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What is Algebraic Combinatorics?

What is Algebraic Combinatorics?

@ Combinatorics is the study of finite or discrete objects,
and their structure.

@ Counting them is enumerative combinatorics.

@ One part of algebraic combinatorics is using algebra to
help you do enumerative combinatorics.
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A general counting problem

Example: enumerating subsets up to symmetry

We’ll explore an interesting family of examples:

Enumerating subsets , up to symmetry .
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A general counting problem

Example: enumerating subsets up to symmetry

We’ll explore an interesting family of examples:
Enumerating subsets , up to symmetry .

This has many interesting properties,
@ some easier,
@ some harder (without algebra!).
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A general counting problem

A group permuting the first n numbers

Let [n] :=={1,2,...,n},
permuted by the symmetric group &, on n letters.
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A general counting problem

A group permuting the first n numbers

Let [n] :=={1,2,...,n},
permuted by the symmetric group &, on n letters.

Let G be any subgroup of Gy,
thought of as some chosen symmetries.
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A general counting problem

EXAMPLE: G=cyclic symmetry, withn = 6
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A general counting problem

Counting G-orbits of subsets

Let’s count the set
2[n ;= { all subsets of [n] }
or equivalently,
black-white colorings  of [n],

but only up to equivalence by elements of G.
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A general counting problem

Counting G-orbits of subsets

Let’s count the set
2[n ;= { all subsets of [n] }
or equivalently,
black-white colorings  of [n],

but only up to equivalence by elements of G.

l.e. let's count the G-orbits

2l /G
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A general counting problem

EXAMPLE: black-white necklaces
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For G the cyclic group of rotations as above, G-orbits of
colorings of [n] are sometimes called necklaces .
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A general counting problem

All the black-white necklaces forn = 6
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In this case, |2I"/G| = 14.
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A general counting problem

More refined counting of G-orbits

Let’s even be more refined: count the sets
(I = { all k-element subsets of [n] }
or equivalently,
black-white colorings  of [n] with k blacks,

but again only up to equivalence by elements of G.
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A general counting problem

More refined counting of G-orbits

Let’'s even be more refined: count the sets
(I = { all k-element subsets of [n] }

or equivalently,

black-white colorings  of [n] with k blacks,

but again only up to equivalence by elements of G.

l.e. we want to understand

o = |(I/c]
number of G-orbits of black-white
colorings of [n] with k blacks.
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A general counting problem

The refined necklace count for n
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Here (C07 C1,C2,C3,Cy,Cs, CG) = (17 17 3747 37 17 1)
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A general counting problem

The basic question

QUESTION: What can we say in general about the sequence

Co,C1,Co,...,Cn?
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A general counting problem

The basic question

QUESTION: What can we say in general about the sequence

Co,C1,Co,...,Cn?

AN ANSWER: They share many properties with the case
where G is the trivial group, where the cy are the binomial

coefficients <8) @ @ s <n " 1)’ <:>
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Four properties

The binomial coefficients

Recall what binomial coefficient sequences

(0) () (&) (a2} ()

look like:
n=20: 1
n=1: 1 1
n=2: 1 2 1
n=3 1 3 3 1
=4 1 4 6 4 1
n=>5 1 5 10 10 5 1
n=6: 1 6 15 20 15 6 1
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Four properties

PROPERTY 1 (the easy one)

SYMMETRY: For any permutation group G, one has ¢y = Cn_k

OOQQO :20000
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Four properties

PROPERTY 1 (the easy one)

SYMMETRY: For any permutation group G, one has ¢y = Cn_k

%0
0 os° °
oe %0
£,z ¥
0,0
oRo e 06. oéo oéo oéo
o
00 OF0 Ogh o ®ge g0 el
. OO .
oe %0
e Eo

This follows from
@ complementing the subsets , or

@ swapping the colors in the black-white: colorings.




