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What is Algebraic Combinatorics?

Combinatorics is the study of finite or discrete objects,
and their structure.

Counting them is enumerative combinatorics.

One part of algebraic combinatorics is using algebra to
help you do enumerative combinatorics.
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Example: enumerating subsets up to symmetry

We’ll explore an interesting family of examples:

Enumerating subsets , up to symmetry .

This has many interesting properties,

some easier,

some harder (without algebra!).
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A group permuting the first n numbers

Let [n] := {1, 2, . . . , n},
permuted by the symmetric group Sn on n letters.

Let G be any subgroup of Sn,
thought of as some chosen symmetries.
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EXAMPLE: G=cyclic symmetry, with n = 6
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Counting G-orbits of subsets

Let’s count the set

2[n] := { all subsets of [n] }

or equivalently,

black-white colorings of [n],

but only up to equivalence by elements of G.

I.e. let’s count the G-orbits

2[n]/G
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EXAMPLE: black-white necklaces

For G the cyclic group of rotations as above, G-orbits of
colorings of [n] are sometimes called necklaces .
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All the black-white necklaces for n = 6

In this case, |2[n]/G| = 14.
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More refined counting of G-orbits

Let’s even be more refined: count the sets
([n]

k

)
:= { all k-element subsets of [n] }

or equivalently,

black-white colorings of [n] with k blacks,

but again only up to equivalence by elements of G.

I.e. we want to understand

ck := |
([n]

k

)
/G|

= number of G-orbits of black-white
colorings of [n] with k blacks.
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The refined necklace count for n = 6

1       1       3        4         3        1       1

Here (c0, c1, c2, c3, c4, c5, c6) = (1, 1, 3, 4, 3, 1, 1).
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The basic question

QUESTION: What can we say in general about the sequence

c0, c1, c2, . . . , cn?

AN ANSWER: They share many properties with the case
where G is the trivial group, where the ck are the binomial
coefficients
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The binomial coefficients

Recall what binomial coefficient sequences
(

n
0

)

,

(
n
1

)

,

(
n
2

)

, . . . ,

(
n

n − 1

)

,

(
n
n

)

look like:

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1
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PROPERTY 1 (the easy one)

SYMMETRY: For any permutation group G, one has ck = cn−k

1       1       3        4         3        1       1

This follows from
complementing the subsets , or
swapping the colors in the black-white colorings.
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PROPERTY 2 (the hardest one)

UNIMODALITY: (Stanley 1982)

c0 ≤ c1 ≤ . . . ≤ c n
2
≥ · · · ≥ cn−1 ≥ cn

e.g.
1 ≤ 1 ≤ 3 ≤ 4 ≥ 3 ≥ 1 ≥ 1

Nontrivial , but fairly easy with some algebra .
Currently only known in general via various algebraic means.
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PROPERTY 3 (not so hard, but a bit surprising)

ALTERNATING SUM: (de Bruijn 1959)
c0 − c1 + c2 − c3 + · · · counts
self-complementary G-orbits .

e.g. there are 1 − 1 + 3 − 4 + 3 − 1 + 1 = 2
self-complementary black-white necklaces for n = 6:
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Wait! How was that like binomial coefficients?

It’s easy to see that
(

n
0

)

−

(
n
1

)

+

(
n
2

)

−

(
n
3

)

+ · · · = (1 + (−1))n = 0

and there are no self-complementary subsets S of [n].
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PROPERTY 4 (not so hard, but also a bit surprising)

GENERATING FUNCTION: (Redfield 1927, Polya 1937)

c0 + c1q + c2q2 + c3q3 + · · · + cnqn

is the average over all g in G of the very simple products
∏

cycles C of g

(1 + q|C|)
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G=

(1 + q1)6 = q0 +6q1 +15q2 +20q3 +15q4 +6q5 +q6

(1 + q6)1 = q0 +q6

(1 + q3)2 = q0 +2q3 +q6

(1 + q2)3 = q0 +3q2 +3q4 +q6

(1 + q3)2 = q0 +2q3 +q6

(1 + q6)1 = q0 +q6

6q0 +6q1 +18q2 +24q3 +18q4 +6q5 +6q6

×1
6 ↓

1q0 +1q1 +3q2 +4q3 +3q4 +1q5 +1q6
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Linearize!

In the algebraic approach, instead of thinking of numbers like
|2[n]/G| and ck = |

([n]
k

)
/G| as cardinalities of sets , one tries to

re-interpret them as dimensions of vector spaces .

Hopefully these vector spaces are natural enough that one can
prove

equalities of cardinalities via vector space isomorphisms ,

inequalities via vector space injections or surjections ,

identities via trace identities , etc.
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Tensor products and colorings

Let V = C
2 have a C-basis

{ w , b }
‖ ‖

white black

Then
V⊗n := V ⊗ · · · ⊗ V

︸ ︷︷ ︸

n tensor positions

has its tensor positions labelled by [n],
and has a C-basis {eS} indexed by

black-white colorings of [n], or

subsets S of [n].
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A typical basis tensor eS

E.g. For n = 6 and the subset S = {1, 4, 5}, one has the basis
element of V⊗6

e{1,4,5} = b ⊗ w ⊗ w ⊗ b ⊗ b ⊗ w
1 2 3 4 5 6

or for short, just
e{1,4,5} = bwwbbw
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Quick tensor product reminder

Recall tensor products are multilinear , that is, linear in each
tensor factor.

