Algebraic Combinatorics

Using algebra to help one count

V. Reiner

Max and Rose Lorie Lecture Series
George Mason University
January 29, 2010

Outline

(1) What is Algebraic Combinatorics?
(2) A general counting problem
(3) Four properties

4 An algebraic approach

Outline

(1) What is Algebraic Combinatorics?
(2) A general counting problem
(3) Four properties
(4) An algebraic approach

Outline

(1) What is Algebraic Combinatorics?
(2) A general counting problem
(3) Four properties

An algebraic approach

Outline

(1) What is Algebraic Combinatorics?
(2) A general counting problem
(3) Four properties
4. An algebraic approach

What is Algebraic Combinatorics?

- Combinatorics is the study of finite or discrete objects, and their structure.
- Counting them is enumerative combinatorics.
- One part of algebraic combinatorics is using algebra to help you do enumerative combinatorics.

What is Algebraic Combinatorics?

- Combinatorics is the study of finite or discrete objects, and their structure.
- Counting them is enumerative combinatorics.
- One part of algebraic combinatorics is using algebra to help you do enumerative combinatorics.

What is Algebraic Combinatorics?

- Combinatorics is the study of finite or discrete objects, and their structure.
- Counting them is enumerative combinatorics.
- One part of algebraic combinatorics is using algebra to help you do enumerative combinatorics.

Example: enumerating subsets up to symmetry

We'll explore an interesting family of examples:
Enumerating subsets, up to symmetry.
This has many interesting properties,

- some easier,
- some harder (without algebra!).

Example: enumerating subsets up to symmetry

We'll explore an interesting family of examples:

Enumerating subsets, up to symmetry.

This has many interesting properties,

- some easier,
- some harder (without algebra!).

A group permuting the first n numbers

Let $[n]:=\{1,2, \ldots, n\}$,
permuted by the symmetric group \mathfrak{S}_{n} on n letters.

Let G be any subgroup of \mathfrak{S}_{n},
thought of as some chosen symmetries.

A group permuting the first n numbers

Let $[n]:=\{1,2, \ldots, n\}$,
permuted by the symmetric group \mathfrak{S}_{n} on n letters.

Let G be any subgroup of \mathfrak{S}_{n}, thought of as some chosen symmetries.

EXAMPLE: G=cyclic symmetry, with $n=6$

$\mathrm{G}=$

Counting G-orbits of subsets

Let's count the set

$$
2^{[n]}:=\{\text { all subsets of }[n]\}
$$

or equivalently,
black-white colorings of $[n]$,
but only up to equivalence by elements of G.
l.e. let's count the G-orbits

Counting G-orbits of subsets

Let's count the set

$$
2^{[n]}:=\{\text { all subsets of }[n]\}
$$

or equivalently,
black-white colorings of $[n]$,
but only up to equivalence by elements of G.
I.e. let's count the G-orbits

$$
2^{[n]} / G
$$

EXAMPLE: black-white necklaces

For G the cyclic group of rotations as above, G-orbits of colorings of $[n]$ are sometimes called necklaces.

All the black-white necklaces for $n=6$

In this case, $\left|2^{[n]} / G\right|=14$.

More refined counting of G-orbits

Let's even be more refined: count the sets

$$
\binom{[n]}{k}:=\{\text { all k-element subsets of }[n]\}
$$

or equivalently,
black-white colorings of $[n]$ with k blacks,
but again only up to equivalence by elements of G.
l.e. we want to understand

More refined counting of G-orbits

Let's even be more refined: count the sets

$$
\binom{[n]}{k}:=\{\text { all k-element subsets of }[n]\}
$$

or equivalently,
black-white colorings of $[n]$ with k blacks,
but again only up to equivalence by elements of G.
l.e. we want to understand

$$
\begin{aligned}
c_{k}:= & \left|\binom{[n]}{k} / G\right| \\
= & \text { number of } G \text {-orbits of black-white } \\
& \text { colorings of }[n] \text { with } k \text { blacks. }
\end{aligned}
$$

The refined necklace count for $n=6$

Here $\left(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}\right)=(1,1,3,4,3,1,1)$.

The basic question

QUESTION: What can we say in general about the sequence

$$
c_{0}, c_{1}, c_{2}, \ldots, c_{n} ?
$$

AN ANSWER: They share many properties with the case
where G is the trivial group, where the c_{k} are the binomial coefficients

The basic question

QUESTION: What can we say in general about the sequence

$$
c_{0}, c_{1}, c_{2}, \ldots, c_{n} ?
$$

AN ANSWER: They share many properties with the case where G is the trivial group, where the c_{k} are the binomial coefficients

$$
\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n-1},\binom{n}{n}
$$

The binomial coefficients

Recall what binomial coefficient sequences

$$
\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n-1},\binom{n}{n}
$$

look like:

$n=0:$						1							
$n=1:$					1		1						
$n=2:$				1		2		1					
$n=3:$			1		3		3		1				
$n=4:$		1		4		6		4		1			
$n=5:$		1		5		10		10		5		1	
$n=6:$	1		6		15		20		15		6		1

PROPERTY 1 (the easy one)

SYMMETRY: For any permutation group G, one has $c_{k}=c_{n-k}$

This follows from

- complementing the subsets, or

PROPERTY 1 (the easy one)

SYMMETRY: For any permutation group G, one has $c_{k}=c_{n-k}$

This follows from

- complementing the subsets, or
- swapping the colors in the black-white colorings.

PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)

$$
c_{0} \leq c_{1} \leq \cdots \leq c_{\frac{n}{2}} \geq \cdots \geq c_{n-1} \geq c_{n}
$$

e.g.

$$
1 \leq 1 \leq 3 \leq 4 \geq 3 \geq 1 \geq 1
$$

Nontrivial, but fairly easy with some algebra.
Currently only known in general via various algebraic means.

PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)

$$
c_{0} \leq c_{1} \leq \cdots \leq c_{\frac{n}{2}} \geq \cdots \geq c_{n-1} \geq c_{n}
$$

e.g.

$$
1 \leq 1 \leq 3 \leq 4 \geq 3 \geq 1 \geq 1
$$

Nontrivial, but fairly easy with some algebra.
Currently only known in general via various algebraic means.

PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)

$$
c_{0} \leq c_{1} \leq \cdots \leq c_{\frac{n}{2}} \geq \cdots \geq c_{n-1} \geq c_{n}
$$

e.g.

$$
1 \leq 1 \leq 3 \leq 4 \geq 3 \geq 1 \geq 1
$$

Nontrivial, but fairly easy with some algebra.
Currently only known in general via various algebraic means.

PROPERTY 3 (not so hard, but a bit surprising)

ALTERNATING SUM: (de Bruijn 1959)
$c_{0}-c_{1}+c_{2}-c_{3}+\cdots$ counts self-complementary G-orbits.
e.g. there are $1-1+3-4+3-1+1=2$
self-complementary black-white necklaces for $n=6$:

PROPERTY 3 (not so hard, but a bit surprising)

ALTERNATING SUM: (de Bruijn 1959)
$c_{0}-c_{1}+c_{2}-c_{3}+\cdots$ counts
self-complementary G-orbits.
e.g. there are $1-1+3-4+3-1+1=2$ self-complementary black-white necklaces for $n=6$:

Wait! How was that like binomial coefficients?