Four properties

PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)
cpr<cpL...<¢C

e.g.
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PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)
cpr<cpL...<¢C
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Nontrivial , but fairly easy with some algebra ..
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Four properties

PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)
cpr<cpL...<¢C

e.g.

Nontrivial , but fairly easy with some algebra ..
Currently only known in general via various algebraic means.
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Four properties

PROPERTY 3 (not so hard, but a bit surprising)

ALTERNATING SUM: (de Bruijn 1959)
Co —Cy +Cyr —C3+--- counts
self-complementary G-orbits .
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Four properties

PROPERTY 3 (not so hard, but a bit surprising)

ALTERNATING SUM: (de Bruijn 1959)
Co —Cy +Cyr —C3+--- counts
self-complementary G-orbits .

eg.thereare1 -1+3-4+3-1+1=2
self-complementary black-white necklaces for n = 6:
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Four properties

Wait! How was that like binomial coefficients?

It's easy to see that

<g>_(D*@‘(2>+-~-=(1+(—1))”=o

and there are no self-complementary subsets S of [n].
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Four properties

PROPERTY 4 (not so hard, but also a bit surprising)

GENERATING FUNCTION: (Redfield 1927, Polya 1937)

Co+ €19 + 202 +¢c3q° + - + cnq"
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Four properties

PROPERTY 4 (not so hard, but also a bit surprising)

GENERATING FUNCTION: (Redfield 1927, Polya 1937)
2 3 n
Co +C19 +C2Q”~ +C3(~ +---+Cnh(Q

is the average over all g in G of the very simple products

II @+d°)

cycles C of g
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Four properties

(1+9gYf= ¢° +69' 41592 +209° +159* +69° +q°
(1+a%t= «q +9°
(1+a%2= q° +293 +9°
(1+a9%)°= q° +39? +30g°* +9°
(1+a°)?= ¢’ +29° +9°
(1+0%'= ¢° +q°

69° +691 +18qg° +24q° +189* +69° +6q°
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Four properties
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(1+9gYf= ¢° +69' 41592 +209° +159* +69° +q°
G @ g -
+09°)°= (¢ +29 +q
(1+09?)°= q° +39° +3q* +q°
(1+a%*= q° +293 +q°
(1+9%'= ¢° +9°
69° +691 +18qg° +24q° +189* +69° +6q°

xL |
6
19° +1g* +39% +49® +39* +1g° +1q°
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An algebraic approach

Linearize!

In the algebraic approach, instead of thinking of numbers like
12l/G| and ¢, = |(I}1) /G| as cardinalities of sets, one tries to
re-interpret them as dimensions of vector spaces .
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An algebraic approach

Linearize!

In the algebraic approach, instead of thinking of numbers like
12l/G| and ¢, = |(I}1) /G| as cardinalities of sets, one tries to
re-interpret them as dimensions of vector spaces .

Hopefully these vector spaces are natural enough that one can
prove
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An algebraic approach

Linearize!

In the algebraic approach, instead of thinking of numbers like
12l/G| and ¢, = |(I}1) /G| as cardinalities of sets, one tries to
re-interpret them as dimensions of vector spaces .

Hopefully these vector spaces are natural enough that one can
prove

@ equalities of cardinalities via vector space isomorphisms
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An algebraic approach

Linearize!

In the algebraic approach, instead of thinking of numbers like
12l/G| and ¢, = |(I}1) /G| as cardinalities of sets, one tries to
re-interpret them as dimensions of vector spaces .

Hopefully these vector spaces are natural enough that one can
prove

@ equalities of cardinalities via vector space isomorphisms
@ inequalities via vector space injections or surjections
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An algebraic approach

Linearize!

In the algebraic approach, instead of thinking of numbers like
12l/G| and ¢, = |(I}1) /G| as cardinalities of sets, one tries to
re-interpret them as dimensions of vector spaces .

