Algebraic Combinatorics Using algebra to help one count

V. Reiner

Max and Rose Lorie Lecture Series George Mason University January 29, 2010

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ○

э

2 A general counting problem

3 Four properties

An algebraic approach

What is Algebraic Combinatorics?

What is Algebraic Combinatorics?

What is Algebraic Combinatorics?

< 回 > < 回 > < 回 >

What is Algebraic Combinatorics?

- Combinatorics is the study of finite or discrete objects, and their structure.
- **Counting** them is **enumerative** combinatorics.
- One part of **algebraic combinatorics** is using **algebra** to help you do enumerative combinatorics.

< ロ > < 同 > < 回 > < 回 > .

What is Algebraic Combinatorics?

- Combinatorics is the study of finite or discrete objects, and their structure.
- Counting them is enumerative combinatorics.
- One part of **algebraic combinatorics** is using **algebra** to help you do enumerative combinatorics.

ヘロン 人間 とくほとくほど

What is Algebraic Combinatorics?

- Combinatorics is the study of finite or discrete objects, and their structure.
- Counting them is enumerative combinatorics.
- One part of **algebraic combinatorics** is using **algebra** to help you do enumerative combinatorics.

Example: enumerating subsets up to symmetry

We'll explore an interesting family of examples:

Enumerating subsets, up to symmetry.

This has many interesting properties,

- some easier,
- some harder (without algebra!).

ヘロン 人間 とくほとくほど

Example: enumerating subsets up to symmetry

We'll explore an interesting family of examples:

Enumerating subsets, up to symmetry.

This has many interesting properties,

- some easier,
- some harder (without algebra!).

・ 得 ト ・ ヨ ト ・ ヨ ト

A group permuting the first *n* numbers

Let $[n] := \{1, 2, ..., n\}$, permuted by the **symmetric group** \mathfrak{S}_n on *n* letters.

Let G be any subgroup of \mathfrak{S}_n , thought of as some **chosen** symmetries.

V. Reiner Algebraic Combinatorics

A group permuting the first *n* numbers

Let $[n] := \{1, 2, \dots, n\},\$

permuted by the **symmetric group** \mathfrak{S}_n on *n* letters.

Let *G* be any subgroup of \mathfrak{S}_n , thought of as some **chosen** symmetries.

ヘロン 人間 とくほとくほど

EXAMPLE: *G*=cyclic symmetry, with n = 6

< 回 > < 回 > < 回 >

Counting G-orbits of subsets

Let's count the set

2^[n] := { all **subsets** of [n] }

or equivalently,

black-white colorings of [n],

but only up to equivalence by elements of G.

I.e. let's count the G-orbits

2^[n]/G

◆ロト ◆聞 と ◆ 国 と ◆ 国 と ○

э

Counting G-orbits of subsets

Let's count the set

2^[n] := { all **subsets** of [n] }

or equivalently,

black-white colorings of [n],

but only up to equivalence by elements of G.

I.e. let's count the G-orbits

 $2^{[n]}/G$

< ロ > < 同 > < 回 > < 回 > .

EXAMPLE: black-white necklaces

For *G* the cyclic group of rotations as above, *G*-orbits of colorings of [n] are sometimes called **necklaces**.

< /₽ ▶

All the black-white necklaces for n = 6

In this case, $|2^{[n]}/G| = 14$.

・ 一 一 ト ・ 一 下 ・ ・

More refined counting of G-orbits

Let's even be more refined: count the sets

 $\binom{[n]}{k} := \{ all k element subsets of [n] \}$

or equivalently,

black-white colorings of [n] with k blacks,

but again only up to equivalence by elements of G.

I.e. we want to understand

$$c_k := |\binom{[n]}{k}/G|$$

= number of *G*-orbits of black-white
colorings of [*n*] with *k* blacks.

▲圖▶ ▲ 国▶ ▲ 国▶

More refined counting of *G*-orbits

Let's even be more refined: count the sets

 $\binom{[n]}{k} := \{ all k \text{-element subsets of } [n] \}$

or equivalently,

black-white colorings of [n] with k blacks,

but again only up to equivalence by elements of G.

I.e. we want to understand

$$c_k := |\binom{[n]}{k}/G|$$

= number of *G*-orbits of black-white
colorings of [*n*] with *k* blacks.

< ロ > < 同 > < 回 > < 回 > .

The refined necklace count for n = 6

Here $(c_0, c_1, c_2, c_3, c_4, c_5, c_6) = (1, 1, 3, 4, 3, 1, 1).$

< ロ > < 同 > < 回 > < 回 > < 回 > <

The basic question

QUESTION: What can we say in general about the sequence

 $c_0, c_1, c_2, \ldots, c_n?$

AN ANSWER: They share many properties with the case where G is the **trivial** group, where the c_k are the **binomial coefficients**

$$\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots, \binom{n}{n-1}, \binom{n}{n}$$

ヘロン 人間 とくほとくほど

The basic question

QUESTION: What can we say in general about the sequence

$$c_0, c_1, c_2, \ldots, c_n?$$

AN ANSWER: They share many properties with the case where G is the **trivial** group, where the c_k are the **binomial coefficients**

$$\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots, \binom{n}{n-1}, \binom{n}{n}$$

The binomial coefficients

Recall what binomial coefficient sequences

$$\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots, \binom{n}{n-1}, \binom{n}{n}$$

look like:

PROPERTY 1 (the easy one)

SYMMETRY: For any permutation group *G*, one has $c_k = c_{n-k}$

This follows from

- complementing the subsets, or
- swapping the colors in the black-white=cologings.→ (= →) = − ⊃ < <

PROPERTY 1 (the easy one)

SYMMETRY: For any permutation group *G*, one has $c_k = c_{n-k}$

This follows from

- complementing the subsets, or
- Swapping the colors in the black-white colorings. → E → AC

PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)

$$c_0 \leq c_1 \leq \ldots \leq c_{\frac{n}{2}} \geq \cdots \geq c_{n-1} \geq c_n$$

e.g.

$$1\leq 1\leq 3\leq 4\geq 3\geq 1\geq 1$$

Nontrivial, but fairly easy with some **algebra**. Currently **only** known in general via various algebraic means.

ヘロン 人間 とくほとくほど

PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)

$$c_0 \leq c_1 \leq \ldots \leq c_{\frac{n}{2}} \geq \cdots \geq c_{n-1} \geq c_n$$

e.g.

$$1\leq 1\leq 3\leq 4\geq 3\geq 1\geq 1$$

Nontrivial, but fairly easy with some algebra.

Currently **only** known in general via various algebraic means.

ヘロン 人間 とくほとくほど

PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)

$$c_0 \leq c_1 \leq \ldots \leq c_{\frac{n}{2}} \geq \cdots \geq c_{n-1} \geq c_n$$

e.g.

$$1\leq 1\leq 3\leq 4\geq 3\geq 1\geq 1$$

Nontrivial, but fairly easy with some **algebra**. Currently **only** known in general via various algebraic means.