It's easy to see that

$$
\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\cdots=(1+(-1))^{n}=0
$$

and there are no self-complementary subsets S of $[n]$.

PROPERTY 4 (not so hard, but also a bit surprising)

GENERATING FUNCTION: (Redfield 1927, Polya 1937)

$$
c_{0}+c_{1} q+c_{2} q^{2}+c_{3} q^{3}+\cdots+c_{n} q^{n}
$$

is the average over all g in G of the very simple products
cycles C of g

PROPERTY 4 (not so hard, but also a bit surprising)

GENERATING FUNCTION: (Redfield 1927, Polya 1937)

$$
c_{0}+c_{1} q+c_{2} q^{2}+c_{3} q^{3}+\cdots+c_{n} q^{n}
$$

is the average over all g in G of the very simple products

$$
\prod_{\text {cycles } C \text { of } g}\left(1+q^{|C|}\right)
$$

$\mathrm{G}=$

$$
\begin{aligned}
& \left(1+q^{1}\right)^{6}=q^{0}+6 q^{1}+15 q^{2}+20 q^{3}+15 q^{4}+6 q^{5}+q^{6} \\
& \left(1+q^{6}\right)^{1}=q^{0} \\
& \left(1+q^{3}\right)^{2}=q^{0}+2 q^{3}+q^{6} \\
& \left(1+q^{2}\right)^{3}=q^{0}+3 q^{2}+3 q^{4}+q^{6} \\
& \left(1+q^{3}\right)^{2}=q^{0} \\
& +2 q^{3} \\
& \begin{array}{llllll}
\left(1+q^{6}\right)^{1}= & q^{0} & & +q^{6} \\
\hline & q^{0} & +6 q^{1}+18 q^{2} & +24 q^{3} & +18 q^{4} & +6 q^{5}
\end{array}+6 q^{6}
\end{aligned}
$$

$\mathrm{G}=$

$$
\begin{array}{rlllllll}
\left(1+q^{1}\right)^{6}= & q^{0} & +6 q^{1} & +15 q^{2} & +20 q^{3} & +15 q^{4} & +6 q^{5} & +q^{6} \\
\left(1+q^{6}\right)^{1}= & q^{0} & & & & & & \\
\left(1+q^{3}\right)^{2}= & q^{0} & & & +2 q^{3} & & & +q^{6} \\
\left(1+q^{2}\right)^{3}= & q^{0} & & +3 q^{2} & & +3 q^{4} & & +q^{6} \\
\left(1+q^{3}\right)^{2}= & q^{0} & & +2 q^{3} & & & +q^{6} \\
\left(1+q^{6}\right)^{1}= & q^{0} & & & & & +q^{6} \\
\hline & 6 q^{0}+6 q^{1} & +18 q^{2} & +24 q^{3} & +18 q^{4} & +6 q^{5} & +6 q^{6} \\
& & & & \times \frac{1}{6} \downarrow & & & \\
& & 1 q^{0}+\mathbf{1} q^{1} & +\mathbf{3} q^{2} & +\mathbf{4} q^{3} & +\mathbf{3} q^{4} & +\mathbf{1} q^{5} & +\mathbf{1} q^{6}
\end{array}
$$

Linearize!

In the algebraic approach, instead of thinking of numbers like $\left|2^{[n]} / G\right|$ and $c_{k}=\left|\binom{[n]}{k} / G\right|$ as cardinalities of sets, one tries to re-interpret them as dimensions of vector spaces.

Hopefully these vector spaces are natural enough that one can prove

- equalities of cardinalities via vector space isomorphisms,
- inequalities via vector space injections or surjections,
- identities via trace identities, etc.

Linearize!

In the algebraic approach, instead of thinking of numbers like $\left|2^{[n]} / G\right|$ and $c_{k}=\left|\binom{[n]}{k} / G\right|$ as cardinalities of sets, one tries to re-interpret them as dimensions of vector spaces.

Hopefully these vector spaces are natural enough that one can prove

> equalities of cardinalities via vector space isomorphisms,
> inequalities via vector space injections or surjections,
> identities via trace identities, etc.

Linearize!

In the algebraic approach, instead of thinking of numbers like $\left|2^{[n]} / G\right|$ and $c_{k}=\left|\binom{[n]}{k} / G\right|$ as cardinalities of sets, one tries to re-interpret them as dimensions of vector spaces.

Hopefully these vector spaces are natural enough that one can prove

- equalities of cardinalities via vector space isomorphisms,
- inequalities via vector space injections or surjections,
- identities via trace identities, etc.

Linearize!

In the algebraic approach, instead of thinking of numbers like $\left|2^{[n]} / G\right|$ and $c_{k}=\left|\binom{[n]}{k} / G\right|$ as cardinalities of sets, one tries to re-interpret them as dimensions of vector spaces.

Hopefully these vector spaces are natural enough that one can prove

- equalities of cardinalities via vector space isomorphisms,
- inequalities via vector space injections or surjections,
- identities via trace identities, etc.

Linearize!

In the algebraic approach, instead of thinking of numbers like $\left|2^{[n]} / G\right|$ and $c_{k}=\left|\binom{[n]}{k} / G\right|$ as cardinalities of sets, one tries to re-interpret them as dimensions of vector spaces.

Hopefully these vector spaces are natural enough that one can prove

- equalities of cardinalities via vector space isomorphisms,
- inequalities via vector space injections or surjections,
- identities via trace identities, etc.

Tensor products and colorings

Let $V=\mathbb{C}^{2}$ have a \mathbb{C}-basis

Then

n tensor positions
has its tensor positions labelled by [n],
and has a \mathbb{C}-basis $\left\{e_{s}\right\}$ indexed by

- black-white colorings of [n], or
- subsets S of $[n]$.

Tensor products and colorings

Let $V=\mathbb{C}^{2}$ have a \mathbb{C}-basis

$$
\begin{array}{ccc}
\left\{\begin{array}{cc}
w, & b \\
\| & \| \\
\text { white } & \text { black }
\end{array}\right\}
\end{array}
$$

Then

$$
V^{\otimes n}:=\underbrace{V \otimes \cdots \otimes V}_{n \text { tensor positions }}
$$

has its tensor positions labelled by [n],
and has a \mathbb{C}-basis $\left\{e_{s}\right\}$ indexed by

- black-white colorings of [n], or
- subsets S of $[n]$.

Tensor products and colorings

Let $V=\mathbb{C}^{2}$ have a \mathbb{C}-basis

Then

$$
V^{\otimes n}:=\underbrace{V \otimes \cdots \otimes V}_{n \text { tensor positions }}
$$

has its tensor positions labelled by [n], and has a \mathbb{C}-basis $\left\{e_{S}\right\}$ indexed by

- black-white colorings of [n], or
- subsets S of $[n]$.

