UMN Semigroups seminar Sept. 28,2021

S1.2 Cyclic semigroups
Recall Mehmet defined for $s \in S$ a semigroup the cyclic rubsemigroup $\langle\delta\rangle:=\left\{s, s^{2}, s^{3}, \ldots\right\}$
(if S vas a monoid, the sub monoid genii by s could be $\left.\left\{{\underset{11}{1}}_{0}^{1}, s^{1}, s^{2}, s^{3}, \ldots\right\}\right)$
For se S a finite semigroup, we defined
index c : smallest $c \geq 1$ such that $s^{c+d}=s^{c}$ for somed
period d : smallest $d \geqslant 1$ such that $s^{c+d}=s^{c}$ for some C

ExAMPLE

$$
\begin{array}{r}
s \stackrel{s}{\rightarrow} s^{2 / s} \rightarrow s^{3} \xrightarrow{s} s^{4} \rightarrow s^{s} \rightarrow s^{6} \rightarrow s^{7} \searrow \\
\text { index } c=7 \\
\text { period } d=5 \quad s^{10} \quad s^{8}
\end{array}
$$

We proved ...
PROP 1.1, COR 1.2 , coR 1.4:
For even g sE a finite semigroup, $\langle s\rangle=\left\{s, s^{2}, s^{3}, \ldots\right\}$

- contains a unique idempotent $e^{2}=e$,
namely $e=s^{\omega}$ where $\omega \equiv 0 \bmod d$ and $\omega \geq c$.
- Furthermore, e is the identity element for $C:=\left\{s^{c}, s^{c+1}, s^{c+2}, \ldots\right\}$ which is a subgroup of S
$0 C \cong \mathbb{Z} / d Z<$ is a asdic group generated by $s^{\omega+1}=s^{\omega} \cdot s$

EXAMPLE

$$
s \rightarrow s^{2} \rightarrow s^{3} \rightarrow s^{4} \rightarrow s^{s} \rightarrow s^{6} \rightarrow s^{7}
$$

index $c=7$
period $d=5$

$$
\begin{aligned}
& s^{v+1}=s^{19} \\
& e=s^{v}=s^{10} \leftarrow s^{8}
\end{aligned}
$$

$$
\begin{aligned}
\omega=10 & \equiv 0 \bmod 5 \\
& \geqslant 7
\end{aligned}
$$

$C \cong \mathbb{H} 5 \mathbb{Z}$

REMARK 1.3
If $n=|\delta|$ then $\forall s \in S$, more concretely
this idempotent $e=s^{s}=s^{n!}$
since both $c, d \leq|S|=n \Rightarrow\left\{\begin{array}{l}n!\geq n \geq c \\ n!\equiv 0 \bmod d\end{array}\right.$
DEVIN: $E(S):=\left\{\right.$ idempotent s $e^{2}=e$ in $\left.S\right\}$
LEMMA 1.6 If $S \xrightarrow{\varphi} T$ is a subjective monphism of finite semigroups S, T, then $\varphi(E(S))=E(T)$.
proof: $\varphi(E(S)) \subseteq E(T)$ since

$$
\begin{aligned}
e^{2}=e \Rightarrow & \varphi\left(e^{2}\right)=\varphi(e) \\
& \varphi(e)^{2}
\end{aligned}
$$

For sujecturity $E(S) \xrightarrow{\varphi} E(T)$, given $e \in E(T)$, note $\varphi^{-1}(e)$ is nonempty and a finite subsemigromp of S, so it contains an idempotent $e^{\prime} \in E(S)$.

S1.3 I deal structure and Green's relations
Ma finite monoid throughout this discussion.
idempotent
DEIN: A nonempty subset $I \subseteq M$ is a ...