PROPERTY 3 (not so hard, but a bit surprising)

ALTERNATING SUM: (de Bruijn 1959) $c_0 - c_1 + c_2 - c_3 + \cdots$ counts self-complementary *G*-orbits.

e.g. there are 1 - 1 + 3 - 4 + 3 - 1 + 1 = 2 self-complementary black-white necklaces for n = 6:

PROPERTY 3 (not so hard, but a bit surprising)

ALTERNATING SUM: (de Bruijn 1959) $c_0 - c_1 + c_2 - c_3 + \cdots$ counts self-complementary *G*-orbits.

e.g. there are 1 - 1 + 3 - 4 + 3 - 1 + 1 = 2self-complementary black-white necklaces for n = 6:

Wait! How was that like binomial coefficients?

It's easy to see that

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots = (1 + (-1))^n = 0$$

and there are **no self-complementary subsets** S of [*n*].

< ロ > < 同 > < 回 > < 回 > .

PROPERTY 4 (not so hard, but also a bit surprising)

GENERATING FUNCTION: (Redfield 1927, Polya 1937)

$$c_0+c_1q+c_2q^2+c_3q^3+\cdots+c_nq^n$$

is the **average** over all g in G of the very simple products

$$\prod_{\text{cycles } C \text{ of } g} (1+q^{|C|})$$

< ロ > < 同 > < 回 > < 回 > < 回 >

PROPERTY 4 (not so hard, but also a bit surprising)

GENERATING FUNCTION: (Redfield 1927, Polya 1937)

$$c_0+c_1q+c_2q^2+c_3q^3+\cdots+c_nq^n$$

is the average over all g in G of the very simple products

$$\prod_{ ext{cycles } C ext{ of } g} (1+q^{|C|})$$

< □ > < 同 > < 回 > <

$$G= \{ \mathbb{R}^{\mathfrak{p}^{\mathfrak{r}}}, \mathbb{C}, \mathbb{R}, \mathbb{R}, \mathbb{R}, \mathbb{C} \}$$

Linearize!

In the algebraic approach, instead of thinking of numbers like $|2^{[n]}/G|$ and $c_k = |\binom{[n]}{k}/G|$ as **cardinalities** of **sets**, one tries to re-interpret them as **dimensions** of **vector spaces**.

Hopefully these vector spaces are natural enough that one can prove

- equalities of cardinalities via vector space isomorphisms,
- inequalities via vector space injections or surjections,
- identities via trace identities, etc.

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と
Linearize!

In the algebraic approach, instead of thinking of numbers like $|2^{[n]}/G|$ and $c_k = |\binom{[n]}{k}/G|$ as **cardinalities** of **sets**, one tries to re-interpret them as **dimensions** of **vector spaces**.

Hopefully these vector spaces are natural enough that one can prove

- equalities of cardinalities via vector space isomorphisms,
- inequalities via vector space injections or surjections,
- identities via trace identities, etc.

(日)

Linearize!

In the algebraic approach, instead of thinking of numbers like $|2^{[n]}/G|$ and $c_k = |\binom{[n]}{k}/G|$ as **cardinalities** of **sets**, one tries to re-interpret them as **dimensions** of **vector spaces**.

Hopefully these vector spaces are natural enough that one can prove

- equalities of cardinalities via vector space isomorphisms,
- inequalities via vector space injections or surjections,
- identities via trace identities, etc.

< □ > < 同 > < 回 > <

Linearize!

In the algebraic approach, instead of thinking of numbers like $|2^{[n]}/G|$ and $c_k = |\binom{[n]}{k}/G|$ as **cardinalities** of **sets**, one tries to re-interpret them as **dimensions** of **vector spaces**.

Hopefully these vector spaces are natural enough that one can prove

- equalities of cardinalities via vector space isomorphisms,
- inequalities via vector space injections or surjections,
- identities via trace identities, etc.

< □ > < 同 > < 回 > <

Linearize!

In the algebraic approach, instead of thinking of numbers like $|2^{[n]}/G|$ and $c_k = |\binom{[n]}{k}/G|$ as **cardinalities** of **sets**, one tries to re-interpret them as **dimensions** of **vector spaces**.

Hopefully these vector spaces are natural enough that one can prove

- equalities of cardinalities via vector space isomorphisms,
- inequalities via vector space injections or surjections,
- identities via trace identities, etc.

A (1) > A (2) > A

Tensor products and colorings

Let $V = \mathbb{C}^2$ have a \mathbb{C} -basis $\{ egin{array}{c} w, \\ \| \end{array} \}$

white black

Then

$$V^{\otimes n} := \underbrace{V \otimes \cdots \otimes V}_{n \text{ tensor positions}}$$

n tensor positions

b

has its tensor positions labelled by [n], and has a \mathbb{C} -basis $\{e_S\}$ indexed by

- black-white colorings of [n], or
- subsets S of [n].

< ロ > < 同 > < 回 > < 回 > .

Tensor products and colorings

Let $V = \mathbb{C}^2$ have a \mathbb{C} -basis

{ *w*, *b* } ∥ ∥ white black

Then

$$V^{\otimes n} := \underbrace{V \otimes \cdots \otimes V}_{n \text{ tanget positions}}$$

n tensor positions

has its tensor positions labelled by [n],

and has a \mathbb{C} -basis $\{e_S\}$ indexed by

- black-white colorings of [n], or
- subsets S of [n].

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Tensor products and colorings

Let $V = \mathbb{C}^2$ have a \mathbb{C} -basis

Then

$$V^{\otimes n} := \underbrace{V \otimes \cdots \otimes V}_{n \text{ tensor positions}}$$

has its tensor positions labelled by [n], and has a \mathbb{C} -basis $\{e_S\}$ indexed by

- black-white colorings of [n], or
- subsets S of [n].

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

A typical basis tensor e_S

E.g. For n = 6 and the subset $S = \{1, 4, 5\}$, one has the basis element of $V^{\otimes 6}$

or for short, just

 $e_{\{1,4,5\}} = bwwbbw$

< ロ > < 同 > < 回 > < 回 > < □ > <

A typical basis tensor e_S

E.g. For n = 6 and the subset $S = \{1, 4, 5\}$, one has the basis element of $V^{\otimes 6}$

or for short, just

 $e_{\{1,4,5\}} = bwwbbw$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Quick tensor product reminder

Recall tensor products are **multilinear**, that is, linear in each tensor factor.

E.g. for any constants c_1, c_2 in \mathbb{C} one has

$$b \otimes w \otimes (\mathbf{c_1} \cdot \mathbf{w} + \mathbf{c_2} \cdot \mathbf{b}) \otimes b \otimes b \otimes w$$
$$= \mathbf{c_1} \cdot (b \otimes w \otimes \mathbf{w} \otimes b \otimes b \otimes w)$$
$$+ \mathbf{c_2} \cdot (b \otimes w \otimes \mathbf{b} \otimes b \otimes b \otimes w)$$

< ロ > < 同 > < 回 > < 回 > < □ > <

Quick tensor product reminder

Recall tensor products are **multilinear**, that is, linear in each tensor factor.