A typical basis tensor e_{S}

E.g. For $n=6$ and the subset $S=\{1,4,5\}$, one has the basis element of $V^{\otimes 6}$

$$
e_{\{1,4,5\}}=\begin{aligned}
& b \\
& 1
\end{aligned} \otimes \begin{array}{lllllllll}
w & \otimes & w & \otimes & b & \otimes & b & \otimes & w \\
3 & & 4 & & 5 & & 6
\end{array}
$$

or for short, just
$e_{\{1,4,5\}}=b w w b b w$

A typical basis tensor e_{S}

E.g. For $n=6$ and the subset $S=\{1,4,5\}$, one has the basis element of $V^{\otimes 6}$

$$
e_{\{1,4,5\}}=\begin{aligned}
& b \\
& 1
\end{aligned} \otimes \begin{array}{lllllllll}
w & \otimes & w & \otimes & b & \otimes & b & \otimes & w \\
3 & & 4 & & 5 & & 6
\end{array}
$$

or for short, just

$$
e_{\{1,4,5\}}=b w w b b w
$$

Quick tensor product reminder

Recall tensor products are multilinear, that is, linear in each tensor factor.
E.g. for any constants c_{1}, c_{2} in \mathbb{C} one has

Quick tensor product reminder

Recall tensor products are multilinear, that is, linear in each tensor factor.
E.g. for any constants c_{1}, c_{2} in \mathbb{C} one has

$$
\begin{aligned}
& b \otimes w \otimes\left(\mathbf{c}_{\mathbf{1}} \cdot \mathbf{w}+\mathbf{c}_{\mathbf{2}} \cdot \mathbf{b}\right) \otimes b \otimes b \otimes w \\
& =\mathbf{c}_{\mathbf{1}} \cdot(b \otimes \boldsymbol{w} \otimes \mathbf{w} \otimes b \otimes b \otimes w) \\
& \quad+\mathbf{c}_{\mathbf{2}} \cdot(b \otimes \mathbf{w} \otimes \mathbf{b} \otimes b \otimes b \otimes w)
\end{aligned}
$$

The subspace of G-invariants

The subgroup G of \mathfrak{S}_{n} acts on $V^{\otimes n}$ by permuting the tensor positions.

Consider the subspace of G-invariants

This has a \mathbb{C}-basis naturally indexed by

- G-orbits of black-white colorings of [n], or
- G-orbits of subsets S of $[n]$.

The subspace of G-invariants

The subgroup G of \mathfrak{S}_{n} acts on $V^{\otimes n}$ by permuting the tensor positions.

Consider the subspace of G-invariants

$$
\left(V^{\otimes n}\right)^{G}
$$

This has a \mathbb{C}-basis naturally indexed by

- G-orbits of black-white colorings of [n], or
- G-orbits of subsets S of $[n]$.

The subspace of G-invariants

The subgroup G of \mathfrak{S}_{n} acts on $V^{\otimes n}$ by permuting the tensor positions.

Consider the subspace of G-invariants

$$
\left(V^{\otimes n}\right)^{G}
$$

This has a \mathbb{C}-basis naturally indexed by

- G-orbits of black-white colorings of [n], or
- G-orbits of subsets S of $[n]$.

Example

E.g. for $n=6$ with $G=$ cyclic rotations, the element

$$
w w b w w b+b w w b w w+w b w w b w \in\left(V^{\otimes 6}\right)^{G}
$$

corresponds to the necklace shown:

Example

E.g. for $n=6$ with $G=$ cyclic rotations, the element

$$
w w b w w b+b w w b w w+w b w w b w \in\left(V^{\otimes 6}\right)^{G}
$$

corresponds to the necklace shown:

CONCLUSION: $\left|2^{[n]} / G\right|=\operatorname{dim}_{\mathbb{C}}\left(V^{\otimes n}\right)^{G}$

Interpreting the c_{k} 's

Better yet, if one defines subspaces

$$
V_{k}^{\otimes n}:=\mathbb{C} \text {-span of }\left\{e_{S} \text { with }|S|=k\right\}
$$

then

- one has a direct sum decomposition $V^{\otimes n}=\bigoplus_{k=0}^{n} V_{k}^{\otimes n}$
- the group G acts on each $V_{k}^{\otimes n}$, and

Interpreting the c_{k} 's

Better yet, if one defines subspaces

$$
V_{k}^{\otimes n}:=\mathbb{C} \text {-span of }\left\{e_{S} \text { with }|S|=k\right\}
$$

then

- one has a direct sum decomposition $V^{\otimes n}=\bigoplus_{k=0}^{n} V_{k}^{\otimes n}$,
- the group G acts on each $V_{k}^{\otimes n}$, and

Interpreting the c_{k} 's

Better yet, if one defines subspaces

$$
V_{k}^{\otimes n}:=\mathbb{C} \text {-span of }\left\{e_{S} \text { with }|S|=k\right\}
$$

then

- one has a direct sum decomposition $V^{\otimes n}=\bigoplus_{k=0}^{n} V_{k}^{\otimes n}$,
- the group G acts on each $V_{k}^{\otimes n}$,

Interpreting the c_{k} 's

Better yet, if one defines subspaces

$$
V_{k}^{\otimes n}:=\mathbb{C} \text {-span of }\left\{e_{S} \text { with }|S|=k\right\}
$$

then

- one has a direct sum decomposition $V^{\otimes n}=\bigoplus_{k=0}^{n} V_{k}^{\otimes n}$,
- the group G acts on each $V_{k}^{\otimes n}$, and
- $c_{k}:=\left|\binom{[n]}{k} / G\right|=\operatorname{dim}_{\mathbb{C}}\left(V_{k}^{\otimes n}\right)^{G}$.

This gives a good framework for understanding the c_{k}. We've naturally linearized this picture:

Silly proof of Property 1: SYMMETRY

We want to show

$$
c_{k}=c_{n-k}
$$

Or equivalently,

So we'd like a \mathbb{C}-linear isomorphism

Silly proof of Property 1: SYMMETRY

We want to show

$$
c_{k}=c_{n-k}
$$

Or equivalently,

$$
\operatorname{dim}_{\mathbb{C}}\left(V_{k}^{\otimes n}\right)^{G}=\operatorname{dim}_{\mathbb{C}}\left(V_{n-k}^{\otimes n}\right)^{G}
$$

So we'd like a \mathbb{C}-linear isomorphism

Silly proof of Property 1: SYMMETRY

We want to show

$$
c_{k}=c_{n-k}
$$

Or equivalently,

$$
\operatorname{dim}_{\mathbb{C}}\left(V_{k}^{\otimes n}\right)^{G}=\operatorname{dim}_{\mathbb{C}}\left(V_{n-k}^{\otimes n}\right)^{G}
$$

So we'd like a \mathbb{C}-linear isomorphism

$$
\left(V_{k}^{\otimes n}\right)^{G} \rightarrow\left(V_{n-k}^{\otimes n}\right)^{G}
$$

Silly proof of SYMMETRY (cont'd)

Any \mathbb{C}-linear map

$$
t: V \rightarrow V
$$

gives rise to a \mathbb{C}-linear map

$$
t: V^{\otimes n} \rightarrow V^{\otimes n}
$$

acting diagonally, i.e. the same in each tensor position.