- left ideal it $M I \subseteq I$
- right ideal if $I M \subseteq I$
- (2-s)ded) ideal if MIM $\subseteq I$

All are subsemigromps, so contain idempotents.
Any two ideals I, J both contain another ideal

$$
I J:=\{i j: i \in I, j \in J\} \subseteq I, J
$$

so a finite monoid M has a! minimal ideal (namely $I_{1} I_{2}, \ldots I_{n}$ where $I_{1},-, I_{n}$ are all of its ideals)

ExAmple
(1) $M=M_{n}(k)=\{n \times u$ matrices over a field $k\}$ has its only ideals $I_{r}=\{$ matrices of rank $\leqslant r\}$

Right ideals are of form $\{$ matrices A with in $(A) \subseteq V\}$
Left ideals are of form $\{$ matrices A with her $(A) \geq U\}$ for any choices of subspaces $U, V \subset k^{n}$
EXERCISE: Check me using in $(A B) \leq \operatorname{sim}(A), \operatorname{ker}(B A)$? leaf($)$).
(2) For $m \in M, \quad M_{m}=$ principal left ideal,

$$
\begin{aligned}
M_{m} & =\text { right ideal, } \\
m M & \text { (2-sidef) ideal }
\end{aligned}
$$

generated by m.
(3) $I(m):=\left\{s \in M: m \notin M_{s} M\right\}$ is an ideal
(if it's nonempty) as $m \notin M s M \Rightarrow m \notin M_{a s b} M \leq M s M$)

$$
I(m)=\phi \Leftrightarrow m \in \operatorname{minimal}_{i d e a l}
$$

e.g. in $M_{n}(k)$,

$$
\begin{aligned}
& \text { in } M_{n}(k), \\
& I(A)=\{B: \operatorname{rank} B<\operatorname{rank} A\}
\end{aligned}
$$

DEE'N: Green's relations (J.A.Green 1951)
Say $m_{1} \mathcal{m}_{2}$ if $M_{m_{1}} M=M_{m_{2}} M$ same punipol)

$$
\begin{aligned}
& m_{1} \& m_{2} \text { if } M_{m_{1}}=M m_{2} \\
& m_{1} \Omega m_{2} \text { if } m_{1} M=m_{2} M \quad\left(\begin{array}{c}
\text { Same } \\
\text { punipal } \\
\left.\begin{array}{c}
\text { ipdeal } \\
\text { ideal }
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

EXAMPLES
(1) For $M=M_{n}(k) \quad \begin{gathered}n \times n \\ \text { matrices }\end{gathered}$
$A \notin B \Longleftrightarrow \operatorname{rank} A=\operatorname{rank} B$

$$
\begin{aligned}
& A=\operatorname{rank} B \\
& (\text { so } B=P A Q \text { with } \\
& \left.P, Q \in G_{m}(k)\right)
\end{aligned}
$$

$A \mathcal{L} B \quad A, B$ are ros-eqivatent

$$
(s, B=P A)
$$

$A Q B \Longleftrightarrow A, B$ are column-equivalent (so $B=A Q$)
(2) For $T_{n}:=\{$ all seff-maps $\{1,2,, n\} \xrightarrow{f}\{1,2,, n\}\}$

Full transformation under composition fog
$f \mathcal{L} g \Leftrightarrow f, g$ have same partition of source in to fibers $f^{\prime}(i), g^{\prime \prime}(i)$

$f \mathcal{L} g$ since $f=\operatorname{hog}$ $g=h^{-1} \circ f$
$f \& g \Leftrightarrow \operatorname{im}(f)=\operatorname{im}(g)$
$f \Omega g$ since $g=f o h$

and can similarly
find on h^{\prime} with

$$
f=g \cdot h^{\prime}
$$

$\Rightarrow T_{n}$ has ideals

$$
\begin{aligned}
& I_{1} \subset I_{2} \subset \ldots \subset I_{n} \\
& \begin{array}{l}
\text { constant } \\
\text { maps }\}
\end{array} \\
& \text { where } \\
& I_{r}=\{f: \# \lim (f) \leq r\}
\end{aligned}
$$

DEAN M is Q-trivial if $m_{1} M=m_{2} M \Rightarrow m_{1}=m_{2}$
\& -trivial if $M m_{1}=M m_{2} \Rightarrow m_{1}=m_{2}$
g-trivial if $M_{1} M=M m_{2} M \Rightarrow m_{1}=m_{2}$
ie. the various relations $Q, \mathcal{L}, 8$ are just equality
NOTE
-trivial \Rightarrow - and \mathcal{L}-trivial
COR 1.14 ahead
From Denton, Hivert, Schilling, Thiery 2011:

Note groups are not d, R, R-binal: $g \Omega g^{\prime}, g \mathcal{d}^{\prime} g^{\prime} g, g^{\prime}$

Green's relations are compatible with restricting to sulomonoids eMe, e idempotent.