E.g. for any constants c_1, c_2 in \mathbb{C} one has

$$b \otimes w \otimes (\mathbf{c_1} \cdot \mathbf{w} + \mathbf{c_2} \cdot \mathbf{b}) \otimes b \otimes b \otimes w$$
$$= \mathbf{c_1} \cdot (b \otimes w \otimes \mathbf{w} \otimes b \otimes b \otimes w)$$
$$+ \mathbf{c_2} \cdot (b \otimes w \otimes \mathbf{b} \otimes b \otimes b \otimes w)$$

ヘロン 人間 とくほとくほど

The subspace of G-invariants

The subgroup *G* of \mathfrak{S}_n acts on $V^{\otimes n}$ by **permuting the tensor positions**.

Consider the subspace of G-invariants

 $(V^{\otimes n})^G$.

This has a \mathbb{C} -basis naturally indexed by

- G-orbits of black-white colorings of [n], or
- *G*-orbits of subsets *S* of [*n*].

(日)

The subspace of G-invariants

The subgroup *G* of \mathfrak{S}_n acts on $V^{\otimes n}$ by **permuting the tensor positions**.

Consider the subspace of G-invariants

$(V^{\otimes n})^{\mathsf{G}}.$

This has a \mathbb{C} -basis naturally indexed by

- G-orbits of black-white colorings of [n], or
- *G*-orbits of subsets *S* of [*n*].

◆ロト ◆聞 と ◆ 国 と ◆ 国 と 。

The subspace of G-invariants

The subgroup *G* of \mathfrak{S}_n acts on $V^{\otimes n}$ by **permuting the tensor positions**.

Consider the subspace of G-invariants

 $(V^{\otimes n})^{G}.$

This has a $\mathbb C\text{-basis}$ naturally indexed by

- G-orbits of black-white colorings of [n], or
- G-orbits of subsets S of [n].

(日)

Example

E.g. for n = 6 with G=cyclic rotations, the element

wwbwwb + bwwbww + wbwwbw
$$\in \left(V^{\otimes 6}
ight)^{\mathsf{G}}$$

corresponds to the necklace shown:

CONCLUSION: $|2^{[n]}/G| = \dim_{\mathbb{C}} (V^{\otimes n})^G$

< 🗇 🕨 <

Example

E.g. for n = 6 with G=cyclic rotations, the element

wwbwwb + bwwbww + wbwwbw
$$\in \left(V^{\otimes 6}
ight)^{\mathsf{G}}$$

corresponds to the necklace shown:

CONCLUSION: $|2^{[n]}/G| = \dim_{\mathbb{C}} (V^{\otimes n})^{G}$

Interpreting the c_k 's

Better yet, if one defines subspaces

$$V_k^{\otimes n} := \mathbb{C}$$
-span of $\{e_S \text{ with } |S| = k\}$

then

• one has a direct sum decomposition $V^{\otimes n} = \bigoplus_{k=0}^{n} V_k^{\otimes n}$,

• the group *G* acts on each $V_k^{\otimes n}$, and

•
$$c_k := \left| \binom{[n]}{k} / G \right| = \dim_{\mathbb{C}} \left(V_k^{\otimes n} \right)^G$$
.

< ロ > < 同 > < 回 > < 回 > < □ > <

Interpreting the c_k 's

Better yet, if one defines subspaces

$$V_k^{\otimes n} := \mathbb{C}$$
-span of $\{e_S \text{ with } |S| = k\}$

then

one has a direct sum decomposition V^{⊗n} = ⊕ⁿ_{k=0} V^{⊗n}_k,
the group *G* acts on each V^{⊗n}_k, and
c_k := |(^[n]_k)/G| = dim_C (V^{⊗n}_k)^G.

ヘロト ヘ戸ト ヘヨト ヘヨト

Interpreting the c_k 's

Better yet, if one defines subspaces

$$V_k^{\otimes n} := \mathbb{C}$$
-span of $\{e_S \text{ with } |S| = k\}$

then

- one has a direct sum decomposition $V^{\otimes n} = \bigoplus_{k=0}^{n} V_{k}^{\otimes n}$,
- the group G acts on each $V_k^{\otimes n}$, and
- $c_k := \lfloor {[n] \choose k} / G \rfloor = \dim_{\mathbb{C}} \left(V_k^{\otimes n} \right)^G.$

・ロン・雪と・雪と・ ヨン・

Interpreting the c_k 's

Better yet, if one defines subspaces

$$V_k^{\otimes n} := \mathbb{C}$$
-span of $\{e_S \text{ with } |S| = k\}$

then

- one has a direct sum decomposition $V^{\otimes n} = \bigoplus_{k=0}^{n} V_{k}^{\otimes n}$,
- the group G acts on each $V_k^{\otimes n}$, and

•
$$c_k := \left|\binom{[n]}{k}/G\right| = \dim_{\mathbb{C}} \left(V_k^{\otimes n}\right)^G$$
.

(日)

This gives a good framework for understanding the c_k . We've naturally **linearized** this picture:

・ 戸 ・ ・ ヨ ・ ・

Silly proof of Property 1: SYMMETRY

We want to show

$$c_k = c_{n-k}$$

Or equivalently,

$$\dim_{\mathbb{C}} \left(V_k^{\otimes n} \right)^G = \dim_{\mathbb{C}} \left(V_{n-k}^{\otimes n} \right)^G.$$

So we'd like a C-linear isomorphism

$$\left(V_k^{\otimes n}\right)^G \to \left(V_{n-k}^{\otimes n}\right)^G.$$

< ロ > < 同 > < 回 > < 回 > .

Silly proof of Property 1: SYMMETRY

We want to show

$$c_k = c_{n-k}$$

Or equivalently,

$$\dim_{\mathbb{C}} \left(V_k^{\otimes n} \right)^G = \dim_{\mathbb{C}} \left(V_{n-k}^{\otimes n} \right)^G.$$

So we'd like a C-linear isomorphism

$$\left(V_k^{\otimes n}\right)^G \to \left(V_{n-k}^{\otimes n}\right)^G.$$

< ロ > < 同 > < 回 > < 回 > .

Silly proof of Property 1: SYMMETRY

We want to show

$$c_k = c_{n-k}$$

Or equivalently,

$$\dim_{\mathbb{C}} \left(V_k^{\otimes n} \right)^{\mathsf{G}} = \dim_{\mathbb{C}} \left(V_{n-k}^{\otimes n} \right)^{\mathsf{G}}.$$

So we'd like a $\mathbb C\text{-linear}$ isomorphism

$$\left(V_{k}^{\otimes n}\right)^{\mathsf{G}} \rightarrow \left(V_{n-k}^{\otimes n}\right)^{\mathsf{G}}$$

(日)

Silly proof of SYMMETRY (cont'd)

Any C-linear map

$$t: V \rightarrow V$$

gives rise to a C-linear map

$$t: V^{\otimes n} \to V^{\otimes n}$$

acting diagonally, i.e. the same in each tensor position.