Hopefully these vector spaces are natural enough that one can
prove

@ equalities of cardinalities via vector space isomorphisms
@ inequalities via vector space injections or surjections
@ identities via trace identities , etc.

V. Reiner Algebraic Combinatorics



An algebraic approach

Tensor products and colorings

Let V = C? have a C-basis
{ w, b}
| |

white black

V. Reiner Algebraic Combinatorics



An algebraic approach

Tensor products and colorings

Let V = C? have a C-basis
{ w, b}
| |

white black

Then
VO = V@ oV
N——’
n tensor positions

has its tensor positions labelled by [n],
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An algebraic approach

Tensor products and colorings

Let V = C? have a C-basis

{w, b}
| |

white black

Then
VO = V@ oV
W
n tensor positions
has its tensor positions labelled by [n],
and has a C-basis {es} indexed by
@ black-white colorings of [n], or
@ subsets S of [n].
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An algebraic approach

A typical basis tensor eg

E.g. For n = 6 and the subset S = {1,4,5}, one has the basis
element of vV ®©

€145 = b ® w @ w ® &
2 3

® W
1 6

b b
4 5
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An algebraic approach

A typical basis tensor eg

E.g. For n = 6 and the subset S = {1,4,5}, one has the basis
element of vV ®©

€145 = b ® w @ w ® &
2 3

® W
1 6

b b
4 5

or for short, just
e{174’5} = bwwbbw
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An algebraic approach

Quick tensor product reminder

Recall tensor products are multilinear , that is, linear in each
tensor factor.
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An algebraic approach

Quick tensor product reminder

Recall tensor products are multilinear , that is, linear in each
tensor factor.

E.g. for any constants ¢, ¢, in C one has

bow®(c;-wW+cr-b)obebow
=c;-(boawoawebebaw)
+cr-(bowobobbow)
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An algebraic approach

The subspace of G-invariants

The subgroup G of &, acts on V®" by permuting the tensor
positions .
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An algebraic approach

The subspace of G-invariants

The subgroup G of &, acts on V®" by permuting the tensor
positions .

Consider the subspace of G-invariants

(veme.
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An algebraic approach

The subspace of G-invariants

The subgroup G of &, acts on V®" by permuting the tensor
positions .

Consider the subspace of G-invariants
(ven)e.

This has a C-basis naturally indexed by
@ G-orbits of black-white colorings of [n], or
@ G-orbits of subsets S of [n].
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An algebraic approach

Example

E.g. for n = 6 with G=cyclic rotations, the element

G
wwbwwb + bwwbww + wbwwbw € (V ®6)

corresponds to the necklace shown:

S Y
.@Q :{ bQW’ WQW ’W<w>b}
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An algebraic approach

Example

E.g. for n = 6 with G=cyclic rotations, the element

G
wwbwwb + bwwbww + wbwwbw € (V ®6)

corresponds to the necklace shown:
O
O @ :{Q Wéw bQ}
@ O Lyt
O

CONCLUSION: [2[/G| = dim¢ (V&)
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An algebraic approach

Interpreting the c’s

Better yet, if one defines subspaces
VE" .= C-span of {eg with |S| = k}

then
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An algebraic approach

Interpreting the c’s

Better yet, if one defines subspaces
VE" .= C-span of {eg with |S| = k}

then

@ one has a direct sum decomposition V®" = @y _, V2",
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An algebraic approach

Interpreting the c’s

Better yet, if one defines subspaces
VE" .= C-span of {eg with |S| = k}

then

@ one has a direct sum decomposition V®" = @y _, V2",
@ the group G acts on each Vl‘?”,
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An algebraic approach

Interpreting the c’s

Better yet, if one defines subspaces
VE" .= C-span of {eg with |S| = k}

then

@ one has a direct sum decomposition V®" = @y _, V2",
@ the group G acts on each Vl‘?”, and

o ¢ := (M) /G| = dime (V") °.
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An algebraic approach

This gives a good framework for understanding the cy.
We've naturally linearized this picture:

[ ]
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An algebraic approach

Silly proof of Property 1: SYMMETRY

We want to show
Ck = Ch—k
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An algebraic approach

Silly proof of Property 1: SYMMETRY

We want to show
Ck = Ch—k

Or equivalently,

dime (VE")® = dime (V" )C.
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An algebraic approach

Silly proof of Property 1: SYMMETRY

We want to show
Ck = Ch—k

Or equivalently,

dime (VE")® = dime (V" )C.

