the action of \mathfrak{S}_n on tensor positions, and hence with every G?
The only natural injection

There is only one **obvious candidate** for such an injection $U_k : V_k^n \hookrightarrow V_{k+1}^n$, namely define

$$U_k(e_S) := \sum_{T \supset S : \|T\| = k+1} e_T$$

E.g. for $n = 6, k = 2$, one has

$$U_2(bwbwww) = bbwww + bwbwwb + bwbwbw + bwbwwb$$

Easy to check U_k commutes with \mathfrak{S}_n permuting positions. But why is U_k **injective**?
The only natural injection

There is only one **obvious candidate** for such an injection $U_k : V_k^\otimes n \hookrightarrow V_{k+1}^\otimes n$, namely define

$$U_k(e_S) := \sum_{\substack{T \supseteq S: \\ |T| = k+1}} e_T$$

E.g. for $n = 6$, $k = 2$, one has

$$U_2(bwbwww) = bbwww + wbwbww + wbwbwbw + wbwbwwb$$

Easy to check U_k commutes with \mathfrak{S}_n permuting positions. But why is U_k injective?
The only natural injection

There is only one **obvious candidate** for such an injection $U_k : V_k^\otimes n \hookrightarrow V_{k+1}^\otimes n$, namely define

$$U_k(e_S) := \sum_{T \supset S : \mid T \mid = k+1} e_T$$

E.g. for $n = 6$, $k = 2$, one has

$$U_2(bwbwww) = bbwww + bwbbww + bwbwbw + bwbwwb$$

Easy to check U_k commutes with \mathfrak{S}_n permuting positions.

But why is U_k injective?
There is only one **obvious candidate** for such an injection $U_k : V_k^\otimes n \hookrightarrow V_{k+1}^\otimes n$, namely define

$$U_k(e_S) := \sum_{T \supset S : \vert T \vert = k+1} e_T$$

E.g. for $n = 6, k = 2$, one has

$$U_2(bwbwww) = bbwww + bwbbww + bwbwbb + wbwbwwb$$

Easy to check U_k commutes with \mathfrak{S}_n permuting positions. But why is U_k **injective**?
A cute injectivity argument

There are several arguments for this, but here’s a cute one.

PROPOSITION: For $k < \frac{n}{2}$, the operator $U_k^t U_k$ on $V_k^{\otimes n}$ turns out to be **positive definite**, i.e. all its (real) eigenvalues are **strictly** positive.

In particular,

- $U_k^t U_k$ is invertible,
- so U_k is injective.
A cute injectivity argument

There are several arguments for this, but here’s a cute one.

PROPOSITION: For $k < \frac{n}{2}$, the operator $U_k^t U_k$ on $V_k^\otimes n$ turns out to be \textbf{positive definite}, i.e. all its (real) eigenvalues are \textbf{strictly} positive.

In particular,

1. $U_k^t U_k$ is \textbf{invertible},
2. so U_k is \textbf{injective}.
A cute injectivity argument

There are several arguments for this, but here’s a cute one.

PROPOSITION: For $k < \frac{n}{2}$, the operator $U_k^t U_k$ on $V_k^\otimes n$ turns out to be positive definite, i.e. all its (real) eigenvalues are strictly positive.

In particular,

- $U_k^t U_k$ is invertible,
- so U_k is injective.
Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A = A^t$

- always has only real eigenvalues,
- is positive semidefinite if they’re all nonnegative, or equivalently, $x^t Ax \geq 0$ for all vectors x,
- is positive definite if they’re all positive, or equivalently, if $x^t Ax > 0$ for all nonzero vectors x,
- is always positive semidefinite when $A = B^t B$ for some rectangular matrix B, since

$$x^t Ax = x^t B^t Bx = |Bx|^2 \geq 0$$
Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A = A^t$

- always has only **real eigenvalues**,
- is **positive semidefinite** if they’re all nonnegative, or equivalently, $x^tAx \geq 0$ for all vectors x,
- is **positive definite** if they’re all positive, or equivalently, if $x^tAx > 0$ for all **nonzero** vectors x,
- is always positive semidefinite when $A = B^tB$ for some rectangular matrix B, since

$$x^tAx = x^tB^tBx = |Bx|^2 \geq 0$$
Recall that a real symmetric matrix $A = A^t$