(日)

Schur-Weyl duality

Such maps **commute** with the *G*-action permuting the tensor positions.

$$v_1 \otimes v_2 \otimes v_3 \quad \stackrel{t}{\longmapsto} \quad t(v_1) \otimes t(v_2) \otimes t(v_3)$$
$$\downarrow g = (12) \qquad \qquad \downarrow g = (12)$$
$$v_2 \otimes v_1 \otimes v_3 \quad \stackrel{t}{\longmapsto} \quad t(v_2) \otimes t(v_1) \otimes t(v_3)$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

3

Schur-Weyl duality

Such maps **commute** with the *G*-action permuting the tensor positions.

$$v_1 \otimes v_2 \otimes v_3 \quad \stackrel{t}{\longmapsto} \quad t(v_1) \otimes t(v_2) \otimes t(v_3)$$
$$\downarrow g = (12) \qquad \qquad \downarrow g = (12)$$
$$v_2 \otimes v_1 \otimes v_3 \quad \stackrel{t}{\longmapsto} \quad t(v_2) \otimes t(v_1) \otimes t(v_3)$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

3

Silly proof of SYMMETRY (cont'd)

Let $t: V \rightarrow V$ swap the basis elements $\{w, b\}$, so on tensors it also swaps them, e.g.

t(bwbbwb) = wbwwbw.

Note that $t^2 = 1$, so t gives a \mathbb{C} -linear isomorphism

 $V_k^{\otimes n} \to V_{n-k}^{\otimes n}$

which restricts to a C-linear isomorphism

$$\left(V_k^{\otimes n}\right)^G \to \left(V_{n-k}^{\otimes n}\right)^G,$$

as desired to show $c_k = c_{n-k}$. QED

• □ > < □ > < □ > < □ >

Silly proof of SYMMETRY (cont'd)

Let $t : V \rightarrow V$ **swap** the basis elements $\{w, b\}$, so on tensors it also swaps them, e.g.

t(bwbbwb) = wbwwbw.

Note that $t^2 = 1$, so *t* gives a \mathbb{C} -linear isomorphism

 $V_k^{\otimes n} \to V_{n-k}^{\otimes n}$

which restricts to a C-linear isomorphism

$$\left(V_k^{\otimes n}\right)^G \to \left(V_{n-k}^{\otimes n}\right)^G,$$

as desired to show $c_k = c_{n-k}$. QED

• • • • • • • • • • • •

Silly proof of SYMMETRY (cont'd)

Let $t : V \rightarrow V$ **swap** the basis elements $\{w, b\}$, so on tensors it also swaps them, e.g.

t(bwbbwb) = wbwwbw.

Note that $t^2 = 1$, so *t* gives a \mathbb{C} -linear isomorphism

$$V_k^{\otimes n} \to V_{n-k}^{\otimes n}$$

which restricts to a $\mathbb C\text{-linear}$ isomorphism

$$\left(V_k^{\otimes n}\right)^G \to \left(V_{n-k}^{\otimes n}\right)^G,$$

as desired to show $c_k = c_{n-k}$. QED

・ロン ・雪 と ・ ヨン・

Silly proof of SYMMETRY (cont'd)

Let $t: V \rightarrow V$ **swap** the basis elements $\{w, b\}$, so on tensors it also swaps them, e.g.

t(bwbbwb) = wbwwbw.

Note that $t^2 = 1$, so *t* gives a \mathbb{C} -linear isomorphism

$$V_k^{\otimes n} \to V_{n-k}^{\otimes n}$$

which restricts to a $\mathbb C\text{-linear}$ isomorphism

$$\left(V_{k}^{\otimes n}\right)^{\mathsf{G}} \rightarrow \left(V_{n-k}^{\otimes n}\right)^{\mathsf{G}},$$

as desired to show $c_k = c_{n-k}$. QED

< □ > < 同 > < 回 > <

Not-so-silly proof of Property 3: ALTERNATING SUM

We want to show that

$$c_0-c_1+c_2-c_3+\cdots$$

counts self-complementary G-orbits.

Begin with this observation:

PROPOSITION: The number of **self-complementary** *G*-orbits is the **trace** of the color-swapping map *t* from before, when it acts on $(V^{\otimes n})^G$.

(日)

Not-so-silly proof of Property 3: ALTERNATING SUM

We want to show that

$$c_0-c_1+c_2-c_3+\cdots$$

counts self-complementary G-orbits.

Begin with this observation:

PROPOSITION: The number of **self-complementary** *G*-orbits is the **trace** of the color-swapping map *t* from before, when it acts on $(V^{\otimes n})^G$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Not-so-silly proof (cont'd)

Proof.

- *t* permutes the basis of (V^{⊗n})^G indexed by G-orbits of black-white colorings, and
- *t* fixes such a basis element if and only if this *G*-orbit is self-complementary.QED

For example, with n = 6 and G=cyclic rotation, t fixes this basis element of $(V^{\otimes 6})^G$

wwwbbb+bwwwb+bbwwwb+bbbwww+wbbbww+wwbbbw

as it is a sum over the *t*-stable *G*-orbit shown below:

Not-so-silly proof (cont'd)

Proof.

- *t* permutes the basis of (V^{⊗n})^G indexed by G-orbits of black-white colorings, and
- t fixes such a basis element if and only if this G-orbit is self-complementary.QED

For example, with n = 6 and G=cyclic rotation, t fixes this basis element of $(V^{\otimes 6})^G$

wwwbbb+bwwwb+bbwwwb+bbbwww+wbbbww+wwbbbw

as it is a sum over the *t*-stable *G*-orbit shown below:

Not-so-silly proof (cont'd)

Proof.

- *t* permutes the basis of (V^{⊗n})^G indexed by G-orbits of black-white colorings, and
- t fixes such a basis element if and only if this G-orbit is self-complementary.QED

For example, with n = 6 and G=cyclic rotation, t fixes this basis element of $(V^{\otimes 6})^G$

wwwbbb+bwwwb+bbwwwb+bbbwww+wbbbww+wwbbbw

as it is a sum over the *t*-stable *G*-orbit shown below:

Not-so-silly proof (cont'd)

What does this have to do with $c_0 - c_1 + c_2 - \cdots$? Well, inside GL(V),

$$t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $s = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

- are both diagonalizable and have eigenvalues +1, -1,
- so they must be conjugate within GL(V),
- so *t*, *s* must act on $V^{\otimes n}$ and on $(V^{\otimes n})^G$ by \mathbb{C} -linear maps which are conjugate.

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ○

Not-so-silly proof (cont'd)

What does this have to do with $c_0 - c_1 + c_2 - \cdots$? Well, inside GL(V),

$$t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $s = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

- are both diagonalizable and have eigenvalues +1, -1,
- so they must be conjugate within GL(V),
- so *t*, *s* must act on V^{⊗n} and on (V^{⊗n})^G by C-linear maps which are conjugate.

ヘロト 人間 とくほ とくほ とう

Not-so-silly proof (cont'd)

What does this have to do with $c_0 - c_1 + c_2 - \cdots$? Well, inside GL(V),

$$t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $s = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

- are both diagonalizable and have eigenvalues +1, -1,
- so they must be **conjugate** within *GL*(*V*),
- so *t*, *s* must act on V^{⊗n} and on (V^{⊗n})^G by C-linear maps which are conjugate.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Not-so-silly proof (cont'd)

What does this have to do with $c_0 - c_1 + c_2 - \cdots$? Well, inside GL(V),

$$t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $s = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

- are both diagonalizable and have eigenvalues +1, -1,
- so they must be **conjugate** within *GL(V)*,
- so *t*, *s* must act on V^{⊗n} and on (V^{⊗n})^G by C-linear maps which are conjugate.