So we'd like a C-linear isomorphism

G G
(V™)™ = (Vall) ™
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An algebraic approach

Silly proof of SYMMETRY (cont'd)

Any C-linear map
t:V—-V

gives rise to a C-linear map
t:Vven L yen

acting diagonally , i.e. the same in each tensor position.
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An algebraic approach

Schur-Weyl duality

Such maps commute with the G-action permuting the tensor
positions.

V1 ® Vo ® V3 i; t(Vl) 0%y t(Vz) X t(V3)
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An algebraic approach

Schur-Weyl duality

Such maps commute with the G-action permuting the tensor
positions.

Vi ® Vo ® V3 i; t(V1)®t(V2)®t(V3)
lg=(12) lg=(12)

Vo @ V1 ® V3 i; t(Vz) X t(Vl) X t(V3)
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An algebraic approach

Silly proof of SYMMETRY (cont'd)

Lett:V — V swap the basis elements {w,b},
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An algebraic approach

Silly proof of SYMMETRY (cont'd)

Lett:V — V swap the basis elements {w,b},
S0 on tensors it also swaps them, e.g.

t(bwbbwb) = wbwwbw.
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An algebraic approach

Silly proof of SYMMETRY (cont'd)

Lett:V — V swap the basis elements {w,b},
S0 on tensors it also swaps them, e.g.

t(bwbbwb) = wbwwbw.

Note that t> = 1, so t gives a C-linear isomorphism

®Xn ®n
Viem = Vil
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An algebraic approach

Silly proof of SYMMETRY (cont'd)

Lett:V — V swap the basis elements {w,b},
S0 on tensors it also swaps them, e.g.

t(bwbbwb) = wbwwbw.

Note that t> = 1, so t gives a C-linear isomorphism
Vk®n - Vr?—nk
which restricts to a C-linear isomorphism
G G
V™)™ = (V)

as desired to show ¢, = ¢,,_x. QED
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An algebraic approach

Not-so-silly proof of Property 3: ALTERNATING SUM

We want to show that
Co—Ci+C—C3z+---

counts self-complementary G-orbits.
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An algebraic approach

Not-so-silly proof of Property 3: ALTERNATING SUM

We want to show that
Co—Ci1+C—C3+ -
counts self-complementary G-orbits.

Begin with this observation:

PROPOSITION: The number of self-complementary G-orbits
is the trace of the color-swapping map t from before, when it

acts on (V&M)©C.
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An algebraic approach

Not-so-silly proof (cont'd)

Proof.
@ t permutes the basis of (V®”)G indexed by G-orbits of
black-white colorings,

o.o OOO QOO t ..o .OO t O..
o@o - o@o .@. - Q@Q o@o - O@O
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An algebraic approach

Not-so-silly proof (cont'd)

Proof.
@ t permutes the basis of (V®”)G indexed by G-orbits of
black-white colorings, and
@ t fixes such a basis element if and only if this G-orbit is
self-complementary .QED

o.o OOO QOO t ..o .OO t O..
o@o - o@o .@. - Q@Q o@o - O@O
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An algebraic approach

Not-so-silly proof (cont'd)

Proof.
@ t permutes the basis of (V®”)G indexed by G-orbits of

black-white colorings, and
@ t fixes such a basis element if and only if this G-orbit is

self-complementary .QED
For example, with n = 6 and G=cyclic rotation, t fixes this basis

element of (V®6)G
wwwbbb -+ bwwwbb + bbwwwb + bbbwww +wbbbww -+wwbbbw
as it is a sum over the t-stable G-orbit shown below:
° ° °

e O OOO OOO t o.o .OO t O
OQO L O@' o@o _ o@o 0@0 T O@o



An algebraic approach

Not-so-silly proof (cont'd)

What does this have to dowithcg —¢c; +¢co —---?