- always has only **real eigenvalues**,
- is **positive semidefinite** if they’re all nonnegative, or equivalently, $x^tAx \geq 0$ for all vectors x,
- is **positive definite** if they’re all positive, or equivalently, if $x^tAx > 0$ for all nonzero vectors x,
- is always positive semidefinite when $A = B^tB$ for some rectangular matrix B, since

$$x^tAx = x^tB^tBx = |Bx|^2 \geq 0$$
Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A = A^t$

- always has only **real eigenvalues**,
- is **positive semidefinite** if they’re all nonnegative, or equivalently, $x^tAx \geq 0$ for all vectors x,
- is **positive definite** if they’re all positive, or equivalently, if $x^tAx > 0$ for all nonzero vectors x,
- is always positive semidefinite when $A = B^tB$ for some rectangular matrix B, since

$$x^tAx = x^tB^tBx = |Bx|^2 \geq 0$$
Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A = A^t$

- always has only **real eigenvalues**,
- is **positive semidefinite** if they’re all nonnegative, or equivalently, $x^t A x \geq 0$ for all vectors x,
- is **positive definite** if they’re all positive, or equivalently, if $x^t A x > 0$ for all nonzero vectors x,
- is always positive semidefinite when $A = B^t B$ for some rectangular matrix B, since

$$x^t A x = x^t B^t B x = |Bx|^2 \geq 0$$
A cute injectivity argument (cont’d)

PROOF that $U_k^t U_k$ is positive definite.

- Check (on each e_S) that

 $$U_k^t U_k - U_{k-1} U_{k-1}^t = (n - 2k) \cdot I_{V_k \otimes n}$$

- Hence

 $$U_k^t U_k = U_{k-1} U_{k-1}^t + (n - 2k) \cdot I_{V_k \otimes n}$$

- First term $U_{k-1} U_{k-1}^t$ is positive *semidefinite*.
- Second term $(n - 2k) \cdot I_{V_k \otimes n}$ is positive *definite* as $k < \frac{n}{2}$.
- Hence the sum $U_k^t U_k$ is positive *definite*. QED
PROOF that $U_k^t U_k$ is positive definite.

- Check (on each e_S) that

$$U_k^t U_k - U_{k-1}^t U_{k-1} = (n - 2k) \cdot I_{V_k \otimes n}$$

- Hence

$$U_k^t U_k = U_{k-1}^t U_{k-1} + (n - 2k) \cdot I_{V_k \otimes n}$$

- First term $U_{k-1}^t U_{k-1}$ is positive semidefinite.
- Second term $(n - 2k) \cdot I_{V_k \otimes n}$ is positive definite as $k < \frac{n}{2}$.
- Hence the sum $U_k^t U_k$ is positive definite. QED
PROOF that $U_k^t U_k$ is positive definite.

Check (on each e_S) that

$$U_k^t U_k - U_{k-1}^t U_{k-1} = (n - 2k) \cdot I_{V_k^\otimes n}$$

Hence

$$U_k^t U_k = U_{k-1}^t U_{k-1} + (n - 2k) \cdot I_{V_k^\otimes n}$$

First term $U_{k-1}^t U_{k-1}$ is positive **semidefinite**.

Second term $(n - 2k) \cdot I_{V_k^\otimes n}$ is positive **definite** as $k < \frac{n}{2}$.

Hence the sum $U_k^t U_k$ is positive **definite**. QED
A cute injectivity argument (cont’d)

PROOF that $U_k^t U_k$ is positive definite.

- Check (on each e_S) that

 $$U_k^t U_k - U_{k-1}^t U_{k-1} = (n - 2k) \cdot I_{V_k \otimes n}$$

- Hence

 $$U_k^t U_k = U_{k-1}^t U_{k-1} + (n - 2k) \cdot I_{V_k \otimes n}$$

- First term $U_{k-1}^t U_{k-1}$ is positive **semidefinite**.
- Second term $(n - 2k) \cdot I_{V_k \otimes n}$ is positive **definite** as $k < \frac{n}{2}$.

- Hence the sum $U_k^t U_k$ is positive **definite**. QED
A cute injectivity argument (cont’d)

PROOF that $U_k^t U_k$ is positive definite.