LEMMA 1.7: For an idempotent $e \in E(M)$ and $m_{1}, m_{2} \in e M e$ one has

$$
m_{1} Q_{m_{2}} \text { in } M \Leftrightarrow m_{1} Q_{m_{2}} \text { in } e M e
$$

and same for $\mathcal{L}, \mathcal{\&}$.
proof: Do the proof for \mathcal{L}; for Q, \mathcal{L} is similar.

$$
\begin{aligned}
& e M e \cdot m_{1} \cdot e M_{e}=e M_{e} \cdot m_{2} \cdot e M e \\
\Leftrightarrow & \exists a, b, c, d \in e M e \text { with } m_{1}=a m_{2} b \\
& m_{2}=c m_{1} d \\
\Rightarrow & M_{m_{1}} M=M m_{2} M .
\end{aligned}
$$

Conversely, if $M_{m_{1}} M=M_{m_{2}} M$ then

$$
e M e \cdot m_{1} \cdot e M e=e M m_{1} M e=e M_{m_{2}} M e=e M e \cdot m_{2} \cdot e M_{e}
$$

M-sets
In stardying $\mathcal{L}, Q, \mathcal{y}$, thelps to have the notion of M liefting ona set X :
$\operatorname{amop} M \times X \longrightarrow X$

$$
(m, x) \longmapsto m x
$$

with

$$
\begin{gathered}
1 \cdot x=x \quad \forall x \in X \\
m_{1}\left(m_{2} x\right)=\left(m_{1} m_{2}\right) x
\end{gathered}
$$

Callit a faituful action if $m x=m^{\prime} x \quad \forall x \in X$

$$
\Rightarrow m=m^{\prime} \text { in } M
$$

A sef- $X \underset{ }{\varphi} Y$ is M-equivcriant if

$$
\varphi(m x)=m \varphi(x) \quad \forall \underset{x \in X}{ }
$$

$$
x \in X
$$

and an isomonohism $X \cong Y$ of M-sets if bijective.

$$
\operatorname{Hom}_{M}(X, Y)=\{\text { Mequivariant } X \xrightarrow{\varphi} Y\}
$$

PROP 1.8: For an Moet X and $\underset{\substack{4 \\ e^{2}}}{\text { EM) }}$
(i) one has a bijection Hoo $_{M}\left(M_{e}, X\right) \xrightarrow{\sim} e X$. $\left.\varphi \stackrel{\text { M }}{ }{ }^{(}\right)$.

$$
\xi \text { Take } X=M e
$$

(ii) End $\mathrm{M}_{\mathrm{Me}}(\mathrm{Me}) \cong(\mathrm{Me})^{\circ p}$ as monads

3 apply $A \mapsto A^{x}$
(iii) $\operatorname{Art} \mathrm{T}_{M}\left(M_{e}\right) \cong\left(G_{l}\right)^{\phi}$ as grams where $G_{e}:=$ group of units in $e M_{e}$.

PROP 1.8: For an Moet X and $e \in E(M)$
(i) one has a bijection $\operatorname{Homm}_{\mu}(M e, X) \xrightarrow{\rightleftarrows} e X$
$\varphi(e)$.
(ii) End $_{M}(M e) \cong(M e)^{o p}$ as monowids
(iii) $\operatorname{Aut} \mathrm{t}_{M}\left(M_{e}\right) \cong\left(G_{e}\right)^{\phi}$ as grays where G_{e} : g gray of units in $e M_{e}$.
proof: If $\varphi \in H_{\text {OM m }}\left(M_{e}, X\right)$, then $\varphi(e) \in e X$ since $\varphi(e)=\varphi\left(e^{2}\right)=e \varphi(e)$, and $\varphi(e)$ determines φ via $\varphi(m e)=m \varphi(e)$. The inverse bijection is $\operatorname{Hom}_{m}\left(\mathrm{Me}_{\mathrm{l}}, X\right)<e X$.