V. Reiner Algebraic Combinatorics



An algebraic approach

Not-so-silly proof (cont'd)

What does this have to dowithcg —¢c; +¢co —---?
Well, inside GL(V),

0 1 1 O
t:[1 0} ands:[o _1}

@ are both diagonalizable and have eigenvalues +1, -1,
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An algebraic approach

Not-so-silly proof (cont'd)

What does this have to dowithcg —¢c; +¢co —---?
Well, inside GL(V),

0 1 1 O
t:[1 0} ands:[o _1}

@ are both diagonalizable and have eigenvalues +1, -1,
@ so they must be conjugate within GL(V ),
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An algebraic approach

Not-so-silly proof (cont'd)

What does this have to dowithcg —¢c; +¢co —---?
Well, inside GL(V),

0 1 1 O
t:[1 0} ands:[o _1}

@ are both diagonalizable and have eigenvalues +1, -1,
@ so they must be conjugate within GL(V ),

@ sot,s mustact on V® and on (V&€ by C-linear maps
which are conjugate.
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An algebraic approach

Not-so-silly proof (cont'd)

Recall that Tr(AB) = Tr(BA) implies
conjugate transformations  have the same trace :

Tr(PAP_l) _ Tr(p—l -PA) =Tr (A).

Thus s, t must act with the same trace on (V®”)G.
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An algebraic approach

Not-so-silly proof (cont'd)

Recall that Tr(AB) = Tr(BA) implies
conjugate transformations  have the same trace :

Tr(PAP_l) _ Tr(p—l -PA) =Tr (A).

Thus s, t must act with the same trace on (V®”)G.

We know from the previous Proposition that this trace for t is
the number of self-complementary G-orbits.

V. Reiner Algebraic Combinatorics



An algebraic approach

Not-so-silly proof (cont'd)

Recall that Tr(AB) = Tr(BA) implies
conjugate transformations  have the same trace :

Tr(PAP_l) _ Tr(p—l -PA) =Tr (A).

Thus s, t must act with the same trace on (V®”)G.

We know from the previous Proposition that this trace for t is
the number of self-complementary G-orbits.

So it suffices to apply the following fact with g = —1...
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An algebraic approach

Not-so-silly proof (cont'd)

PROPOSITION: For any eigenvalue q in C, the element
s(q) = [é g] acts on (V®")® with trace

Co + €10 + C20° + -~ + cnq".
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An algebraic approach

Not-so-silly proof (cont'd)

PROPOSITION: For any eigenvalue q in C, the element
s(q) = [é g] acts on (V®")® with trace

Co + €10 + C20° + -~ + cnq".
In particular, for g = —1, the element s = s(—1) acts with trace

Co—CL+Co— -
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An algebraic approach

Not-so-silly proof (cont'd)

Proof.
@ s(q) fixes w.
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An algebraic approach

Not-so-silly proof (cont'd)

Proof.
@ s(q) fixes w.
@ s(qg) scales b by q.
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An algebraic approach

Not-so-silly proof (cont'd)

Proof.
@ s(q) fixes w.
@ s(qg) scales b by q.
@ Hence s(q) scales any eg in which |S| = k by g, e.g.

s(q)(bwbbbw) = gb@w @ gb®gb®gb@w = g*-bwbbbw.
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An algebraic approach

Not-so-silly proof (cont'd)

Proof.
@ s(q) fixes w.
@ s(qg) scales b by q.
@ Hence s(q) scales any eg in which |S| = k by g, e.g.

s(q)(bwbbbw) = gb@w @ gb®gb®gb@w = g*-bwbbbw.