Not-so-silly proof (cont'd)

Recall that Tr(AB) = Tr(BA) implies conjugate transformations have the same trace:

$$Tr(PAP^{-1}) = Tr(P^{-1} \cdot PA) = Tr(A).$$

Thus *s*, *t* must act with the **same trace** on $(V^{\otimes n})^G$.

We know from the previous Proposition that this trace for *t* is the number of self-complementary *G*-orbits.

So it suffices to apply the following fact with q = -1...

(日) (個) (E) (E)

Not-so-silly proof (cont'd)

Recall that Tr(AB) = Tr(BA) implies conjugate transformations have the same trace:

$$Tr(PAP^{-1}) = Tr(P^{-1} \cdot PA) = Tr(A).$$

Thus *s*, *t* must act with the **same trace** on $(V^{\otimes n})^G$.

We know from the previous Proposition that this trace for t is the number of self-complementary G-orbits.

So it suffices to apply the following fact with q = -1...

(日) (圖) (E) (E)

Not-so-silly proof (cont'd)

Recall that Tr(AB) = Tr(BA) implies conjugate transformations have the same trace:

$$Tr(PAP^{-1}) = Tr(P^{-1} \cdot PA) = Tr(A).$$

Thus *s*, *t* must act with the **same trace** on $(V^{\otimes n})^G$.

We know from the previous Proposition that this trace for t is the number of self-complementary G-orbits.

So it suffices to apply the following fact with q = -1...

• • • • • • • • • • • •

Not-so-silly proof (cont'd)

PROPOSITION: For any eigenvalue q in \mathbb{C} , the element $s(q) = \begin{bmatrix} 1 & 0 \\ 0 & q \end{bmatrix}$ acts on $(V^{\otimes n})^G$ with trace

$$c_0+c_1q+c_2q^2+\cdots+c_nq^n.$$

In particular, for q = -1, the element s = s(-1) acts with trace

$$c_0-c_1+c_2-\cdots$$

イロト 人間 ト イヨト イヨト

Not-so-silly proof (cont'd)

PROPOSITION: For any eigenvalue q in \mathbb{C} , the element $s(q) = \begin{bmatrix} 1 & 0 \\ 0 & q \end{bmatrix}$ acts on $(V^{\otimes n})^G$ with trace

$$c_0+c_1q+c_2q^2+\cdots+c_nq^n.$$

In particular, for q = -1, the element s = s(-1) acts with trace

$$\textbf{c}_0-\textbf{c}_1+\textbf{c}_2-\cdots$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Not-so-silly proof (cont'd)

Proof.

- *s*(*q*) fixes *w*.
- s(q) scales b by q.
- Hence s(q) scales any e_S in which |S| = k by q^k , e.g.

 $s(q)(bwbbbw) = qb \otimes w \otimes qb \otimes qb \otimes qb \otimes w = q^4 \cdot bwbbbw.$

- Hence s(q) scales all of $V_k^{\otimes n}$ by q^k ,
- and therefore scales all of $(V_k^{\otimes n})^G$ by q^k .
- So s(q) acts on $(V^{\otimes n})^G = \bigoplus_k (V_k^{\otimes n})^G$ with trace $\sum_k c_k q^k$. RED

Not-so-silly proof (cont'd)

Proof.

- *s*(*q*) fixes *w*.
- s(q) scales *b* by *q*.

• Hence s(q) scales any e_S in which |S| = k by q^k , e.g.

 $s(q)(bwbbbw) = qb \otimes w \otimes qb \otimes qb \otimes qb \otimes w = q^4 \cdot bwbbbw.$

- Hence s(q) scales all of $V_k^{\otimes n}$ by q^k ,
- and therefore scales all of $(V_k^{\otimes n})^G$ by q^k .
- So s(q) acts on $(V^{\otimes n})^G = \bigoplus_k (V_k^{\otimes n})^G$ with trace $\sum_k c_k q^k$. RED

Not-so-silly proof (cont'd)

Proof.

- *s*(*q*) fixes *w*.
- s(q) scales *b* by *q*.
- Hence s(q) scales any e_S in which |S| = k by q^k , e.g.

 $s(q)(bwbbbw) = qb \otimes w \otimes qb \otimes qb \otimes qb \otimes w = q^4 \cdot bwbbbw.$

- Hence s(q) scales all of $V_k^{\otimes n}$ by q^k ,
- and therefore scales all of $(V_k^{\otimes n})^G$ by q^k .
- So s(q) acts on $(V^{\otimes n})^G = \bigoplus_k (V_k^{\otimes n})^G$ with trace $\sum_k c_k q^k$.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

Not-so-silly proof (cont'd)

Proof.

- *s*(*q*) fixes *w*.
- s(q) scales *b* by *q*.
- Hence s(q) scales any e_S in which |S| = k by q^k , e.g.

 $s(q)(bwbbbw) = qb \otimes w \otimes qb \otimes qb \otimes qb \otimes w = q^4 \cdot bwbbbw.$

- Hence s(q) scales all of $V_k^{\otimes n}$ by q^k ,
- and therefore scales all of $(V_k^{\otimes n})^G$ by q^k .
- So s(q) acts on $(V^{\otimes n})^G = \bigoplus_k (V_k^{\otimes n})^G$ with trace $\sum_k c_k q^k$.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

Not-so-silly proof (cont'd)

Proof.

- *s*(*q*) fixes *w*.
- s(q) scales *b* by *q*.
- Hence s(q) scales any e_S in which |S| = k by q^k , e.g.

 $s(q)(bwbbbw) = qb \otimes w \otimes qb \otimes qb \otimes qb \otimes w = q^4 \cdot bwbbbw.$

- Hence s(q) scales all of $V_k^{\otimes n}$ by q^k ,
- and therefore scales all of $(V_k^{\otimes n})^G$ by q^k .

• So s(q) acts on $(V^{\otimes n})^G = \bigoplus_k (V_k^{\otimes n})^G$ with trace $\sum_k c_k q^k$. QED

Not-so-silly proof (cont'd)

Proof.

- *s*(*q*) fixes *w*.
- s(q) scales *b* by *q*.
- Hence s(q) scales any e_S in which |S| = k by q^k , e.g.

 $s(q)(bwbbbw) = qb \otimes w \otimes qb \otimes qb \otimes qb \otimes w = q^4 \cdot bwbbbw.$

- Hence s(q) scales all of $V_k^{\otimes n}$ by q^k ,
- and therefore scales all of $(V_k^{\otimes n})^G$ by q^k .

• So s(q) acts on $(V^{\otimes n})^G = \bigoplus_k (V_k^{\otimes n})^G$ with trace $\sum_k c_k q^k$. QED

A proof of Property 2: UNIMODALITY

We want to show that for $k < \frac{n}{2}$, one has

 $c_k \leq c_{k+1}$

So we'd like a C-linear injective map

 $\left(V_k^{\otimes n}\right)^G \hookrightarrow \left(V_{k+1}^{\otimes n}\right)^G.$

Maybe we should look for an injective map

$$V_k^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$$

that commutes with the action of \mathfrak{S}_n on tensor positions, and hence with every G?