E.g. for any constants c1, c2 in C one has

b ⊗ w ⊗ (c1 · w + c2 · b) ⊗ b ⊗ b ⊗ w

= c1 · (b ⊗ w ⊗ w ⊗ b ⊗ b ⊗ w)

+ c2 · (b ⊗ w ⊗ b ⊗ b ⊗ b ⊗ w)
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The subspace of G-invariants

The subgroup G of Sn acts on V⊗n by permuting the tensor
positions .

Consider the subspace of G-invariants

(
V⊗n)G

.

This has a C-basis naturally indexed by

G-orbits of black-white colorings of [n], or

G-orbits of subsets S of [n].
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Example

E.g. for n = 6 with G=cyclic rotations, the element

wwbwwb + bwwbww + wbwwbw ∈
(

V⊗6
)G

corresponds to the necklace shown:

w

w

w

w

b

b

w

ww
b

b
w

w

w
w

b w

b
=

, ,{ }

CONCLUSION: |2[n]/G| = dimC (V⊗n)
G
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Interpreting the ck ’s

Better yet, if one defines subspaces

V⊗n
k := C-span of {eS with |S| = k}

then

one has a direct sum decomposition V⊗n =
⊕n

k=0 V⊗n
k ,

the group G acts on each V⊗n
k , and

ck := |
([n]

k

)
/G| = dimC

(
V⊗n

k

)G
.
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This gives a good framework for understanding the ck .
We’ve naturally linearized this picture:

1       1       3        4         3        1       1
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Silly proof of SYMMETRY (cont’d)

Any C-linear map
t : V → V

gives rise to a C-linear map

t : V⊗n → V⊗n

acting diagonally , i.e. the same in each tensor position.
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Schur-Weyl duality

Such maps commute with the G-action permuting the tensor
positions.

v1 ⊗ v2 ⊗ v3
t

7−→ t(v1) ⊗ t(v2) ⊗ t(v3)

↓ g = (12) ↓ g = (12)

v2 ⊗ v1 ⊗ v3
t

7−→ t(v2) ⊗ t(v1) ⊗ t(v3)
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Silly proof of SYMMETRY (cont’d)

Let t : V → V swap the basis elements {w , b},
so on tensors it also swaps them, e.g.

t(bwbbwb) = wbwwbw .

Note that t2 = 1, so t gives a C-linear isomorphism

V⊗n
k → V⊗n

n−k

which restricts to a C-linear isomorphism

(
V⊗n

k

)G
→
(
V⊗n

n−k

)G
,

as desired to show ck = cn−k . QED
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Not-so-silly proof of Property 3: ALTERNATING SUM

We want to show that

c0 − c1 + c2 − c3 + · · ·

counts self-complementary G-orbits.

Begin with this observation:

PROPOSITION: The number of self-complementary G-orbits
is the trace of the color-swapping map t from before, when it
acts on (V⊗n)

G.
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Not-so-silly proof (cont’d)

Proof.
t permutes the basis of (V⊗n)

G indexed by G-orbits of
black-white colorings, and
t fixes such a basis element if and only if this G-orbit is
self-complementary .QED

For example, with n = 6 and G=cyclic rotation, t fixes this basis
element of

(
V⊗6

)G

wwwbbb+bwwwbb+bbwwwb+bbbwww+wbbbww +wwbbbw

as it is a sum over the t-stable G-orbit shown below:

t t t
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Not-so-silly proof (cont’d)

What does this have to do with c0 − c1 + c2 − · · · ?
Well, inside GL(V ),

t =

[
0 1
1 0

]

and s =

[
1 0
0 −1

]

are both diagonalizable and have eigenvalues +1,−1,

so they must be conjugate within GL(V ),

so t , s must act on V⊗n and on (V⊗n)
G by C-linear maps

which are conjugate.
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Not-so-silly proof (cont’d)

Recall that Tr(AB) = Tr(BA) implies
conjugate transformations have the same trace :

Tr(PAP−1) = Tr(P−1 · PA) = Tr(A).

Thus s, t must act with the same trace on (V⊗n)
G.

We know from the previous Proposition that this trace for t is
the number of self-complementary G-orbits.

So it suffices to apply the following fact with q = −1...
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Not-so-silly proof (cont’d)

PROPOSITION: For any eigenvalue q in C, the element

s(q) =

[
1 0
0 q

]

acts on (V⊗n)
G with trace

c0 + c1q + c2q2 + · · · + cnqn.

In particular, for q = −1, the element s = s(−1) acts with trace

c0 − c1 + c2 − · · ·
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Not-so-silly proof (cont’d)

Proof.

s(q) fixes w .

s(q) scales b by q.

Hence s(q) scales any eS in which |S| = k by qk , e.g.

s(q)(bwbbbw) = qb⊗w⊗qb⊗qb⊗qb⊗w = q4 ·bwbbbw .