Schur-Weyl duality

Such maps commute with the G-action permuting the tensor positions.

$$
v_{1} \otimes v_{2} \otimes v_{3} \quad \stackrel{t}{\longmapsto} t\left(v_{1}\right) \otimes t\left(v_{2}\right) \otimes t\left(v_{3}\right)
$$

$$
g=(12) \quad \downarrow g=(12)
$$

Schur-Weyl duality

Such maps commute with the G-action permuting the tensor positions.

$$
\begin{array}{ccc}
v_{1} \otimes v_{2} \otimes v_{3} & \stackrel{t}{\longmapsto} & t\left(v_{1}\right) \otimes t\left(v_{2}\right) \otimes t\left(v_{3}\right) \\
\downarrow g=(12) & \downarrow g=(12) \\
& & \\
v_{2} \otimes v_{1} \otimes v_{3} & \stackrel{t}{\longmapsto} & t\left(v_{2}\right) \otimes t\left(v_{1}\right) \otimes t\left(v_{3}\right)
\end{array}
$$

Silly proof of SYMMETRY (cont'd)

Let $t: V \rightarrow V$ swap the basis elements $\{w, b\}$,
so on tensors it also swaps them, e.g.

$t(b w b b w b)=w b w w b w$.

Note that $t^{2}=1$, so t gives a \mathbb{C}-linear isomorphism
which restricts to a \mathbb{C}-linear isomorphism

Silly proof of SYMMETRY (cont'd)

Let $t: V \rightarrow V$ swap the basis elements $\{w, b\}$, so on tensors it also swaps them, e.g.

$$
t(b w b b w b)=w b w w b w
$$

Note that $t^{2}=1$, so t gives a \mathbb{C}-linear isomorphism
which restricts to a \mathbb{C}-linear isomorphism

Silly proof of SYMMETRY (cont'd)

Let $t: V \rightarrow V$ swap the basis elements $\{w, b\}$, so on tensors it also swaps them, e.g.

$$
t(b w b b w b)=w b w w b w
$$

Note that $t^{2}=1$, so t gives a \mathbb{C}-linear isomorphism

$$
V_{k}^{\otimes n} \rightarrow V_{n-k}^{\otimes n}
$$

which restricts to a \mathbb{C}-linear isomorphism

Silly proof of SYMMETRY (cont'd)

Let $t: V \rightarrow V$ swap the basis elements $\{w, b\}$, so on tensors it also swaps them, e.g.

$$
t(b w b b w b)=w b w w b w
$$

Note that $t^{2}=1$, so t gives a \mathbb{C}-linear isomorphism

$$
V_{k}^{\otimes n} \rightarrow V_{n-k}^{\otimes n}
$$

which restricts to a \mathbb{C}-linear isomorphism

$$
\left(V_{k}^{\otimes n}\right)^{G} \rightarrow\left(V_{n-k}^{\otimes n}\right)^{G}
$$

as desired to show $c_{k}=c_{n-k}$. QED

Not-so-silly proof of Property 3: ALTERNATING SUM

We want to show that

$$
c_{0}-c_{1}+c_{2}-c_{3}+\cdots
$$

counts self-complementary G-orbits.

Begin with this observation:
PROPOSITION: The number of self-complementary G-orbits is the trace of the color-swapping map t from before, when it acts on $\left(V^{\otimes n}\right)^{G}$

Not-so-silly proof of Property 3: ALTERNATING SUM

We want to show that

$$
c_{0}-c_{1}+c_{2}-c_{3}+\cdots
$$

counts self-complementary G-orbits.

Begin with this observation:
PROPOSITION: The number of self-complementary G-orbits is the trace of the color-swapping map t from before, when it acts on $\left(V^{\otimes n}\right)^{G}$.

Not-so-silly proof (cont'd)

Proof.

- t permutes the basis of $\left(V^{\otimes n}\right)^{G}$ indexed by G-orbits of black-white colorings,
- t fixes such a basis element if and only if this G-orbit is self-complementary.QED
For example, with $n=6$ and $G=c y$ clic rotation, t fixes this basis element of $\left(V^{\otimes 6}\right)^{G}$
$w w w b b b+b w w w b b+b b w w w b+b b b w w w+w b b b w w+w w b b b w$
as it is a sum over the t-stable G-orbit shown below:

Not-so-silly proof (cont'd)

Proof.

- t permutes the basis of $\left(V^{\otimes n}\right)^{G}$ indexed by G-orbits of black-white colorings, and
- t fixes such a basis element if and only if this G-orbit is self-complementary.QED
For example, with $n=6$ and $G=c y c l i c ~ r o t a t i o n, ~ t ~ f i x e s ~ t h i s ~ b a s i s ~$ element of $\left(V^{\otimes 6}\right)^{G}$

ммnммhbb + bwnnnhb + bbwwwb + bbbwww + wbbbww + wwbbbw
as it is a sum over the t-stable G-orbit shown below:

Not-so-silly proof (cont'd)

Proof.

- t permutes the basis of $\left(V^{\otimes n}\right)^{G}$ indexed by G-orbits of black-white colorings, and
- t fixes such a basis element if and only if this G-orbit is self-complementary.QED
For example, with $n=6$ and $G=$ cyclic rotation, t fixes this basis element of $\left(V^{\otimes 6}\right)^{G}$
$w w w b b b+b w w w b b+b b w w w b+b b b w w w+w b b b w w+w w b b b w$ as it is a sum over the t-stable G-orbit shown below:

Not-so-silly proof (cont'd)

What does this have to do with $c_{0}-c_{1}+c_{2}-\cdots$?
Well, inside $G L(V)$,

- are both diagonalizable and have eigenvalues $+1,-1$,
- so they must be conjugate within $G L(V)$,
- so t, s must act on $V^{\otimes n}$ and on $\left(V^{\otimes n}\right)^{G}$ by \mathbb{C}-linear maps which are conjugate.

Not-so-silly proof (cont'd)

What does this have to do with $c_{0}-c_{1}+c_{2}-\cdots$?
Well, inside $G L(V)$,

$$
t=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } s=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

- are both diagonalizable and have eigenvalues $+1,-1$,
- so they must be conjugate within $G L(V)$,
- so t, s must act on $V^{\otimes n}$ and on $\left(V^{\otimes n}\right)^{G}$ by \mathbb{C}-linear maps which are conjugate.

Not-so-silly proof (cont'd)

What does this have to do with $c_{0}-c_{1}+c_{2}-\cdots$?
Well, inside $G L(V)$,

$$
t=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } s=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

- are both diagonalizable and have eigenvalues $+1,-1$,
- so they must be conjugate within $G L(V)$,

- so t, s must act on $V^{\otimes n}$ and on $\left(V^{\otimes n}\right)^{G}$ by \mathbb{C}-linear maps which are conjugate.

Not-so-silly proof (cont'd)

What does this have to do with $c_{0}-c_{1}+c_{2}-\cdots$?
Well, inside $G L(V)$,

$$
t=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } s=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

- are both diagonalizable and have eigenvalues $+1,-1$,
- so they must be conjugate within $G L(V)$,
- so t, s must act on $V^{\otimes n}$ and on $\left(V^{\otimes n}\right)^{G}$ by \mathbb{C}-linear maps which are conjugate.

Not-so-silly proof (cont'd)

Recall that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ implies
conjugate transformations have the same trace:

$$
\operatorname{Tr}\left(P A P^{-1}\right)=\operatorname{Tr}\left(P^{-1} \cdot P A\right)=\operatorname{Tr}(A)
$$

Thus s, t must act with the same trace on $\left(V^{\otimes n}\right)^{G}$.
We know from the previous Proposition that this trace for t is the number of self-complementary G-orbits.