A proof of Property 2: UNIMODALITY

We want to show that for $k < \frac{n}{2}$, one has

 $c_k \leq c_{k+1}$

So we'd like a $\mathbb C\text{-linear}$ injective map

 $\left(V_{k}^{\otimes n}\right)^{\mathsf{G}} \hookrightarrow \left(V_{k+1}^{\otimes n}\right)^{\mathsf{G}}.$

Maybe we should look for an injective map

$$V_k^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$$

that commutes with the action of \mathfrak{S}_n on tensor positions, and hence with every G?

A proof of Property 2: UNIMODALITY

We want to show that for $k < \frac{n}{2}$, one has

 $c_k \leq c_{k+1}$

So we'd like a $\mathbb C\text{-linear}$ injective map

$$\left(V_{k}^{\otimes n}\right)^{\mathsf{G}} \hookrightarrow \left(V_{k+1}^{\otimes n}\right)^{\mathsf{G}}.$$

Maybe we should look for an injective map

$$V_k^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$$

that commutes with the action of \mathfrak{S}_n on tensor positions, and hence with every *G*?

The only natural injection

There is only one **obvious candidate** for such an injection $U_k: V_k^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$, namely define

$$U_k(e_S) := \sum_{\substack{T \supset S: \ |T| = k+1}} e_T$$

E.g. for n = 6, k = 2, one has

 $U_2(bwbwww) = bbbwww + bwbbww + bwbwbw + bwbwwb$

Easy to check U_k commutes with \mathfrak{S}_n permuting positions. But why is U_k **injective**?

ヘロト 人間 とくほ とくほ とう

The only natural injection

There is only one **obvious candidate** for such an injection $U_k: V_k^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$, namely define

$$U_k(e_{\mathcal{S}}) := \sum_{\substack{T \supset \mathcal{S}: \ |T| = k+1}} e_T$$

E.g. for n = 6, k = 2, one has

 $U_2(bwbwww) = bbbwww + bwbbww + bwbwbw + bwbwwb$

Easy to check U_k commutes with \mathfrak{S}_n permuting positions. But why is U_k **injective**?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

The only natural injection

There is only one **obvious candidate** for such an injection $U_k: V_k^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$, namely define

$$U_k(e_{\mathcal{S}}) := \sum_{\substack{T \supset \mathcal{S}: \ |T| = k+1}} e_T$$

E.g. for n = 6, k = 2, one has

 $U_2(bwbwww) = bbbwww + bwbbww + bwbwbw + bwbwwb$

Easy to check U_k commutes with \mathfrak{S}_n permuting positions. But why is U_k injective?

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ○

The only natural injection

There is only one **obvious candidate** for such an injection $U_k: V_k^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$, namely define

$$U_k(e_{\mathcal{S}}) := \sum_{\substack{T \supset \mathcal{S}: \ |T| = k+1}} e_T$$

E.g. for n = 6, k = 2, one has

 $U_2(bwbwww) = bbbwww + bwbbww + bwbwbw + bwbwwb$

Easy to check U_k commutes with \mathfrak{S}_n permuting positions. But why is U_k **injective**?

◆□ → ◆□ → ◆豆 → ◆豆 → ○

A cute injectivity argument

There are several arguments for this, but here's a cute one.

PROPOSITION: For $k < \frac{n}{2}$, the operator $U_k^t U_k$ on $V_k^{\otimes n}$ turns out to be **positive definite**, i.e. all its (real) eigenvalues are **strictly** positive.

In particular,

- $U_k^t U_k$ is invertible,
- so *U_k* is **injective**.

A cute injectivity argument

There are several arguments for this, but here's a cute one.

PROPOSITION: For $k < \frac{n}{2}$, the operator $U_k^t U_k$ on $V_k^{\otimes n}$ turns out to be **positive definite**, i.e. all its (real) eigenvalues are **strictly** positive.

In particular,

- $U_k^t U_k$ is invertible,
- so U_k is injective.

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

A cute injectivity argument

There are several arguments for this, but here's a cute one.

PROPOSITION: For $k < \frac{n}{2}$, the operator $U_k^t U_k$ on $V_k^{\otimes n}$ turns out to be **positive definite**, i.e. all its (real) eigenvalues are **strictly** positive.

In particular,

- $U_k^t U_k$ is invertible,
- so U_k is injective.

・ 戸 ・ ・ ヨ ・ ・

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A = A^t$

- always has only real eigenvalues,
- is positive semidefinite if they're all nonnegative, or equivalently, x^tAx ≥ 0 for all vectors x,
- is positive definite if they're all positive, or equivalently, if x^tAx > 0 for all nonzero vectors x,
- is always positive semidefinite when A = B^tB for some rectangular matrix B, since

$$\mathbf{x}^{t}A\mathbf{x} = \mathbf{x}^{t}B^{t}B\mathbf{x} = |B\mathbf{x}|^{2} \ge 0$$

ヘロン 人間と 人間と 人間と

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A = A^t$

- always has only real eigenvalues,
- is positive semidefinite if they're all nonnegative, or equivalently, x^tAx ≥ 0 for all vectors x,
- is positive definite if they're all positive, or equivalently, if x^tAx > 0 for all nonzero vectors x,
- is always positive semidefinite when A = B^tB for some rectangular matrix B, since

$$\mathbf{x}^{t}A\mathbf{x} = \mathbf{x}^{t}B^{t}B\mathbf{x} = |B\mathbf{x}|^{2} \ge 0$$

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A = A^t$

- always has only real eigenvalues,
- is positive semidefinite if they're all nonnegative, or equivalently, x^tAx ≥ 0 for all vectors x,
- is positive definite if they're all positive, or equivalently, if x^tAx > 0 for all nonzero vectors x,
- is always positive semidefinite when A = B^tB for some rectangular matrix B, since

$$\mathbf{x}^{t}A\mathbf{x} = \mathbf{x}^{t}B^{t}B\mathbf{x} = |B\mathbf{x}|^{2} \ge 0$$

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A = A^t$

- always has only real eigenvalues,
- is positive semidefinite if they're all nonnegative, or equivalently, x^tAx ≥ 0 for all vectors x,
- is positive definite if they're all positive, or equivalently, if x^tAx > 0 for all nonzero vectors x,
- is always positive semidefinite when A = B^tB for some rectangular matrix B, since

$$\mathbf{x}^{t}A\mathbf{x} = \mathbf{x}^{t}B^{t}B\mathbf{x} = |B\mathbf{x}|^{2} \ge 0$$

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A = A^t$

- always has only real eigenvalues,
- is positive semidefinite if they're all nonnegative, or equivalently, x^tAx ≥ 0 for all vectors x,
- is positive definite if they're all positive, or equivalently, if x^tAx > 0 for all nonzero vectors x,
- is always positive semidefinite when A = B^tB for some rectangular matrix B, since

$$\mathbf{x}^{t}A\mathbf{x} = \mathbf{x}^{t}B^{t}B\mathbf{x} = |B\mathbf{x}|^{2} \ge 0$$

・ 一 一 ト ・ 一 下 ・ ・

A cute injectivity argument (cont'd)

PROOF that $U_k^t U_k$ is positive definite.

