UMN Semigroups seminar Sept. 28,2021 §1.2 Cyclic semigroups

Recall Mehmet defined for s∈S a semigroup the cyclic subsemigroup (s):= [s, s², s³, -...] (if Swas a monoid, the submonoid genid by s would be { s^o, s⁴, s², s³, -...}) For s∈ S a finite semigroup, we defined index c: smallest c≥1 such that s^{c+d}=s^c for some d period d: smallest d≥1 such that s^{c+d}=s^c for some c

EXAMPLE

 $s \xrightarrow{2} s^{2} \xrightarrow{3} s^{3} \xrightarrow{3} s^{4} \xrightarrow{3} s^{5} \xrightarrow{3} s^{5} \xrightarrow{3} s^{7} \xrightarrow{3} s^$ index c=7 period d=5

EXAMPLE

$$S \rightarrow s^{2} \rightarrow s^{3} \rightarrow s^{4} \rightarrow s^{5} \rightarrow s^{6} \rightarrow s^{7}$$

index $c=7$
pend $d=5$
 $\vartheta = 10 \equiv 0 \mod 5$
 ≥ 7
 $\downarrow 7$

ROMARK 1.3
If
$$n=|S|$$
 then $\forall S \in S$, more concretely
this idempotent $e = s^{S} = s^{n!}$
since both $e,d \leq |S| = n \Rightarrow \int n| \geq n \geq c$
 $n! \equiv 0 \mod d$
DET 'N: $E(S) := \{ \text{idempotents } e^2 = e \text{ in } S \}$
LOMMA 1.6 If $S \xrightarrow{q} \Rightarrow T$ is a surjective morphism
if finite semigroups S, T , then $\Psi(E(S)) = E(T)$.
poof: $\Psi(F(S)) \subseteq E(T)$ since
 $e^2 = e \Rightarrow \Psi(e^2) = \Psi(e)$
 $\psi(e)^2$
There surjectivity $E(S) \xrightarrow{q} \Rightarrow E(T)$, given
 $e \in E(T)$, note $\psi'(e)$ is nonempty and a
finite subsemigroup of S , so it contains
an idempotent $e' \in E(S)$.

\$1.3 Ideal structure and Green's relations Ma finite monoid throughout this discussion. 1 1 exists Idempotents will exist! DEFIN: A nonempty subset I CM is a ... o left ideal if MI⊆I o right ideal if IMSI o (2-sided) ideal if MIMSI All are subsemignoups, so contain idempotents. Any two ideals I, J both contain another ideal $TJ := \{ij: i \in I, j \in J\} \subseteq I, J$ so a finite monoid M has a ! minima (ideal (namely I1 I2 In where I13-, In are all of its ideals)

DEF'N: Green's relations (J.A. Green 1951)
Say
$$m_1 J m_2$$
 if $Mm_1 M = Mm_2 M$ (Same principal)
 $m_1 J m_2$ if $Mm_1 = Mm_2$ (Principal)
 $m_1 J m_2$ if $Mm_1 = Mm_2$ (Principal)
 $m_1 R m_2$ if $m_1 M = m_2 M$ (Principal)
 $m_1 R m_2$ if $m_1 M = m_2 M$ (Principal)

EXAMPLES
(1) For M= Mn(k) nxn inchvices
AJB ← rank A = rank B
(so B=PAQ with P,Q ∈ GLn(k))
AJB ← A, B are row-equivalent
(so B=PA)
AQB ← A, B are column-equivalent
(so B=AQ)

(2) For $T_n := \{a \| \text{ self-maps } \{i, 2, ..., n\} \xrightarrow{f} \{1, 2, ..., n\}$ under composition fog Full bansformation monoid of degree $f \neq g \iff f, g$ have same partition of source into fibers $\hat{f}'(i), \hat{g}'(i)$ flq since f= hog g=hot ³/₄ × ³/₄ $f \mathcal{R} q \iff in(f) = in(q)$ fing since g=foh and can similarly find on h' with f=goh \Leftrightarrow #im(f) = #im(g) To has ideals f}g $I_1 \subset I_2 \subset \dots \subset I_n$ constant where

DEF'N Mis R-trivial if m, M=m, M=> m,=m2 & -trivial if Mm,=Mm2 => m,=m2 J-trivial if Mm, M=Mm2 => m,=m2 i.e. the various relations R, L, J are just equality

Conversely, if Mm, M= Mm, M iben e Me · m, · e Me = e Mm, Me = e Mm, Me = e Me· m, · e Me m, e e Me m, e e Me

M-sets In studying L, R, J, ithelps to have the notion of Maeting on a set X: amp M * X -> X $(m, x) \longrightarrow mx$ with 1.x=x trex $m_1(m_2 \chi) = (m_1 m_2) \chi$ Callita faithful action if mx=m'x txEX \implies m = m' m MA map X -> Y is M-equivariant if $\varphi(mx) = m\varphi(x) \quad \forall m \in M$ and an isomorphism X=Y of M-sets if bijective. Horn (X,Y) = { Mequivariant X -> Y

PROP 1.8: For an Moset X and
$$e \in E(M)$$

(i) one has a bijection $Hom_{\mathcal{H}}(Me, X) \xrightarrow{\sim} eX$
(i) $End_{\mathcal{H}}(Me) \cong (eMe)^{\circ P}$ as menoids
(ii) $Aut_{\mathcal{H}}(Me) \cong (G_e)^{\circ P}$ as graps
Where $G_e := group of units in eMe$.