So it suffices to apply the following fact with $q=-1$

Not-so-silly proof (cont'd)

Recall that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ implies
conjugate transformations have the same trace:

$$
\operatorname{Tr}\left(P A P^{-1}\right)=\operatorname{Tr}\left(P^{-1} \cdot P A\right)=\operatorname{Tr}(A)
$$

Thus s, t must act with the same trace on $\left(V^{\otimes n}\right)^{G}$.
We know from the previous Proposition that this trace for t is the number of self-complementary G-orbits.

So it suffices to apply the following fact with $q=-1$

Not-so-silly proof (cont'd)

Recall that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ implies
conjugate transformations have the same trace:

$$
\operatorname{Tr}\left(P A P^{-1}\right)=\operatorname{Tr}\left(P^{-1} \cdot P A\right)=\operatorname{Tr}(A)
$$

Thus s, t must act with the same trace on $\left(V^{\otimes n}\right)^{G}$.
We know from the previous Proposition that this trace for t is the number of self-complementary G-orbits.

So it suffices to apply the following fact with $q=-1$...

Not-so-silly proof (cont'd)

PROPOSITION: For any eigenvalue q in \mathbb{C}, the element
$s(q)=\left[\begin{array}{ll}1 & 0 \\ 0 & q\end{array}\right]$ acts on $\left(V^{\otimes n}\right)^{G}$ with trace

$$
c_{0}+c_{1} q+c_{2} q^{2}+\cdots+c_{n} q^{n}
$$

In particular, for $q=-1$, the element $s=s(-1)$ acts with trace

Not-so-silly proof (cont'd)

PROPOSITION: For any eigenvalue q in \mathbb{C}, the element
$s(q)=\left[\begin{array}{ll}1 & 0 \\ 0 & q\end{array}\right]$ acts on $\left(V^{\otimes n}\right)^{G}$ with trace

$$
c_{0}+c_{1} q+c_{2} q^{2}+\cdots+c_{n} q^{n}
$$

In particular, for $q=-1$, the element $s=s(-1)$ acts with trace

$$
c_{0}-c_{1}+c_{2}-\cdots
$$

Not-so-silly proof (cont'd)

Proof.

- $s(q)$ fixes w.
- $s(q)$ scales b by q.
- Hence $s(q)$ scales any e_{S} in which $|S|=k$ by q^{k}, e.g. $s^{\prime}(q)(b w b b w)=q b \otimes w \otimes q b \otimes q b \otimes q b \otimes w=q^{4} \cdot b w^{b} b b w$.
- Hence $s(q)$ scales all of $V_{k}^{\otimes n}$ by q^{k},
- and therefore scales all of $\left(V_{k}^{\otimes n}\right)^{G}$ by q^{k}.
- So $s(q)$ acts on $\left(V^{\otimes n}\right)^{G}=\oplus_{k}\left(V_{k}^{\otimes n}\right)^{G}$ with trace $\sum_{k} c_{k} q^{k}$. QED

Not-so-silly proof (cont'd)

Proof.

- $s(q)$ fixes w.
- $s(q)$ scales b by q.
- Hence $s(q)$ scales any e_{s} in which $|S|=k$ by q^{k}, e.g. $s(q)(b w b b b w)=\mathbf{q} b \otimes w \otimes \mathbf{q} b \otimes \mathbf{q} b \otimes \mathbf{q} b \otimes w=\mathbf{q}^{4} \cdot b w b b b w$.
- Hence $s(q)$ scales all of $V_{k}^{\otimes n}$ by q^{k},
- and therefore scales all of $\left(V_{K}^{\otimes n}\right)^{G}$ by q^{k}. - So $s(q)$ acts on $\left(V^{\otimes n}\right)^{G}=\bigoplus_{k}\left(V_{k}^{\otimes n}\right)^{G}$ with trace $\sum_{k} c_{k} q^{k}$.

Not-so-silly proof (cont'd)

Proof.

- $s(q)$ fixes w.
- $s(q)$ scales b by q.
- Hence $s(q)$ scales any e_{S} in which $|S|=k$ by q^{k}, e.g.
$s(q)(b w b b b w)=\mathbf{q} b \otimes \boldsymbol{w} \otimes \mathbf{q} \boldsymbol{b} \otimes \mathbf{q} \boldsymbol{b} \otimes \mathbf{q} b \otimes \boldsymbol{w}=\mathbf{q}^{4} \cdot b w b b b w$.
- Hence $s(q)$ scales all of $V_{k}^{\otimes n}$ by q^{k},
- and therefore scales all of $\left(V_{k}^{\otimes n}\right)^{G}$ by a^{k}
- So $s(q)$ acts on $\left(V^{\otimes n}\right)^{G}=\oplus_{k}\left(V_{k}^{\otimes n}\right)^{G}$ with trace $\sum_{k} c_{k} q^{k}$

Not-so-silly proof (cont'd)

Proof.

- $s(q)$ fixes w.
- $s(q)$ scales b by q.
- Hence $s(q)$ scales any e_{S} in which $|S|=k$ by q^{k}, e.g.
$s(q)(b w b b b w)=\mathbf{q} b \otimes \boldsymbol{w} \otimes \mathbf{q} \boldsymbol{b} \otimes \mathbf{q} \boldsymbol{b} \otimes \mathbf{q} b \otimes \boldsymbol{w}=\mathbf{q}^{4} \cdot b w b b b w$.
- Hence $s(q)$ scales all of $V_{k}^{\otimes n}$ by q^{k},
- and therefore scales all of $\left(V_{k}^{\otimes n}\right)^{G}$ by q^{k}.
- So $s(q)$ acts on $\left(V^{\otimes n}\right)^{G}=\bigoplus_{k}\left(V_{k}^{\otimes n}\right)^{G}$ with trace $\sum_{k} c_{k} q^{k}$

Not-so-silly proof (cont'd)

Proof.

- $s(q)$ fixes w.
- $s(q)$ scales b by q.
- Hence $s(q)$ scales any e_{S} in which $|S|=k$ by q^{k}, e.g.

$$
s(q)(b w b b b w)=\mathbf{q} b \otimes w \otimes \mathbf{q} b \otimes \mathbf{q} b \otimes \mathbf{q} b \otimes w=\mathbf{q}^{4} \cdot b w b b b w .
$$

- Hence $s(q)$ scales all of $V_{k}^{\otimes n}$ by q^{k},
- and therefore scales all of $\left(V_{k}^{\otimes n}\right)^{G}$ by q^{k}.
- So $s(q)$ acts on $\left(V^{\otimes n}\right)^{G}=\oplus_{k}\left(V_{k}^{\otimes n}\right)^{G}$ with trace $\sum_{k} c_{k} q^{k}$.

Not-so-silly proof (cont'd)

Proof.