Check (on each e_S) that

$$U_k^t U_k - U_{k-1} U_{k-1}^t = (n-2k) \cdot I_{V_k^{\otimes n}}$$

Hence

$$U_{k}^{t}U_{k} = U_{k-1}U_{k-1}^{t} + (n-2k) \cdot I_{V_{k}^{\otimes n}}$$

• First term $U_{k-1}U_{k-1}^t$ is positive **semidefinite**.

• Second term $(n-2k) \cdot I_{V_{\nu}^{\otimes n}}$ is positive **definite** as $k < \frac{n}{2}$.

• Hence the sum $U_k^t U_k$ is positive **definite**. QED

A cute injectivity argument (cont'd)

PROOF that $U_k^t U_k$ is positive definite.

Check (on each e_S) that

$$U_{k}^{t}U_{k} - U_{k-1}U_{k-1}^{t} = (n-2k) \cdot I_{V_{k}^{\otimes n}}$$

Hence

$$U_k^t U_k = U_{k-1} U_{k-1}^t + (n-2k) \cdot I_{V_k^{\otimes n}}$$

• First term $U_{k-1}U_{k-1}^t$ is positive **semidefinite**.

• Second term $(n-2k) \cdot I_{V_{\nu}^{\otimes n}}$ is positive **definite** as $k < \frac{n}{2}$.

• Hence the sum $U_k^t U_k$ is positive **definite**. QED

< / ₽ > <

A cute injectivity argument (cont'd)

PROOF that $U_k^t U_k$ is positive definite.

Check (on each e_S) that

$$U_{k}^{t}U_{k} - U_{k-1}U_{k-1}^{t} = (n-2k) \cdot I_{V_{k}^{\otimes n}}$$

Hence

$$U_k^t U_k = U_{k-1} U_{k-1}^t + (n-2k) \cdot I_{V_k^{\otimes n}}$$

- First term $U_{k-1}U_{k-1}^t$ is positive **semidefinite**.
- Second term $(n-2k) \cdot I_{V_{k}^{\otimes n}}$ is positive **definite** as $k < \frac{n}{2}$.
- Hence the sum $U_k^t U_k$ is positive **definite**. QED

A cute injectivity argument (cont'd)

PROOF that $U_k^t U_k$ is positive definite.

Check (on each e_S) that

$$U_{k}^{t}U_{k} - U_{k-1}U_{k-1}^{t} = (n-2k) \cdot I_{V_{k}^{\otimes n}}$$

Hence

$$U_{k}^{t}U_{k} = U_{k-1}U_{k-1}^{t} + (n-2k) \cdot I_{V_{k}^{\otimes n}}$$

- First term $U_{k-1}U_{k-1}^t$ is positive **semidefinite**.
- Second term $(n-2k) \cdot I_{V_{k}^{\otimes n}}$ is positive **definite** as $k < \frac{n}{2}$.
- Hence the sum $U_k^t U_k$ is positive **definite**. QED

A cute injectivity argument (cont'd)

PROOF that $U_k^t U_k$ is positive definite.

Check (on each e_S) that

$$U_{k}^{t}U_{k} - U_{k-1}U_{k-1}^{t} = (n-2k) \cdot I_{V_{k}^{\otimes n}}$$

Hence

$$U_{k}^{t}U_{k} = U_{k-1}U_{k-1}^{t} + (n-2k) \cdot I_{V_{k}^{\otimes n}}$$

- First term $U_{k-1}U_{k-1}^t$ is positive **semidefinite**.
- Second term $(n-2k) \cdot I_{V_{k}^{\otimes n}}$ is positive **definite** as $k < \frac{n}{2}$.
- Hence the sum $U_k^t U_k$ is positive **definite**. QED

A proof of Property 4: GENERATING FUNCTION

(To be flipped through at lightning speed during the talk; read it **later**, if you want!)

We want to show

$$\sum_{k=0}^n c_k q^k = rac{1}{|G|} \sum_{g \in G} \left(\prod_{ ext{cycles } C ext{ of } g} (1+q^{|C|})
ight)$$

Such **averages** over the group are ubiquitous due to the following easily-checked fact.
A proof of Property 4: GENERATING FUNCTION

(To be flipped through at lightning speed during the talk; read it **later**, if you want!)

We want to show

$$\sum_{k=0}^n c_k q^k = rac{1}{|G|} \sum_{g \in G} \left(\prod_{ ext{cycles } C ext{ of } g} (1+q^{|C|})
ight)$$

Such **averages** over the group are ubiquitous due to the following easily-checked fact.

(日)

An idempotent projector

PROPOSITION: When a finite group *G* acts linearly on a vector space *W* over a field in which |G| is invertible (nonzero), the map $W \xrightarrow{\pi} W$ given by

$$w\mapsto rac{1}{|G|}\sum_{g\in G}g(w)$$

is

- idempotent, i.e. $\pi^2 = \pi$, and
- π projects onto the subspace of G-invariants W^{G} .

< □ > < □ > < □ > < □ >

Trace of idempotent = dimension of image

One then has a second ubiquitous and easily-checked fact.

PROPOSITION: In characteristic zero, the **trace** $Tr(\pi)$ of an idempotent projector onto a linear subspace is the **dimension** of that subspace.

・ロン ・聞と ・ 聞と

Trace of idempotent = dimension of image

One then has a second ubiquitous and easily-checked fact.

PROPOSITION: In characteristic zero, the **trace** $Tr(\pi)$ of an idempotent projector onto a linear subspace is the **dimension** of that subspace.

< □ > < 同 > < 回 > < 回 >

Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi = \frac{1}{|G|} \sum_{g \in G} g$ onto the *G*-fixed subspace of each $W = V_k^{\otimes n}$:

$$\sum_{k} c_{k} q^{k} = \sum_{k} \dim_{\mathbb{C}} \left(V_{k}^{\otimes n} \right)^{G} q^{k} = \sum_{k} \operatorname{Tr} \left(\pi|_{V_{k}^{\otimes n}} \right) q^{k}$$
$$= \frac{1}{|G|} \sum_{q \in G} \left(\sum_{k} \operatorname{Tr}(g|_{V_{k}^{\otimes n}}) q^{k} \right).$$

It only remains to show

$$\sum_{k} \operatorname{Tr}(g|_{V_{k}^{\otimes n}}))q^{k} = \prod_{\text{cycles } C \text{ of } g} (1+q^{|C|}).$$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi = \frac{1}{|G|} \sum_{g \in G} g$ onto the *G*-fixed subspace of each $W = V_k^{\otimes n}$:

$$\begin{split} \sum_{k} c_{k} q^{k} &= \sum_{k} \dim_{\mathbb{C}} \left(V_{k}^{\otimes n} \right)^{G} q^{k} = \sum_{k} \operatorname{Tr} \left(\pi|_{V_{k}^{\otimes n}} \right) q^{k} \\ &= \frac{1}{|G|} \sum_{g \in G} \left(\sum_{k} \operatorname{Tr}(g|_{V_{k}^{\otimes n}}) q^{k} \right). \end{split}$$