$$
\left(\varphi: \operatorname{me}_{\substack{\text { mex } \\ \text { mex }}} \longleftarrow{ }_{\text {ex }}^{x}\right.
$$

Then (ii) is (i) taking $X=M e$, noting $(\varphi, \phi)(e)=\psi(\phi(e))$ $=\psi(\phi(e) e)=\phi(e) \psi(e)$.
Lastly (ii) \Rightarrow (iii) applying $A \longmapsto A_{\text {monoid }}$ (

REMARK 1.9: If one doesn't like the "Op"'s,
(ii) End $d_{M e}(M e) \cong(e M e)^{o p}$
says eVe acts on the right of Me via M-set maps, and gives all such maps.

Likewise, $\operatorname{caic}) \operatorname{Aut}_{M}\left(M_{e}\right) \cong\left(G_{e}\right)^{q p}$
says G_{e} acts (as a group) on the right of Me .
PROP 1.10:
G_{e} (right-) acts freely on $L_{e}=\mathcal{L}$-class of e $=$ generators of Me
(and (left-) acts freely on $R_{e}=Q_{\text {-class of } e) \text {. }}$.
proof: Fraction, if $m \in L_{e}$ and $g \in G_{e}=\left(e M_{e}\right)^{x}$, want $m g \in L_{e}$, that is $M_{e} \stackrel{?}{=} M_{m g}$:

$$
\begin{aligned}
& \text { "ว": } g=\text { ere } \Rightarrow M_{m g}=M_{\text {meg }} \subseteq M_{e} \\
& \text { "ธ": meLt } \Rightarrow \exists y \in M_{\text {with }} e=y m \\
& \text { so } e=g_{g}^{\prime} g=g^{-1} e g=g^{-1} y m g \\
& \text { and } M_{e}=M_{\text {city }} / \mathrm{mg} \subseteq M_{m g}
\end{aligned}
$$

For freeness, using same m, g, y as above if $m g=m$ then $g=e g=y m g=y m=e$.

EXAMPLE When $M=M_{n}(k)=n \times n$ matrices, a typical idempotent $e \in \in(M)$ is

$$
\begin{aligned}
& \left.e=\begin{array}{l|l|l}
V_{1} & V_{1} & V_{2} \\
V_{2} & O \\
\hline O & 0
\end{array}\right] \text { where } V=k^{n}=\underbrace{V_{1} \oplus V_{2}}_{\text {dir } r} \underbrace{}_{\text {dimer }} \\
& \text { having } e M_{e}=\left\{\left[\begin{array}{l|l}
A & 0 \\
\hline 0 & 0
\end{array}\right]: A \in M_{r}(k)\right\} \\
& G_{e}=(\text { ere })^{x}=\left\{\left[\frac{A Y_{0}}{0}\right]: A \in G_{0}(k)\right\}
\end{aligned}
$$

and the generators L_{e} of $M_{e}=\left\{\left[\begin{array}{l|l}A & O \\ \hline B & O\end{array}\right]\right\}$ have lin. indep. dst r columns, canying a free action of G_{e} on the right.

$$
\left[\begin{array}{cc}
G_{e} \text {-orbits } & \leftrightarrow r_{-} \text {dim'l subspaces of } k^{n} \\
\text { on Le } & \text { given by col space of }
\end{array}\left[\frac{A}{B} \frac{0}{0}\right]\right]
$$

Now car relate M-set structure for $M e, e M t$ Green's f.
THM 1.11 For idempotents e, $f \in E(M)$, TFAE:
(i) $M e \cong M f$ as $(l e f t-) M$-sets
(ii) $e M \cong f M$ as (eight-) M-sets
(ii) $\exists a, b \in M$ worth $\begin{aligned} & e=a b \\ & f=b a\end{aligned}$ dear 介
(iv) $\exists x, x^{\prime} \in M$ with $x x^{\prime} x=x$ and $e=x^{\prime} x$ $x^{\prime} x x^{\prime}=x^{\prime} \quad f=x x^{\prime}$
(v) $M e M=M f M$ (ie. eff.)

