A generalization of

the Chevalley-Mitchell Theorem

AMS-MAA Winter meeting New Orleans
January 6, 2007

Vic Reiner (Univ. of Minnesota)
Larry Smith (Univ. Göttingen)
Peter Webb (Univ. of Minnesota)

Outline

I. Chevalley, Mitchell and the the theorem we could prove.
II. Springer and the conjecture we really want to prove
III. (Why might one care?)

I. Chevalley, Mitchell

Let \mathbb{F} be an arbitrary field, and V an n-dimensional vector space over \mathbb{F}.

We'll define a reflection group to be a finite subgroup

$$
W \subset G L(V) \cong G L_{n}(\mathbb{F})
$$

for which the W-action on the symmetric algebra

$$
S:=\operatorname{Sym}\left(V^{*}\right) \cong \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]
$$

has invariant subring S^{W} a polynomial algebra:

$$
S^{W}=\mathbb{F}\left[f_{1}, \ldots, f_{n}\right] .
$$

Theorem(Serre 1967)
For finite subgroups $W \subset G L_{n}(\mathbb{F})$, S^{W} polynomial implies W is generated by reflections.

Here reflection means the codimension of its fixed space is 1 .

Examples:
$W=\mathfrak{S}_{n}=$ symmetric groups
$W=G(d, e, n)=$ monomial groups
$W=G L_{n}\left(\mathbb{F}_{q}\right)=$ finite general linear groups

For $|W| \in \mathbb{F}^{\times}$, Chevalley (and Shephard-Todd) had shown the converse also holds, plus an interesting feature of the coinvariant algebra

$$
S /\left(S_{+}^{W}\right)=S /\left(f_{1}, \ldots, f_{n}\right)
$$

Theorem (Chevalley 1955)
For S^{W} polynomial and $|W| \in \mathbb{F}^{\times}$, one has an isomorphism of W-representations

$$
S /\left(S_{+}^{W}\right) \underset{\mathbb{F}[W]-\bmod }{\cong} \mathbb{F}[W]
$$

Proof idea:
Apply the Normal Basis Theorem to the Galois extension

$$
\operatorname{Frac}\left(S^{W}\right)=\operatorname{Frac}(S)^{W} \hookrightarrow \operatorname{Frac}(S)
$$

So what? There are few groups W with S^{W} polynomial, after all...

Well, when $|W| \in \mathbb{F}^{\times}$, the isomorphism

$$
S /\left(S_{+}^{W}\right) \underset{\mathbb{F}[W]-\bmod }{\cong} \mathbb{F}[W] .
$$

gives a consequence for any subgroup $W^{\prime} \subset W$: restrict to the W^{\prime}-fixed subspaces...

$$
\begin{array}{ccc}
\left(S /\left(S_{+}^{W}\right)\right)^{W^{\prime}} & \mathbb{F}\left[N_{W}\left(W^{\prime}\right)\right]-\bmod & \mathbb{F}[W]^{W^{\prime}} \\
\| & \| \\
S^{W^{\prime}} /\left(S_{+}^{W}\right) & & \mathbb{F}\left[W / W^{\prime}\right]
\end{array}
$$

where $N_{W}\left(W^{\prime}\right)$ is the normalizer of W^{\prime} in W.

Sounds good, but what about when $|W| \notin \mathbb{F}^{\times}$, like $W=G L_{n}\left(\mathbb{F}_{q}\right)$?

Theorem(Mitchell 1985)
For S^{W} polynomial one has a Brauer-isomorphism of W-representations

$$
S /\left(S_{+}^{W}\right)_{\mathbb{F}[W]-\bmod }^{\approx} \mathbb{F}[W]
$$

In other words, they have the same composition factors.

Unfortunately, given only a Brauer-isomorphism, you can't equate W^{\prime}-fixed spaces.