@ Hence s(q) scales all of V2" by a,
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An algebraic approach

Not-so-silly proof (cont'd)

Proof.
@ s(q) fixes w.
@ s(qg) scales b by q.
@ Hence s(q) scales any eg in which |S| = k by g, e.g.

s(q)(bwbbbw) = gb@w @ gb®gb®gb@w = g*-bwbbbw.

@ Hence s(q) scales all of V2" by a,

o and therefore scales all of (V®")® by g~.
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An algebraic approach

Not-so-silly proof (cont'd)

Proof.
@ s(q) fixes w.
@ s(qg) scales b by q.
@ Hence s(q) scales any eg in which |S| = k by g, e.g.

s(q)(bwbbbw) = gb@w @ gb®gb®gb@w = g*-bwbbbw.

@ Hence s(q) scales all of V2" by a,

o and therefore scales all of (V®")® by g~.

@ Sos(q) acts on (V®")°® = P, (Vk®”)G with trace 3, ckqk.
QED



An algebraic approach

A proof of Property 2: UNIMODALITY

We want to show that for k < % one has

Ck < Cx41
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An algebraic approach

A proof of Property 2: UNIMODALITY

We want to show that for k < % one has

Ck < Cx41

So we'd like a C-linear injective map

(ViEM® = (VE)®.

Maybe we should look for an injective map

®n XN
Vi = Vi

that commutes with the action of &, on tensor positions, and
hence with every G?
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An algebraic approach

The only natural injection

There is only one obvious candidate for such an injection
Ui - VE" — V&, namely define

Uk(es) := Z er

\T\ k+1
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The only natural injection

There is only one obvious candidate for such an injection
Ui - VE" — V&, namely define

Uk(es) := Z er
\T\ k+1
E.g. forn =6, k = 2, one has

U, (bwbwww ) = bbbwww + bwbbww + bwbwbw + bwbwwb
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An algebraic approach

The only natural injection

There is only one obvious candidate for such an injection
Ui - VE" — V&, namely define

Uk(es) := Z er
m k+1
E.g. forn =6, k = 2, one has
U, (bwbwww ) = bbbwww + bwbbww + bwbwbw + bwbwwb

Easy to check Uy commutes with &, permuting positions.
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An algebraic approach

The only natural injection

There is only one obvious candidate for such an injection
Ui - VE" — V&, namely define

Uk(es) := Z er
m k+1
E.g. forn =6, k = 2, one has
U, (bwbwww ) = bbbwww + bwbbww + bwbwbw + bwbwwb

Easy to check Uy commutes with &, permuting positions.
But why is Uy injective ?
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An algebraic approach

A cute injectivity argument

There are several arguments for this, but here’s a cute one.
PROPOSITION: For k < 3, the operator U{ Uy on V2" turns out

to be positive definite , i.e. all its (real) eigenvalues are strictly
positive.
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PROPOSITION: For k < 3, the operator U{ Uy on V2" turns out

to be positive definite , i.e. all its (real) eigenvalues are strictly
positive.

In particular,
@ U[Uy isinvertible ,
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A cute injectivity argument

There are several arguments for this, but here’s a cute one.

PROPOSITION: For k < 3, the operator U{ Uy on V2" turns out

to be positive definite , i.e. all its (real) eigenvalues are strictly
positive.