- $s(q)$ fixes w.
- $s(q)$ scales b by q.
- Hence $s(q)$ scales any e_{S} in which $|S|=k$ by q^{k}, e.g.
$s(q)(b w b b b w)=\mathbf{q} b \otimes \boldsymbol{w} \otimes \mathbf{q} b \otimes \mathbf{q} b \otimes \mathbf{q} b \otimes \boldsymbol{w}=\mathbf{q}^{4} \cdot b w b b b w$.
- Hence $s(q)$ scales all of $V_{k}^{\otimes n}$ by q^{k},
- and therefore scales all of $\left(V_{k}^{\otimes n}\right)^{G}$ by q^{k}.
- So $s(q)$ acts on $\left(V^{\otimes n}\right)^{G}=\bigoplus_{k}\left(V_{k}^{\otimes n}\right)^{G}$ with trace $\sum_{k} c_{k} q^{k}$. QED

A proof of Property 2: UNIMODALITY

We want to show that for $k<\frac{n}{2}$, one has

$$
c_{k} \leq c_{k+1}
$$

So we'd like a \mathbb{C}-linear injective map

Maybe we should look for an injective map

that commutes with the action of \mathfrak{S}_{n} on tensor positions, and hence with every G ?

A proof of Property 2: UNIMODALITY

We want to show that for $k<\frac{n}{2}$, one has

$$
c_{k} \leq c_{k+1}
$$

So we'd like a \mathbb{C}-linear injective map

$$
\left(V_{k}^{\otimes n}\right)^{G} \hookrightarrow\left(V_{k+1}^{\otimes n}\right)^{G}
$$

Maybe we should look for an injective map

that commutes with the action of \mathfrak{S}_{n} on tensor positions, and
hence with every G ?

A proof of Property 2: UNIMODALITY

We want to show that for $k<\frac{n}{2}$, one has

$$
c_{k} \leq c_{k+1}
$$

So we'd like a \mathbb{C}-linear injective map

$$
\left(V_{k}^{\otimes n}\right)^{G} \hookrightarrow\left(V_{k+1}^{\otimes n}\right)^{G}
$$

Maybe we should look for an injective map

$$
V_{k}^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}
$$

that commutes with the action of \mathfrak{S}_{n} on tensor positions, and hence with every G ?

The only natural injection

There is only one obvious candidate for such an injection $U_{k}: V_{k}^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$, namely define

$$
U_{k}\left(e_{S}\right):=\sum_{\substack{T \supset S_{:} \\|T|=k+1}} e_{T}
$$

E.g. for $n=6, k=2$, one has
$U_{2}(b w b w w w)=b \mathbf{b} b w w w+b w b \mathbf{b} w w+b w b w \mathbf{b} w+b w b w w \mathbf{b}$
Easy to check U_{k} commutes with \Im_{n} permuting positions. But why is U_{k} injective?

The only natural injection

There is only one obvious candidate for such an injection $U_{k}: V_{k}^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$, namely define

$$
U_{k}\left(e_{S}\right):=\sum_{\substack{T \supset S \\|T|=k+1}} e_{T}
$$

E.g. for $n=6, k=2$, one has
$U_{2}(b w b w w w)=b \mathbf{b} b w w w+b w b \mathbf{b} w w+b w b w \mathbf{b} w+b w b w w \mathbf{b}$
Easy to check U_{k} commutes with \mathfrak{S}_{n} permuting positions.
But why is U_{k} injective?

The only natural injection

There is only one obvious candidate for such an injection $U_{k}: V_{k}^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$, namely define

$$
U_{k}\left(e_{S}\right):=\sum_{\substack{T \supset S \\|T|=k+1}} e_{T}
$$

E.g. for $n=6, k=2$, one has
$U_{2}(b w b w w w)=b \mathbf{b} b w w w+b w b \mathbf{b} w w+b w b w \mathbf{b} w+b w b w w \mathbf{b}$
Easy to check U_{k} commutes with \mathfrak{S}_{n} permuting positions.
But why is U_{k} injective?

The only natural injection

There is only one obvious candidate for such an injection $U_{k}: V_{k}^{\otimes n} \hookrightarrow V_{k+1}^{\otimes n}$, namely define

$$
U_{k}\left(e_{S}\right):=\sum_{\substack{T \supset S_{:} \\|T|=k+1}} e_{T}
$$

E.g. for $n=6, k=2$, one has
$U_{2}(b w b w w w)=b \mathbf{b} b w w w+b w b \mathbf{b} w w+b w b w \mathbf{b} w+b w b w w \mathbf{b}$
Easy to check U_{k} commutes with \mathfrak{S}_{n} permuting positions. But why is U_{k} injective?

A cute injectivity argument

There are several arguments for this, but here's a cute one.
PROPOSITION: For $k<\frac{n}{2}$, the operator $U_{k}^{t} U_{k}$ on $V_{k}^{\otimes n}$ turns out to be positive definite, i.e. all its (real) eigenvalues are strictly positive.

In particular,

- $U_{k}^{t} U_{k}$ is invertible
- so U_{k} is injective.

A cute injectivity argument

There are several arguments for this, but here's a cute one.
PROPOSITION: For $k<\frac{n}{2}$, the operator $U_{k}^{t} U_{k}$ on $V_{k}^{\otimes n}$ turns out to be positive definite, i.e. all its (real) eigenvalues are strictly positive.

In particular,

- $U_{k}^{t} U_{k}$ is invertible,
- so U_{k} is injective.

A cute injectivity argument

There are several arguments for this, but here's a cute one.
PROPOSITION: For $k<\frac{n}{2}$, the operator $U_{k}^{t} U_{k}$ on $V_{k}^{\otimes n}$ turns out to be positive definite, i.e. all its (real) eigenvalues are strictly positive.

In particular,

- $U_{k}^{t} U_{k}$ is invertible,
- so U_{k} is injective.

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A=A^{t}$

- always has only real eigenvalues,
- is positive semidefinite if they're all nonnegative, or equivalently, $\mathbf{x}^{t} A \mathbf{x} \geq 0$ for all vectors \mathbf{x},
- is positive definite if they're all positive, or equivalently, if $\mathbf{x}^{t} A \mathbf{x}>0$ for all nonzero vectors \mathbf{x},
- is alwavs nositive semidefinite when $A=B^{t} B$ for some rectangular matrix B, since

$$
\mathbf{x}^{t} A \mathbf{x}=\mathbf{x}^{t} B^{t} B \mathbf{x}=|B \mathbf{x}|^{2} \geq 0
$$

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A=A^{t}$

- always has only real eigenvalues,
- is positive semidefinite if they're all nonnegative,
or equivalently, $\mathbf{x}^{t} A \mathbf{x} \geq 0$ for all vectors \mathbf{x},
- is positive definite if they're all nositive,
or equivalently, if $x^{t} A x>0$ for all nonzero vectors x,
- is always positive semidefinite when $A=B^{t} B$ for some rectangular matrix B, since

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A=A^{t}$

- always has only real eigenvalues,
- is positive semidefinite if they're all nonnegative, or equivalently, $\mathbf{x}^{t} A \mathbf{x} \geq 0$ for all vectors \mathbf{x},
- is positive definite if they're all positive, or equivalently, if $\mathbf{x}^{t} A \mathbf{x}>0$ for all nonzero vectors \mathbf{x},
- is always nositive semidefinite when $A=B^{t} B$ for some rectangular matrix B, since