Check (on each e_S) that

$$U_k^t U_k - U_{k-1} U_{k-1}^t = (n - 2k) \cdot I_{V_k} \otimes I_n$$

Hence

$$U_k^t U_k = U_{k-1} U_{k-1}^t + (n - 2k) \cdot I_{V_k} \otimes I_n$$

First term $U_{k-1} U_{k-1}^t$ is positive semidefinite.

Second term $(n - 2k) \cdot I_{V_k} \otimes I_n$ is positive definite as $k < \frac{n}{2}$.

Hence the sum $U_k^t U_k$ is positive definite. QED
A proof of Property 4: GENERATING FUNCTION

(To be flipped through at lightning speed during the talk; read it later, if you want!)

We want to show

$$\sum_{k=0}^{n} c_k q^k = \frac{1}{|G|} \sum_{g \in G} \left(\prod_{\text{cycles } C \text{ of } g} (1 + q^{|C|}) \right)$$

Such averages over the group are ubiquitous due to the following easily-checked fact.
A proof of Property 4: GENERATING FUNCTION

(To be flipped through at lightning speed during the talk; read it later, if you want!)

We want to show

\[\sum_{k=0}^{n} c_k q^k = \frac{1}{|G|} \sum_{g \in G} \left(\prod_{\text{cycles } C \text{ of } g} (1 + q^{|C|}) \right) \]

Such averages over the group are ubiquitous due to the following easily-checked fact.
An idempotent projector

PROPOSITION: When a finite group G acts linearly on a vector space W over a field in which $|G|$ is invertible (nonzero), the map $W \ni w \mapsto \frac{1}{|G|} \sum_{g \in G} g(w)$ is

- **idempotent**, i.e. $\pi^2 = \pi$, and
- π **projects** onto the subspace of G-invariants W^G.
One then has a second ubiquitous and easily-checked fact.

PROPOSITION: In characteristic zero, the trace $Tr(\pi)$ of an idempotent projector onto a linear subspace is the dimension of that subspace.
Trace of idempotent = dimension of image

One then has a second ubiquitous and easily-checked fact.

PROPOSITION: In characteristic zero, the trace $\text{Tr}(\pi)$ of an idempotent projector onto a linear subspace is the dimension of that subspace.
Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi = \frac{1}{|G|} \sum_{g \in G} g$ onto the G-fixed subspace of each $W = V_k^\otimes n$:

$$\sum_k c_k q^k = \sum_k \dim_{\mathbb{C}} (V_k^\otimes n)^G q^k = \sum_k \text{Tr} \left(\pi|_{V_k^\otimes n} \right) q^k = \frac{1}{|G|} \sum_{g \in G} \left(\sum_k \text{Tr}(g|_{V_k^\otimes n}) q^k \right).$$

It only remains to show

$$\sum_k \text{Tr}(g|_{V_k^\otimes n}) q^k = \prod_{\text{cycles } C \text{ of } g} (1 + q^{|C|}).$$
Putting two idempotent facts together

Apply these two facts to the idempotent projector
\[
\pi = \frac{1}{|G|} \sum_{g \in G} g \text{ onto the } G\text{-fixed subspace of each } W = V_k \otimes^n :
\]

\[
\sum_k c_k q^k = \sum_k \dim_{\mathbb{C}} (V_k \otimes^n)^G q^k = \sum_k \text{Tr} \left(\pi|_{V_k \otimes^n} \right) q^k
\]

\[
= \frac{1}{|G|} \sum_{g \in G} \left(\sum_k \text{Tr}(g|_{V_k \otimes^n}) q^k \right).
\]

It only remains to show
\[
\sum_k \text{Tr}(g|_{V_k \otimes^n}) q^k = \prod_{\text{cycles } C \text{ of } g} (1 + q^{|C|}).
\]
Putting two idempotent facts together

Apply these two facts to the idempotent projector
\[\pi = \frac{1}{|G|} \sum_{g \in G} g \] onto the \(G \)-fixed subspace of each \(W = V_k^\otimes n \):

\[
\sum_k c_k q^k = \sum_k \dim_{\mathbb{C}} (V_k^\otimes n)^G q^k = \sum_k \text{Tr} \left(\pi |_{V_k^\otimes n} \right) q^k \\
= \frac{1}{|G|} \sum_{g \in G} \left(\sum_k \text{Tr}(g |_{V_k^\otimes n}) q^k \right).
\]