In particular,
@ U[Uy isinvertible ,
@ s0 Uy is injective .
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An algebraic approach

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix A = Al
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Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix A = Al
@ always has only real eigenvalues ,

@ is positive semidefinite  if they're all nonnegative,
or equivalently, x!Ax > 0 for all vectors x,

@ is positive definite if they're all positive,
or equivalently, if xX*Ax > 0 for all nonzero vectors X,
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An algebraic approach

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix A = Al
@ always has only real eigenvalues ,

@ is positive semidefinite  if they're all nonnegative,
or equivalently, x!Ax > 0 for all vectors x,

@ is positive definite if they're all positive,
or equivalently, if xX*Ax > 0 for all nonzero vectors X,

@ is always positive semidefinite when A = B'B for some
rectangular matrix B, since

x'Ax = x'B'Bx = |[Bx|2 > 0
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An algebraic approach

A cute injectivity argument (cont'd)

PROOF that U} Uy is positive definite.
@ Check (on each eg) that

UgUx — Ug UL 5 = (n — 2K) - lyen
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A cute injectivity argument (cont'd)

PROOF that U} Uy is positive definite.
@ Check (on each eg) that

UgUx — Ug UL 5 = (n — 2K) - lyen

@ Hence
UfUx = U U 1+ (n — 2K) - lyen
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A cute injectivity argument (cont'd)

PROOF that U} Uy is positive definite.
@ Check (on each eg) that

UgUx — Ug UL 5 = (n — 2K) - lyen

@ Hence
UfUx = U U 1+ (n — 2K) - lyen

@ Firstterm U,_;U}_, is positive semidefinite .
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A cute injectivity argument (cont'd)

PROOF that U} Uy is positive definite.
@ Check (on each eg) that

UgUx — Ug UL 5 = (n — 2K) - lyen

@ Hence
UfUx = U U 1+ (n — 2K) - lyen

@ Firstterm U,_;U}_, is positive semidefinite .
@ Second term (n — 2k) - Ivk@m is positive definite ask < 3.
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An algebraic approach

A cute injectivity argument (cont'd)

PROOF that U} Uy is positive definite.
@ Check (on each eg) that

UgUx — Ug UL 5 = (n — 2K) - lyen

@ Hence
UfUx = U U 1+ (n — 2K) - lyen

@ Firstterm U,_;U}_, is positive semidefinite .
@ Second term (n — 2k) - Ivk@m is positive definite ask < 3.

@ Hence the sum UlﬁUk is positive definite . QED
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An algebraic approach

A proof of Property 4: GENERATING FUNCTION

(To be flipped through at lightning speed during the talk;
read it later, if you want!)

We want to show

chq GZ( 11 (1+qC))
| |geG cycles C of g

V. Reiner Algebraic Combinatorics



An algebraic approach

A proof of Property 4: GENERATING FUNCTION

(To be flipped through at lightning speed during the talk;
read it later, if you want!)

We want to show

n

1
) cqu:—|G|§ II @+d°h
k=0 geG \cycles C of g

Such averages over the group are ubiquitous due to the
following easily-checked fact.
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An algebraic approach

An idempotent projector

PROPOSITION: When a finite group G acts linearly on a vector
space W over a field in which |G| is invertible (nonzero), the
map W 5 W given by

1
geG
is
@ idempotent ,i.e. 72 = 7, and
@ 7 projects onto the subspace of G-invariants W C.
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An algebraic approach

Trace of idempotent = dimension of image

One then has a second ubiquitous and easily-checked fact.
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An algebraic approach

Trace of idempotent = dimension of image

One then has a second ubiquitous and easily-checked fact.
PROPOSITION: In characteristic zero, the trace Tr(w) of an

idempotent projector onto a linear subspace is the dimension
of that subspace.