proof: If
$$\varphi \in Hom_{\mu}(Me, X)$$
, then $\varphi(e) \in eX$
Since $\varphi(e) = \varphi(e^2) = e\varphi(e)$, and $\varphi(e)$ determines φ
via $\varphi(me) = m \varphi(e)$. The inverse bijection
is $Hom_{\mu}(Me, X) \iff eX$.
 $(\varphi: me \mapsto mx) \iff \prod_{\substack{n \\ mex}} ex$
Then (ii) is (i) taking $X = Me$, noting $(\varphi \circ \varphi)(e) = \psi(\varphi(e)) = \varphi(e) \forall e$.
Lastly (ii) \Rightarrow (iii) applying $A \mapsto A$

REMARK 1.9: If one doesn't like the "op"'s, (ii) End_M(Me)≅ (eMe)°P Says eMe acts on the right of Me via M-set maps, and gives all such maps. Likeurise, (a) Auty (Me) ≅ (Ge)° says Ge acts (as a group) on the right of Me. PROP 1.10: Ge (right-)acts freely on Le= &-class of e =generators of Me (and (left-)acts freely on Re= Q-class of e). proof: Foraction, if me he and ge Ge = (eMe), want mg e Le, that is Me = Mmg: "⊇": g=ege ⇒ Mmg = Mmege ⊆ Me "⊆": mele ⇒ ∃y∈M with e=ym $s_{b} \tilde{e} = \tilde{g}'g = \tilde{g}'eg = \tilde{g}'ymg$ and Me = Majymg & Mmg

For freeness, using some
$$m, g, y$$
 as above
if $mg = m$ then $g = eg = ymg = ym = e$.

EXAMPLE When
$$M = M_n(k) = n \times n$$
 matrices,
a typical idempotent $e \in E(M)$ is
 $e = V_1 \left(\frac{J_r}{J_r} \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right)^2$ where $V = k^n = V_1 \oplus V_2$
 $V_2 \oplus V_2$
 $V_3 \oplus V_2$
 $V_4 \oplus V_2$
 $V_2 \oplus V_2$
 $V_2 \oplus V_2$
 $V_2 \oplus V_2$
 $V_3 \oplus V_2$
 $V_4 \oplus V_2$
 $V_2 \oplus V_2$

Note an impediate ...
COROLLARY 1.12 When idempotents
$$e, f \in E(M)$$

have $e \iint f$, then $e M e \cong f M f$ as monoids,
and $G_e \cong G_f$ as groups.
(since $eM e \cong End_{pi}(eM)$ and $G_e = (eMe)^{e}$).

Then
$$e = ab = ime \left[\frac{1}{0} \right]$$

kore $\left[0 \right]$

$$f = ba = \inf\left(\frac{1}{0}\right)$$

$$kerf\left(\frac{1}{0}\right)$$

THM 1.11 For idempotents
$$e, f \in E(M)$$
, TFAE:
(i) $Me \cong Mf$ as $(left-) M$ -sets
(ii) $eM \cong FM$ as $(ight-) M$ -sets
(iii) $\exists q \flat \in M$ with $e=ab$
 $f=ba$
 $dearff$
(iv) $\exists x_{j}x' \in M$ with $xx'x=x$ and $e=x'x$
 $x'xx'=x'$ $f=xx'$
(v) $MeM=MfM$ (i.e. eff .)

Proot Strategy:

Show (i) \Rightarrow (iv) (v) (cii)

(and replacing (i) by (ii) follows by left-right symmetry

(i) Me
$$\cong$$
 Mf as (left-) M-sets
 \downarrow
(iv) $\exists x, x' \in M$ with $xx'x = x$ and $e = x'x$
 $x'x x' = x'$
 $f = x'x'$

Given inverse M-set isomorphisms
$$Me \xrightarrow{\varphi} Mf$$
,
let $x' := \varphi(e)$ $\left[= \varphi(ee) = e \varphi(e) \in e Mf\right]$
 $x := \psi(f)$ $\left[= \psi(ff) \cdot f \psi(f) \in fMe\right]$
and check
 $x'x = x' \psi(f) = \psi(x'f) = \psi(x') = \psi(\varphi(e)) = e$
(and similarly for $xx' = f$.)
Also $x'xx' = ex' = x'$ since $x' \in Mf$

and xx'x = fx = x since $x \in fMe$

giving an M-set map
$$Me \xrightarrow{\varphi} Mf$$

 $m \xrightarrow{} ma$

and can check they're inverses:

$$\psi(\varphi(m)) = mab = me = m$$
 $\varphi(\Psi(m)) = mba = mf = m$

COROLLARY 1.15
The group G of units of M has
$$G=J_1= \int_{0}^{-class} of_1$$
,
and if $M > G \neq \emptyset$ then it is an ideal.

proof:

$$G \subseteq J_{1}$$
: Any mit g has $1 = \tilde{g} \cdot g \cdot t \in M_{g}M$
(and $g \in M = M_{1}M$)
 $J_{1} \subseteq G$: if $m \in J_{1}$ so $M_{m}M = M = M_{1}M$
then $M_{1}m = M_{1}M$ and $m_{1}M = M_{1}M$
then $M_{1}m = M_{1}M = mM \Rightarrow m \in G_{1}$.
 $M_{1}m = M_{1}M = mM \Rightarrow m \in G_{2}$.
 $M = M \setminus G$ is an ideal when non-0, note
 $M \setminus G = M \setminus J_{1} = \{m \in M : 1 \notin M_{1}M_{2}\}$
 $= I(t)$ from before,
Gnideal. $M \in M$