Hence s(q) scales all of V⊗n
k by qk ,

and therefore scales all of
(
V⊗n

k

)G by qk .

So s(q) acts on (V⊗n)
G

=
⊕

k

(
V⊗n

k

)G with trace
∑

k ck qk .

QED
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A proof of Property 2: UNIMODALITY

We want to show that for k < n
2 , one has

ck ≤ ck+1

So we’d like a C-linear injective map
(
V⊗n

k

)G
→֒
(
V⊗n

k+1

)G
.

Maybe we should look for an injective map

V⊗n
k →֒ V⊗n

k+1

that commutes with the action of Sn on tensor positions, and
hence with every G?
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The only natural injection

There is only one obvious candidate for such an injection
Uk : V⊗n

k →֒ V⊗n
k+1, namely define

Uk(eS) :=
∑

T⊃S:
|T |=k+1

eT

E.g. for n = 6, k = 2, one has

U2(bwbwww) = bbbwww + bwbbww + bwbwbw + bwbwwb

Easy to check Uk commutes with Sn permuting positions.
But why is Uk injective ?
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A cute injectivity argument

There are several arguments for this, but here’s a cute one.

PROPOSITION: For k < n
2 , the operator U t

kUk on V⊗n
k turns out

to be positive definite , i.e. all its (real) eigenvalues are strictly
positive.

In particular,

U t
kUk is invertible ,

so Uk is injective .
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Summary

Quick review of positive (semi-)definiteness

Recall that a real symmetric matrix A = At

always has only real eigenvalues ,

is positive semidefinite if they’re all nonnegative,
or equivalently, x tAx ≥ 0 for all vectors x,

is positive definite if they’re all positive,
or equivalently, if x tAx > 0 for all nonzero vectors x,

is always positive semidefinite when A = BtB for some
rectangular matrix B, since

x tAx = x tBtBx = |Bx|2 ≥ 0
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is positive definite if they’re all positive,
or equivalently, if x tAx > 0 for all nonzero vectors x,

is always positive semidefinite when A = BtB for some
rectangular matrix B, since

x tAx = x tBtBx = |Bx|2 ≥ 0
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A cute injectivity argument (cont’d)

PROOF that U t
kUk is positive definite.

Check (on each eS) that

U t
kUk − Uk−1U t

k−1 = (n − 2k) · IV⊗n
k

Hence
U t

kUk = Uk−1U t
k−1 + (n − 2k) · IV⊗n

k

First term Uk−1U t
k−1 is positive semidefinite .

Second term (n − 2k) · IV⊗n
k

is positive definite as k < n
2 .

Hence the sum U t
kUk is positive definite . QED
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A proof of Property 4: GENERATING FUNCTION

(To be flipped through at lightning speed during the talk;
read it later , if you want!)

We want to show

n∑

k=0

ckqk =
1
|G|

∑

g∈G




∏

cycles C of g

(1 + q|C|)





Such averages over the group are ubiquitous due to the
following easily-checked fact.
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An idempotent projector

PROPOSITION: When a finite group G acts linearly on a vector
space W over a field in which |G| is invertible (nonzero), the
map W π

→ W given by

w 7→
1
|G|

∑

g∈G

g(w)

is

idempotent , i.e. π2 = π, and

π projects onto the subspace of G-invariants W G.
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Trace of idempotent = dimension of image

One then has a second ubiquitous and easily-checked fact.

PROPOSITION: In characteristic zero, the trace Tr(π) of an
idempotent projector onto a linear subspace is the dimension
of that subspace.
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Putting two idempotent facts together

Apply these two facts to the idempotent projector
π = 1

|G|

∑

g∈G g onto the G-fixed subspace of each W = V⊗n
k :

∑

k

ckqk =
∑

k

dimC

(
V⊗n

k

)G
qk =

∑

k

Tr
(

π|V⊗n
k

)

qk

=
1
|G|

∑

g∈G

(
∑

k

Tr(g|V⊗n
k

)qk

)

.

It only remains to show
∑

k

Tr(g|V⊗n
k

))qk =
∏

cycles C of g

(1 + q|C|).
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Trace of g counts colorings monochromatic on its
cycles

To see ∑

k

Tr(g|V⊗n
k

)qk =
∏

cycles C of g

(1 + q|C|)

note that

any g in G permutes the basis for V⊗n
k indexed by

black-white colorings,

and g fixes such a coloring if and only if it is
monochromatic on each cycle C of g.
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Proof by example

E.g. g = (12)(34)(567) in S7 fixes these colorings/tensors:

12 34 567
ww ww www 1
bb ww www +q2

ww bb www +q2

ww ww bbb +q3

bb bb www +q2 · q2

bb ww bbb +q2 · q3

ww bb bbb +q2 · q3

bb bb bbb +q2 · q2 · q3

= (1 + q2)(1 + q2)(1 + q3)

=
∏

C(1 + q|C|)
QED
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Summary

For combinatorial purposes, it is definitely worth learning
more algebra , including (but not limited to)

Linear, multilinear algebra,

Group theory,

Representation theory,

Commutative algebra, Hopf algebras, ...

Thank you for your attention!
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