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A=A^{t}$

- always has only real eigenvalues,
- is positive semidefinite if they're all nonnegative, or equivalently, $\mathbf{x}^{t} A \mathbf{x} \geq 0$ for all vectors \mathbf{x},
- is positive definite if they're all positive, or equivalently, if $\mathbf{x}^{t} A \mathbf{x}>0$ for all nonzero vectors \mathbf{x},
- is always positive semidefinite when $A=B^{t} B$ for some rectangular matrix B, since
$x^{t} A x=x^{t} B^{t} B x=|B x|^{2} \geq 0$

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix $A=A^{t}$

- always has only real eigenvalues,
- is positive semidefinite if they're all nonnegative, or equivalently, $\mathbf{x}^{t} A \mathbf{x} \geq 0$ for all vectors \mathbf{x},
- is positive definite if they're all positive, or equivalently, if $\mathbf{x}^{t} A \mathbf{x}>0$ for all nonzero vectors \mathbf{x},
- is always positive semidefinite when $A=B^{t} B$ for some rectangular matrix B, since

$$
\mathbf{x}^{t} A \mathbf{x}=\mathbf{x}^{t} B^{t} B \mathbf{x}=|B \mathbf{x}|^{2} \geq 0
$$

A cute injectivity argument (cont'd)

PROOF that $U_{k}^{t} U_{k}$ is positive definite.

- Check (on each e_{S}) that

$$
U_{k}^{t} U_{k}-U_{k-1} U_{k-1}^{t}=(n-2 k) \cdot I_{V_{k}^{\otimes n}}
$$

- Hence

- First term $U_{k-1} U_{k-1}^{t}$ is positive semidefinite.
- Second term $(n-2 k) \cdot I_{V \otimes n}$ is positive definite as $k<\frac{n}{2}$
- Hence the sum $U_{k}^{t} U_{k}$ is positive definite. QED

A cute injectivity argument (cont'd)

PROOF that $U_{k}^{t} U_{k}$ is positive definite.

- Check (on each e_{S}) that

$$
U_{k}^{t} U_{k}-U_{k-1} U_{k-1}^{t}=(n-2 k) \cdot I_{V_{k}^{\otimes n}}
$$

- Hence

$$
U_{k}^{t} U_{k}=U_{k-1} U_{k-1}^{t}+(n-2 k) \cdot I_{V_{k}^{\otimes n}}
$$

- First term $U_{k-1} U_{k-1}^{t}$ is positive semidefinite.
- Second term $(n-2 k) \cdot I_{V} \otimes n$ is positive definite as $k<\frac{n}{2}$
- Hence the sum $U_{k}^{t} U_{k}$ is positive definite. QED

A cute injectivity argument (cont'd)

PROOF that $U_{k}^{t} U_{k}$ is positive definite.

- Check (on each e_{S}) that

$$
U_{k}^{t} U_{k}-U_{k-1} U_{k-1}^{t}=(n-2 k) \cdot I_{V_{k}^{\otimes n}}
$$

- Hence

$$
U_{k}^{t} U_{k}=U_{k-1} U_{k-1}^{t}+(n-2 k) \cdot I_{V_{k}^{\otimes n}}
$$

- First term $U_{k-1} U_{k-1}^{t}$ is positive semidefinite.
- Second term $(n-2 k) \cdot I_{V_{k}}^{\otimes n}$ is positive definite as $k<\frac{n}{2}$.
- Hence the sum $U_{k}^{t} U_{k}$ is positive definite. QED

A cute injectivity argument (cont'd)

PROOF that $U_{k}^{t} U_{k}$ is positive definite.

- Check (on each e_{S}) that

$$
U_{k}^{t} U_{k}-U_{k-1} U_{k-1}^{t}=(n-2 k) \cdot I_{V_{k}^{\otimes n}}
$$

- Hence

$$
U_{k}^{t} U_{k}=U_{k-1} U_{k-1}^{t}+(n-2 k) \cdot I_{V_{k}^{\otimes n}}
$$

- First term $U_{k-1} U_{k-1}^{t}$ is positive semidefinite.
- Second term $(n-2 k) \cdot I_{V_{k}^{\otimes n}}$ is positive definite as $k<\frac{n}{2}$.
- Hence the sum $U_{k}^{t} U_{k}$ is positive definite. QED

A cute injectivity argument (cont'd)

PROOF that $U_{k}^{t} U_{k}$ is positive definite.

- Check (on each e_{S}) that

$$
U_{k}^{t} U_{k}-U_{k-1} U_{k-1}^{t}=(n-2 k) \cdot I_{V_{k}^{\otimes n}}
$$

- Hence

$$
U_{k}^{t} U_{k}=U_{k-1} U_{k-1}^{t}+(n-2 k) \cdot I_{V_{k}^{\otimes n}}
$$

- First term $U_{k-1} U_{k-1}^{t}$ is positive semidefinite.
- Second term $(n-2 k) \cdot I_{V_{k}^{\otimes n}}$ is positive definite as $k<\frac{n}{2}$.
- Hence the sum $U_{k}^{t} U_{k}$ is positive definite. QED

A proof of Property 4: GENERATING FUNCTION

(To be flipped through at lightning speed during the talk; read it later, if you want!)

We want to show

$$
\sum_{k=0}^{n} c_{k} q^{k}=\frac{1}{|G|} \sum_{g \in G}\left(\prod_{\text {cycles } C \text { of } g}\left(1+q^{|C|}\right)\right)
$$

Such averages over the group are ubiquitous due to the following easily-checked fact.

A proof of Property 4: GENERATING FUNCTION

(To be flipped through at lightning speed during the talk; read it later, if you want!)

We want to show

$$
\sum_{k=0}^{n} c_{k} q^{k}=\frac{1}{|G|} \sum_{g \in G}\left(\prod_{\text {cycles } C \text { of } g}\left(1+q^{|C|}\right)\right)
$$

Such averages over the group are ubiquitous due to the following easily-checked fact.

An idempotent projector

PROPOSITION: When a finite group G acts linearly on a vector space W over a field in which $|G|$ is invertible (nonzero), the map $W \xrightarrow{\boldsymbol{\pi}} \boldsymbol{W}$ given by

$$
w \mapsto \frac{1}{|G|} \sum_{g \in G} g(w)
$$

is

- idempotent, i.e. $\pi^{2}=\pi$, and
- π projects onto the subspace of G-invariants W^{G}.

Trace of idempotent = dimension of image

One then has a second ubiquitous and easily-checked fact.
PROPOSITION: In characteristic zero, the trace $\operatorname{Tr}(\pi)$ of an idempotent projector onto a linear subspace is the dimension of that subspace.

Trace of idempotent = dimension of image

One then has a second ubiquitous and easily-checked fact.
PROPOSITION: In characteristic zero, the trace $\operatorname{Tr}(\pi)$ of an idempotent projector onto a linear subspace is the dimension of that subspace.

Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi=\frac{1}{|G|} \sum_{g \in G} g$ onto the G-fixed subspace of each $W=V_{k}^{\otimes n}$:

It only remains to show

Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi=\frac{1}{|G|} \sum_{g \in G} g$ onto the G-fixed subspace of each $W=V_{k}^{\otimes n}$:

$$
\sum_{k} c_{k} q^{k}=\sum_{k} \operatorname{dim}_{\mathbb{C}}\left(V_{k}^{\otimes n}\right)^{G} q^{k}
$$

It only remains to show

Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi=\frac{1}{|G|} \sum_{g \in G} g$ onto the G-fixed subspace of each $W=V_{k}^{\otimes n}$:

$$
\sum_{k} c_{k} q^{k}=\sum_{k} \operatorname{dim}_{\mathbb{C}}\left(V_{k}^{\otimes n}\right)^{G} q^{k}=\sum_{k} \operatorname{Tr}\left(\left.\pi\right|_{V_{k}^{\otimes n}}\right) q^{k}
$$

It only remains to show

Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi=\frac{1}{|G|} \sum_{g \in G} g$ onto the G-fixed subspace of each $W=V_{k}^{\otimes n}$:

$$
\begin{aligned}
\sum_{k} c_{k} q^{k}=\sum_{k} \operatorname{dim}_{\mathbb{C}}\left(V_{k}^{\otimes n}\right)^{G} q^{k} & =\sum_{k} \operatorname{Tr}\left(\left.\pi\right|_{v_{k}^{\otimes n}}\right) q^{k} \\
& =\frac{1}{|G|} \sum_{g \in G}\left(\sum_{k} \operatorname{Tr}\left(\left.g\right|_{v_{k}^{\otimes n}}\right) q^{k}\right)
\end{aligned}
$$

It only remains to show

Putting two idempotent facts together

Apply these two facts to the idempotent projector $\pi=\frac{1}{|G|} \sum_{g \in G} g$ onto the G-fixed subspace of each $W=V_{k}^{\otimes n}$:

$$
\begin{aligned}
\sum_{k} c_{k} q^{k}=\sum_{k} \operatorname{dim}_{\mathbb{C}}\left(V_{k}^{\otimes n}\right)^{G} q^{k} & =\sum_{k} \operatorname{Tr}\left(\left.\pi\right|_{V_{k}^{\otimes n}}\right) q^{k} \\
& =\frac{1}{|G|} \sum_{g \in G}\left(\sum_{k} \operatorname{Tr}\left(\left.g\right|_{V_{k}^{\otimes n}}\right) q^{k}\right)
\end{aligned}
$$

It only remains to show

$$
\left.\sum_{k} \operatorname{Tr}\left(\left.g\right|_{v_{k}^{\otimes n}}\right)\right) q^{k}=\prod_{\text {cycles } C \text { of } g}\left(1+q^{|C|}\right)
$$

Trace of g counts colorings monochromatic on its cycles

To see

$$
\sum_{k} \operatorname{Tr}\left(\left.g\right|_{v_{k}^{\otimes n}}\right) q^{k}=\prod_{\text {cycles } C \text { of } g}\left(1+q^{|C|}\right)
$$

note that

- any g in G permutes the basis for $V_{k}^{\otimes n}$ indexed by black-white colorings,
- and g fixes such a coloring if and only if it is monochromatic on each cycle C of g.

Trace of g counts colorings monochromatic on its cycles

To see

$$
\sum_{k} \operatorname{Tr}\left(\left.g\right|_{v_{k}^{\otimes n}}\right) q^{k}=\prod_{\text {cycles } C \text { of } g}\left(1+q^{|C|}\right)
$$

note that

- any g in G permutes the basis for $V_{k}^{\otimes n}$ indexed by black-white colorings,
- and g fixes such a coloring if and only if it is monochromatic on each cycle C of g.

Proof by example

E.g. $g=(12)(34)(567)$ in \mathfrak{S}_{7} fixes these colorings/tensors:

12	34	567	
$w w$	$w w$	$w w w$	1
$b b$	$w w$	$w w w$	$+q^{2}$
$w w$	$b b$	$w w w$	$+q^{2}$
$w w$	$w w$	$b b b$	$+q^{3}$
$b b$	$b b$	$w w w$	$+q^{2} \cdot q^{2}$
$b b$	$w w$	$b b b$	$+q^{2} \cdot q^{3}$
$w w$	$b b$	$b b b$	$+q^{2} \cdot q^{3}$
$b b$	$b b$	$b b b$	$+q^{2} \cdot q^{2} \cdot q^{3}$

Proof by example

E.g. $g=(12)(34)(567)$ in \mathfrak{S}_{7} fixes these colorings/tensors:

12	34	567	
$w w$	$w w$	$w w w$	1
$b b$	$w w$	$w w w$	$+q^{2}$
$w w$	$b b$	$w w w$	$+q^{2}$
$w w$	$w w$	$b b b$	$+q^{3}$
$b b$	$b b$	$w w w$	$+q^{2} \cdot q^{2}$
$b b$	$w w$	$b b b$	$+q^{2} \cdot q^{3}$
$w w$	$b b$	$b b b$	$+q^{2} \cdot q^{3}$
$b b$	$b b$	$b b b$	$+q^{2} \cdot q^{2} \cdot q^{3}$
		$=\left(1+q^{2}\right)\left(1+q^{2}\right)\left(1+q^{3}\right)$	

Proof by example

E.g. $g=(12)(34)(567)$ in \mathfrak{S}_{7} fixes these colorings/tensors:

12	34	567	
$w w$	$w w$	$w w w$	1
$b b$	$w w$	$w w w$	$+q^{2}$
$w w$	$b b$	$w w w$	$+q^{2}$
$w w$	$w w$	$b b b$	$+q^{3}$
$b b$	$b b$	$w w w$	$+q^{2} \cdot q^{2}$
$b b$	$w w$	$b b b$	$+q^{2} \cdot q^{3}$
$w w$	$b b$	$b b b$	$+q^{2} \cdot q^{3}$
$b b$	$b b$	$b b b$	$+q^{2} \cdot q^{2} \cdot q^{3}$
			$=\left(1+q^{2}\right)\left(1+q^{2}\right)\left(1+q^{3}\right)$

Proof by example

E.g. $g=(12)(34)(567)$ in \mathfrak{S}_{7} fixes these colorings/tensors:

12	34	567	
$w w$	$w w$	$w w w$	1
$b b$	$w w$	$w w w$	$+q^{2}$
$w w$	$b b$	$w w w$	$+q^{2}$
$w w$	$w w$	$b b b$	$+q^{3}$
$b b$	$b b$	$w w w$	$+q^{2} \cdot q^{2}$
$b b$	$w w$	$b b b$	$+q^{2} \cdot q^{3}$
$w w$	$b b$	$b b b$	$+q^{2} \cdot q^{3}$
$b b$	$b b$	$b b b$	$+q^{2} \cdot q^{2} \cdot q^{3}$
			$=\left(1+q^{2}\right)\left(1+q^{2}\right)\left(1+q^{3}\right)$

QED

Summary

For combinatorial purposes, it is definitely worth learning more algebra, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras,

Thank you for your attention!

Summary

For combinatorial purposes, it is definitely worth learning more algebra, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras,

Thank you for your attention!

Summary

For combinatorial purposes, it is definitely worth learning more algebra, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras,

Thank you for your attention!

Summary

For combinatorial purposes, it is definitely worth learning more algebra, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras,

Thank you for your attention!

Summary

For combinatorial purposes, it is definitely worth learning more algebra, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!

Summary

For combinatorial purposes, it is definitely worth learning more algebra, including (but not limited to)

- Linear, multilinear algebra,
- Group theory,
- Representation theory,
- Commutative algebra, Hopf algebras, ...

Thank you for your attention!