V. Reiner Algebraic Combinatorics



An algebraic approach

Putting two idempotent facts together

Apply these two facts to the idempotent projector
= Iﬁl\ > gec 9 onto the G-fixed subspace of each W = V,&™:

chqk
k
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An algebraic approach

Putting two idempotent facts together

Apply these two facts to the idempotent projector
= Iﬁl\ > gec 9 onto the G-fixed subspace of each W = V,&™:

S oak = dime (V") © gk
K K
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An algebraic approach

Putting two idempotent facts together

Apply these two facts to the idempotent projector
= Iﬁl\ > gec 9 onto the G-fixed subspace of each W = V,&™:

> Zdlmc (vem© ZTr <7T|V®n)
K
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An algebraic approach

Putting two idempotent facts together

Apply these two facts to the idempotent projector
= Iﬁl\ > gec 9 onto the G-fixed subspace of each W = V,&™:

zk:ckq Zdlmc (vEm© ZTr (7hyen ) 0"
Gl Z <ZTr glyen)d ) :

geG
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An algebraic approach

Putting two idempotent facts together

Apply these two facts to the idempotent projector
= Iﬁl\ > gec 9 onto the G-fixed subspace of each W = V,&™:

zk:ckq Zdlmc (vEm© ZTr (7hyen ) 0"
Gl Z <ZTr glyen)d ) :

geG

It only remains to show

Y Tr(ghe)d= [ @+d.
k

cycles C of g
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An algebraic approach

Trace of g counts colorings monochromatic on its

cycles
To see
Y Tr(ghea =[] (@+d)
k cycles C of g
note that

@ any g in G permutes the basis for Vk®n indexed by
black-white colorings,
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An algebraic approach

Trace of g counts colorings monochromatic on its

cycles
To see
Y Tr(ghea =[] (@+d)
k cycles C of g
note that

@ any g in G permutes the basis for Vk®n indexed by
black-white colorings,

@ and g fixes such a coloring if and only if it is
monochromatic on each cycle C of g.

V. Reiner Algebraic Combinatorics



An algebraic approach

Proof by example

E.g. g = (12)(34)(567) in &7 fixes these colorings/tensors:

12 34 567
ww o oww owww 1
bb  ww www +g?
ww bbb www  +g?
ww ww bbb +q3

bb  bb www +g?-q?
bb  ww bbb +qg?-g3
ww bb bbb +g2-q°
bb bbb bbb +g%2-92-q°

V. Reiner Algebraic Combinatorics
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Proof by example

E.g. g = (12)(34)(567) in &7 fixes these colorings/tensors:

12 34 567

ww - ww o www 1

bb  ww www +g?

ww bbb www  +g?

ww ww bbb +q3

bb  bb www +g?-q?

bb  ww bbb +qg?-g3

ww bb bbb +g2- q3

bb  bb bbb +q2 q?-q3
_|_

)(1+9%)(1+a%)
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An algebraic approach

Proof by example

E.g. g = (12)(34)(567) in &7 fixes these colorings/tensors:

12 34 567

ww - ww o www 1

bb  ww www +g?

ww bbb www  +g?

ww ww bbb +q3

bb  bb www +g?-q?

bb  ww bbb +qg?-g3

ww bb bbb +g2-q°

bb bbb bbb +g%2-92-q°
=(1+9%)(1+9*)(1+0a°)
= [Ic(1+4d/°)

V. Reiner Algebraic Combinatorics



An algebraic approach

Proof by example

E.g. g = (12)(34)(567) in &7 fixes these colorings/tensors:

12 34 567
ww - ww o www 1
bb  ww www +g?
ww bbb www  +g?
ww ww bbb +q3
bb  bb www +g?-q?
bb  ww bbb +qg?-g3
ww bb bbb +g2-q°
bb bbb bbb +g%2-92-q°
=(1+9%)(1+9*)(1+0a°)
= [Ic(1+4d/°)
QED
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For combinatorial purposes, it is definitely worth learning
more algebra ,
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more algebra , including (but not limited to)

@ Linear, multilinear algebra,

@ Group theory,

@ Representation theory,

@ Commutative algebra, Hopf algebras, ...
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Summary

Summary

For combinatorial purposes, it is definitely worth learning
more algebra , including (but not limited to)

@ Linear, multilinear algebra,

@ Group theory,

@ Representation theory,

@ Commutative algebra, Hopf algebras, ...

Thank you for your attention!
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