Note an immediate --
COROlLARY 1.12 When idempotent $e, f \in E(M)$ have eff, then eM \cong IMf as monoids, and $G_{e} \cong G_{f}$ as groups. (since $e M_{e} \cong \operatorname{End}_{M}(e M)$ and $\left.G_{e}=\left(e M_{e}\right)^{x}\right)$.

EXAMPLE: Recall for $M=M_{n}(k)$

$$
\text { eff } \Leftrightarrow \operatorname{rank}(e)=\operatorname{rank}(f)
$$

So if we have idempotent $e, f \in E(M)$ with eff then one can write

$$
V=k^{n}=\operatorname{im}(e) \oplus \underbrace{\operatorname{ker}(e)}
$$

pick some
inverse isonuophisms, $\left.a^{\dagger}| |\right|^{b}$

$$
=i m(f) \oplus \operatorname{ker}(f)
$$

Then $e=a b=\underset{\text { ines }}{\text { mme }}\left[\begin{array}{l}\text { in e here } \\ \hline 0\end{array} \frac{0}{1}\right]$

$$
\left.f=b a=\underset{\operatorname{kar} f\left(\begin{array}{l}
\inf \text { kant } \\
1 \\
0
\end{array} 0\right]}{0}\right]
$$

proof of ...
THM 1.11 For idempotent e, $f \in \in(M)$, TAG:
(i) $M e \cong M f$ ar (left-) M-sefs
(ii) $M \cong f M$ as (right-) M-sets
(iii) $\exists a b \in M$ with $e=a b$ dear 介
(iv) $\exists x, x^{\prime} \in M$ with $x x^{\prime} x=x$ and $e=x^{\prime} x$ $x^{\prime} x x^{\prime}=x^{\prime} \quad f=x x^{\prime}$
(v) $M e M=M f M$ (ie. eff.)
proof
Strategy:
Show
(i) \Rightarrow (iv)
(v)
\Leftarrow
(and replacing (i) by (ii) follows by leftright symmetry.
(i) $M e \cong M f$ as $(l e f t-) M_{\text {-sets }}$
\downarrow
(iv) $\exists x, x^{\prime} \in M$ with $x x^{\prime} x=x$ and $e=x^{\prime} x$
$x^{\prime} x x^{\prime}=x^{\prime}$

$$
f=x x^{\prime}
$$

Given inverse M-set isomorphisms $M e \underset{\psi=\varphi^{-1}}{\stackrel{\varphi}{\rightleftarrows}} M f$,
and check

$$
x^{\prime} x=x^{\prime} \psi(f)=\psi\left(x^{\prime} f\right)=\psi\left(x^{\prime}\right)=\psi(\varphi(e))=e
$$

(and similarly for $x x^{\prime}=f$.)
Also $x^{\prime} x x^{\prime}=e x^{\prime}=x^{\prime}$ since $x^{\prime} \in \mathrm{CM}$ and $x x^{\prime} x=f x=x$ since $x \in f M e$
(i) $M e \cong M f$ as $(l e f t-) M$-sets
\Uparrow
(iii) $\exists a, b \in M$ with $\begin{aligned} & e=a b \\ & f=b a\end{aligned}$ $f=b a$

Given $\begin{aligned} & e=a b \\ & f=b a\end{aligned}$, then any $m \in$ Me has

$$
\begin{aligned}
& m a=m e a=m a b a=m a f \in M f \\
& \uparrow_{m \in M e} \uparrow_{e=a b} \uparrow_{f=b a}
\end{aligned}
$$

giving an M-set map $\operatorname{Me} \xrightarrow{\varphi} M f$
$m \longmapsto m a$
Likewise get an M-set map $M e \stackrel{\psi}{\leftarrow} M f$ $m b \leftarrow 1 m$,
and can check they're inverses:

$$
\begin{aligned}
& \psi(\varphi(m))=m a b=m e=m \\
& \varphi(\psi(m))=m b a=m f=m
\end{aligned}
$$