It only remains to show

$$\sum_{k} \operatorname{Tr}(g|_{V_{k}^{\otimes n}}))q^{k} = \prod_{\text{cycles } C \text{ of } g} (1+q^{|C|}).$$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi = \frac{1}{|G|} \sum_{g \in G} g$ onto the *G*-fixed subspace of each $W = V_k^{\otimes n}$:

$$\sum_{k} c_{k} q^{k} = \sum_{k} \dim_{\mathbb{C}} \left(V_{k}^{\otimes n} \right)^{G} q^{k} = \sum_{k} \operatorname{Tr} \left(\pi|_{V_{k}^{\otimes n}} \right) q^{k}$$
$$= \frac{1}{|G|} \sum_{g \in G} \left(\sum_{k} \operatorname{Tr}(g|_{V_{k}^{\otimes n}}) q^{k} \right).$$

It only remains to show

$$\sum_{k} \operatorname{Tr}(g|_{V_{k}^{\otimes n}}))q^{k} = \prod_{\text{cycles } C \text{ of } g} (1+q^{|C|}).$$

・ロン ・聞と ・ 聞と

Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi = \frac{1}{|G|} \sum_{g \in G} g$ onto the *G*-fixed subspace of each $W = V_k^{\otimes n}$:

$$\begin{split} \sum_{k} c_{k} q^{k} &= \sum_{k} \dim_{\mathbb{C}} \left(V_{k}^{\otimes n} \right)^{G} q^{k} = \sum_{k} \operatorname{Tr} \left(\pi |_{V_{k}^{\otimes n}} \right) q^{k} \\ &= \frac{1}{|G|} \sum_{g \in G} \left(\sum_{k} \operatorname{Tr}(g|_{V_{k}^{\otimes n}}) q^{k} \right). \end{split}$$

It only remains to show

$$\sum_{k} \operatorname{Tr}(g|_{V_{k}^{\otimes n}}))q^{k} = \prod_{\text{cycles } C \text{ of } g} (1+q^{|C|}).$$

・ロン ・聞と ・ 聞と

Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi = \frac{1}{|G|} \sum_{g \in G} g$ onto the *G*-fixed subspace of each $W = V_k^{\otimes n}$:

$$\begin{split} \sum_{k} c_{k} q^{k} &= \sum_{k} \dim_{\mathbb{C}} \left(V_{k}^{\otimes n} \right)^{G} q^{k} = \sum_{k} \operatorname{Tr} \left(\pi |_{V_{k}^{\otimes n}} \right) q^{k} \\ &= \frac{1}{|G|} \sum_{g \in G} \left(\sum_{k} \operatorname{Tr}(g|_{V_{k}^{\otimes n}}) q^{k} \right). \end{split}$$

It only remains to show

$$\sum_k \mathit{Tr}(g|_{V_k^{\otimes n}})) q^k = \prod_{ ext{cycles } C ext{ of } g} (1+q^{|C|}).$$

Trace of *g* counts colorings monochromatic on its cycles

To see

$$\sum_k \mathit{Tr}(g|_{V_k^{\otimes n}}) q^k = \prod_{ ext{cycles } C ext{ of } g} (1+q^{|C|})$$

note that

- any *g* in *G* **permutes** the basis for $V_k^{\otimes n}$ indexed by black-white colorings,
- and *g* fixes such a coloring if and only if it is **monochromatic** on each cycle *C* of *g*.

Trace of *g* counts colorings monochromatic on its cycles

To see

$$\sum_k \mathit{Tr}(g|_{V_k^{\otimes n}}) q^k = \prod_{ ext{cycles } C ext{ of } g} (1+q^{|C|})$$

note that

- any g in G permutes the basis for V^{⊗n}_k indexed by black-white colorings,
- and *g* fixes such a coloring if and only if it is **monochromatic** on each cycle *C* of *g*.

Proof by example

E.g. g = (12)(34)(567) in \mathfrak{S}_7 fixes these colorings/tensors:

12	34	567	
WW	WW	WWW	1
bb	WW	WWW	$+q^2$
WW	bb	WWW	$+q^{2}$
WW	WW	bbb	$+q^3$
bb	bb	WWW	$+q^2 \cdot q^2$
bb	WW	bbb	$+q^2 \cdot q^3$
WW	bb	bbb	$+q^2 \cdot q^3$
bb	bb	bbb	$+q^2 \cdot q^2 \cdot q^3$
			$=(1+q^2)(1+q^2)(1+q^3)$
			$=\prod_{C}(1+q^{ C })$
QED			<□> <⊡> <⊡> <

포에 세종에

э

Proof by example

E.g. g = (12)(34)(567) in \mathfrak{S}_7 fixes these colorings/tensors:

12	34	567	
WW	WW	WWW	1
bb	WW	WWW	$+q^2$
WW	bb	WWW	$+q^2$
WW	WW	bbb	$+q^3$
bb	bb	WWW	$+q^2 \cdot q^2$
bb	WW	bbb	$+q^2 \cdot q^3$
WW	bb	bbb	$+q^2 \cdot q^3$
bb	bb	bbb	$+q^2 \cdot q^2 \cdot q^3$
			$=(1+q^2)(1+q^2)(1+q^3)$
			$=\prod_C (1+q^{ C })$
OFD			

э

Proof by example

E.g. g = (12)(34)(567) in \mathfrak{S}_7 fixes these colorings/tensors:

12	34	567	
WW	WW	WWW	1
bb	WW	WWW	$+q^2$
WW	bb	WWW	$+q^2$
WW	WW	bbb	$+q^3$
bb	bb	WWW	$+q^2 \cdot q^2$
bb	WW	bbb	$+q^2 \cdot q^3$
WW	bb	bbb	$+q^2 \cdot q^3$
bb	bb	bbb	$+q^2 \cdot q^2 \cdot q^3$
			$=(1+q^2)(1+q^2)(1+q^3)$
			$=\prod_{C}(1+q^{ C })$
QED			< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3

What is Algebraic Combinatorics? A general counting problem An algebraic approach

Proof by example

E.g. g = (12)(34)(567) in \mathfrak{S}_7 fixes these colorings/tensors:

12	34	567	
WW	WW	WWW	1
bb	WW	WWW	$+q^{2}$
WW	bb	WWW	$+q^{2}$
WW	WW	bbb	$+q^3$
bb	bb	WWW	$+q^2 \cdot q^2$
bb	WW	bbb	$+q^2 \cdot q^3$
WW	bb	bbb	$+q^2 \cdot q^3$
bb	bb	bbb	$+q^2 \cdot q^2 \cdot q^3$
			$=(1+q^2)(1+q^2)(1+q^3)$
			$=\prod_{C}(1+q^{ C })$
QED			< □ > < □ > <

3

For **combinatorial** purposes, it is definitely **worth learning more algebra**, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!

・ロン ・聞と ・ 聞と

For **combinatorial** purposes, it is definitely **worth learning more algebra**, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!

For **combinatorial** purposes, it is definitely **worth learning more algebra**, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!

For **combinatorial** purposes, it is definitely **worth learning more algebra**, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!

For **combinatorial** purposes, it is definitely **worth learning more algebra**, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!

▲ □ ► < □ ► </p>

-∃=->

For **combinatorial** purposes, it is definitely **worth learning more algebra**, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!

▲ □ ► < □ ► </p>