It only remains to show

\[
\sum_k \text{Tr}(g |_{V_k^\otimes n}) q^k = \prod_{\text{cycles } C \text{ of } g} (1 + q^{|C|}).
\]
Putting two idempotent facts together

Apply these two facts to the idempotent projector

\[\pi = \frac{1}{|G|} \sum_{g \in G} g \text{ onto the } G\text{-fixed subspace of each } W = V_k \otimes^n : \]

\[\sum_k c_k q^k = \sum_k \dim \mathbb{C} (V_k \otimes^n)^G q^k = \sum_k \text{Tr} \left(\pi \mid_{V_k \otimes^n} \right) q^k \]

\[= \frac{1}{|G|} \sum_{g \in G} \left(\sum_k \text{Tr} (g \mid_{V_k \otimes^n}) q^k \right). \]

It only remains to show

\[\sum_k \text{Tr} (g \mid_{V_k \otimes^n}) q^k = \prod_{\text{cycles } C \text{ of } g} (1 + q^{|C|}). \]
Putting two idempotent facts together

Apply these two facts to the idempotent projector

\[\pi = \frac{1}{|G|} \sum_{g \in G} g \] onto the \(G \)-fixed subspace of each \(W = V_k \otimes^n \):

\[\sum_k c_k q^k = \sum_k \dim_{\mathbb{C}} (V_k \otimes^n)^G q^k = \sum_k \text{Tr} \left(\pi |_{V_k \otimes^n} \right) q^k \]

\[= \frac{1}{|G|} \sum_{g \in G} \left(\sum_k \text{Tr}(g |_{V_k \otimes^n}) q^k \right). \]

It only remains to show

\[\sum_k \text{Tr}(g |_{V_k \otimes^n}) q^k = \prod_{cycles \ C \ of \ g} (1 + q^{|C|}). \]
Trace of g counts colorings monochromatic on its cycles

To see

$$
\sum_k \text{Tr}(g|_{V_k^\otimes n}) q^k = \prod_{\text{cycles } C \text{ of } g} (1 + q^{|C|})
$$

note that

- any g in G permutes the basis for $V_k^\otimes n$ indexed by black-white colorings,
- and g fixes such a coloring if and only if it is monochromatic on each cycle C of g.
Trace of g counts colorings monochromatic on its cycles

To see

$$\sum_k Tr(g|_{V_k^\otimes n}) q^k = \prod_{\text{cycles } C \text{ of } g} (1 + q^{|C|})$$

note that

- any g in G permutes the basis for $V_k^\otimes n$ indexed by black-white colorings,
- and g fixes such a coloring if and only if it is monochromatic on each cycle C of g.
Proof by example

E.g. $g = (12)(34)(567)$ in \mathcal{S}_7 fixes these colorings/tensors:

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>34</th>
<th>567</th>
</tr>
</thead>
<tbody>
<tr>
<td>ww</td>
<td>ww</td>
<td>www</td>
<td>1</td>
</tr>
<tr>
<td>bb</td>
<td>ww</td>
<td>www</td>
<td>$+q^2$</td>
</tr>
<tr>
<td>ww</td>
<td>bb</td>
<td>www</td>
<td>$+q^2$</td>
</tr>
<tr>
<td>ww</td>
<td>ww</td>
<td>bb</td>
<td>$+q^3$</td>
</tr>
<tr>
<td>bb</td>
<td>bb</td>
<td>ww</td>
<td>$+q^2 \cdot q^2$</td>
</tr>
<tr>
<td>bb</td>
<td>ww</td>
<td>bb</td>
<td>$+q^2 \cdot q^3$</td>
</tr>
<tr>
<td>ww</td>
<td>bb</td>
<td>bb</td>
<td>$+q^2 \cdot q^3$</td>
</tr>
<tr>
<td>bb</td>
<td>bb</td>
<td>bb</td>
<td>$+q^2 \cdot q^2 \cdot q^3$</td>
</tr>
</tbody>
</table>

\[
= (1 + q^2)(1 + q^2)(1 + q^3) \\
= \prod_C (1 + q^{|C|})
\]

QED
Proof by example

E.g. \(g = (12)(34)(567) \) in \(S_7 \) fixes these colorings/tensors:

<table>
<thead>
<tr>
<th>12</th>
<th>34</th>
<th>567</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ww)</td>
<td>(ww)</td>
<td>(www)</td>
</tr>
<tr>
<td>(bb)</td>
<td>(ww)</td>
<td>(www)</td>
</tr>
<tr>
<td>(ww)</td>
<td>(bb)</td>
<td>(www)</td>
</tr>
<tr>
<td>(ww)</td>
<td>(ww)</td>
<td>(bbb)</td>
</tr>
<tr>
<td>(bb)</td>
<td>(bb)</td>
<td>(www)</td>
</tr>
<tr>
<td>(bb)</td>
<td>(ww)</td>
<td>(bbb)</td>
</tr>
<tr>
<td>(ww)</td>
<td>(bb)</td>
<td>(bbb)</td>
</tr>
<tr>
<td>(bb)</td>
<td>(bb)</td>
<td>(bbb)</td>
</tr>
</tbody>
</table>

\[
= (1 + q^2)(1 + q^2)(1 + q^3) \\
= \prod_C (1 + q^{|C|})
\]

QED
What is Algebraic Combinatorics?
A general counting problem
Four properties
An algebraic approach
Summary

Proof by example

E.g. \(g = (12)(34)(567) \) in \(S_7 \) fixes these colorings/tensors:

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>34</th>
<th>567</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ww)</td>
<td>(ww)</td>
<td>(www)</td>
</tr>
<tr>
<td>(bb)</td>
<td>(ww)</td>
<td>(www)</td>
<td>+ (q^2)</td>
</tr>
<tr>
<td>(ww)</td>
<td>(bb)</td>
<td>(www)</td>
<td>+ (q^2)</td>
</tr>
<tr>
<td>(ww)</td>
<td>(bb)</td>
<td>(bbb)</td>
<td>+ (q^3)</td>
</tr>
<tr>
<td>(bb)</td>
<td>(bb)</td>
<td>(www)</td>
<td>+ (q^2 \cdot q^2)</td>
</tr>
<tr>
<td>(bb)</td>
<td>(ww)</td>
<td>(bbb)</td>
<td>+ (q^2 \cdot q^3)</td>
</tr>
<tr>
<td>(ww)</td>
<td>(bb)</td>
<td>(bbb)</td>
<td>+ (q^2 \cdot q^3)</td>
</tr>
<tr>
<td>(bb)</td>
<td>(bb)</td>
<td>(bbb)</td>
<td>+ (q^2 \cdot q^2 \cdot q^3)</td>
</tr>
</tbody>
</table>

\[
= (1 + q^2)(1 + q^2)(1 + q^3)
\]

\[
= \prod_C (1 + q^{|C|})
\]

QED
What is Algebraic Combinatorics?
A general counting problem
Four properties
An algebraic approach
Summary

Proof by example

E.g. \(g = (12)(34)(567) \) in \(S_7 \) fixes these colorings/tensors:

<table>
<thead>
<tr>
<th>12</th>
<th>34</th>
<th>567</th>
</tr>
</thead>
<tbody>
<tr>
<td>ww</td>
<td>ww</td>
<td>www</td>
</tr>
<tr>
<td>bb</td>
<td>ww</td>
<td>www</td>
</tr>
<tr>
<td>ww</td>
<td>bb</td>
<td>www</td>
</tr>
<tr>
<td>ww</td>
<td>ww</td>
<td>bbb</td>
</tr>
<tr>
<td>bb</td>
<td>bb</td>
<td>www</td>
</tr>
<tr>
<td>bb</td>
<td>ww</td>
<td>bbb</td>
</tr>
<tr>
<td>ww</td>
<td>bb</td>
<td>bbb</td>
</tr>
<tr>
<td>bb</td>
<td>bb</td>
<td>bbb</td>
</tr>
</tbody>
</table>

\[= (1 + q^2)(1 + q^2)(1 + q^3) \]
\[= \prod_C (1 + q^{|C|}) \]

QED
For combinatorial purposes, it is definitely **worth learning more algebra**, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!
For **combinatorial** purposes, it is definitely **worth learning more algebra**, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!
Summary

For **combinatorial** purposes, it is definitely **worth learning more algebra**, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!
For *combinatorial* purposes, it is definitely *worth learning more algebra*, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!
For combinatorial purposes, it is definitely worth learning more algebra, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!
For **combinatorial** purposes, it is definitely **worth learning more algebra**, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!