(iii) $\exists a, b \in M$ with $\begin{aligned} & e=a b \\ & f=b a\end{aligned}$ \downarrow
(v) $M e M=M f M$ (ie. eff.)
\downarrow
(i) $M_{e} \cong M f$ as $(l e f t-) M$-sets

Assuming (iii), one has

$$
M_{e} M=M_{e e} M=M_{a b a b} \subseteq M b a M=M f M
$$

and $M f M \subseteq M e M$ is similar, so (v) follows.
Assuming (v), so $M_{e} M=M f M$, write $f=$ xey , so $f=f f=$ xey f and $M f=M_{\text {xey }} \subseteq M_{\text {ey }} f \subseteq M f \Rightarrow M f=$ Meyf

Hence get $a!$ M-set map $M_{e} \xrightarrow{\varphi} M f$ which sujeects since $M F=M_{e y f} f$, showing $\left|M_{e}\right| \geq|M f|$. Symmetrically $|M| \geq|M e|$, so φ is an M-set bijection

Next we learn of a cancellation property called stability, that finiteness of M provides:

THC 1.13

$$
\begin{aligned}
& M_{m}=M_{x m}
\end{aligned}
$$

proof: Assume $M_{m} M=M_{x m} M$,
so $m=u \times m v$.
Then $M_{x m} \stackrel{(x)}{\subseteq} M_{m}=M_{u x m v} \subseteq M_{x m v} z v$

> sujecraity here

$\Rightarrow\left|M_{x m}\right| \geqslant\left|M_{x m u v}\right|$
\Rightarrow equality in ($*$), as desired

Two consequences of stability... COR $1.14 \quad m_{1} \cap m_{2}$ (i.e. $M_{m_{1}} M=M_{m_{2}} M$)
$\Longleftrightarrow \exists r \in M$ with $M m_{1}=M r, r M=m_{2} M$
ie. $m_{1} \& r, r Q m_{2}$
(and left-right $\begin{gathered}\text { dually }\end{gathered} \Leftrightarrow \exists r \in M$ with $m_{1} M=r M, M r=M m_{2}$)
dually $\Leftrightarrow \exists r \in M$ i.e. $m_{1} Q r, r \& m_{2}$
proof: Note that \Leftarrow is clear (since $x \& y \Rightarrow x f y)$
For \Rightarrow, assume $m_{1} \mathrm{gm}_{2}$
and write $\begin{aligned} & m_{1}=u m_{2} v \\ & m_{2}=x m_{1} y\end{aligned}$, then set $r:=x m_{1}$.

$$
m_{2}=x m_{1} y
$$

One has $u r y v=u \times m_{1} y v=u m_{2} v=m_{1}$
so $M \times m_{1} M=M r M=M_{m_{1}} M$
and Stability gives $M x m_{1}=M r=M m_{1}$
Also $m_{2}=r y$ and $r=x m_{1}=x u m_{2} v$, so $M_{r} M=M_{m_{2}} M=M r y M$ and stability gives

$$
r M=r_{y} M=m_{2} M
$$

COROLLARY 1.15
The group G of units of M has $G=J_{1}=\mathcal{g}$-class, $\begin{gathered}\text { of } 1,\end{gathered}$ and if $M \backslash G \neq \varnothing$ then it is an ideal. proof:
$G \subseteq J_{1}$: Any unit g has $1=g^{-1} \cdot g \cdot q \in M g M$ (and $g \in M=M_{1} M$)

$$
J_{1} \subseteq G: \text { if } m \in J_{1} \text { so } M_{m} M=M=M_{1} M
$$

then $M_{a m}=M_{m}$ and $m_{1} M=m M$

$$
\underset{\text { Stability }}{\Rightarrow} M_{m}=\underset{M}{M} M=m M \Rightarrow m \in G \text {. }
$$

To see $M \backslash G$ is an ideal when non -0, note

$$
\begin{aligned}
M \backslash G=M \backslash J_{1} & =\left\{m \in M: 1 \notin M_{m} M\right\} \\
& =I(1) \text { from before, }
\end{aligned}
$$ an ideal.