Also, since $W^{\prime} \subset W$ might have $S^{W^{\prime}}$ not Cohen-Macaulay, one shouldn't look only at

$$
\begin{aligned}
S^{W^{\prime}} /\left(S_{+}^{W}\right) & =S^{W^{\prime}} \otimes_{S} \mathbb{F} \\
& =\operatorname{Tor}_{0}^{S^{W}}\left(S^{W^{\prime}}, \mathbb{F}\right) .
\end{aligned}
$$

where $\mathbb{F}:=S^{W} /\left(S_{+}^{W}\right)$ as $S^{W}{ }_{- \text {module }}$.
One should look at the rest of Tor_{i} !

Theorem(-, Smith, Webb)
For S^{W} polynomial and any subgroup $W^{\prime} \subset W$, one has a virtual-Brauer-isomorphism of $N_{W}\left(W^{\prime}\right)$-representations

$$
\operatorname{Tor}_{*}^{S^{W}}\left(S^{W^{\prime}}, \mathbb{F}\right)_{\mathbb{F}\left[\lambda_{W}\left(\tilde{W}^{\prime}\right)\right]-\bmod } \mathbb{F}\left[W / W^{\prime}\right]
$$

where virtual means the left side is

$$
\sum_{i \geq 0}(-1)^{i} \operatorname{Tor}_{i}^{S^{W}}\left(S^{W^{\prime}}, \mathbb{F}\right)
$$

in an appropriate Grothendieck group.

Proof idea
Re-work homologically Chevalley's proof via Normal Basis Theorem.
II. Springer and the conjecture we want.

When S^{W} is polynomial, call $c \in W$ a regular element if it has an eigenvector

$$
v \in \bar{V}:=V \otimes_{\mathbb{F}} \overline{\mathbb{F}}
$$

fixed by no reflections.

Call the eigenvalue $\omega \in \overline{\mathbb{F}}^{\times}$for c when acting on v its regular eigenvalue.

Theorem(Springer 1972)
Assume S^{W} polynomial and $|W| \in \mathbb{F}^{\times}$.
Let $C=\langle c\rangle$ for some regular element c, with regular eigenvalue ω^{-1}.
Then one has an isomorphism of $W \times C$-representations

$$
S /\left(S_{+}^{W}\right)_{\overline{\mathbb{F}}[W \times C]-\bmod } \underset{\mathbb{F}}{ }[W] .
$$

Here on $S /\left(S_{+}^{W}\right)$,

- W acts by linear substitutions,
- C acts by scalar substitutions

$$
\begin{aligned}
c\left(x_{i}\right) & =\omega x_{i} \\
c(f) & =\omega^{d} f \text { if } \operatorname{deg}(f)=d,
\end{aligned}
$$

while on $\overline{\mathbb{F}}[W]$ the groups W, C act by left, right-multiplication.

When $|W| \in \mathbb{F}^{\times}$, one can again take W^{\prime}-fixed spaces in Springer's theorem, giving an isomorphism of
$N_{W}\left(W^{\prime}\right) \times C$-representations

$$
S^{W^{\prime}} /\left(S_{+}^{W}\right) \underset{\overline{\mathbb{F}}\left[N_{W}\left(W^{\prime}\right) \times C\right]-\bmod }{\cong} \overline{\mathbb{F}}\left[W / W^{\prime}\right]
$$

Just equating the C-character on both sides already gives a great combinatorial consequence...

(III. Why might we care?)

Theorem 1:
(-,Stanton,White 2004, -,Stanton,Webb 2005)
Let $W \subset G L(V)$ be finite with S^{W} polynomial, and C the cyclic subgroup generated by a regular element. Assuming $|W| \in \mathbb{F}^{\times}$, the triple $(X, X(q), C)$

$$
\begin{aligned}
& X=\text { any set with transitive } W \text {-action, } \\
& \text { say } X=W / W^{\prime} \\
& X(q)=\frac{\operatorname{Hilb}\left(S^{W^{\prime}}, q\right)}{\operatorname{Hilb}\left(S^{W}, q\right)} \\
& C \text { translating the cosets } w W^{\prime} \text { in } X
\end{aligned}
$$

exhibits the cyclic sieving phenomenon:
for any $c \in C$ and ω a root-of-unity one has

$$
\left|X^{c}\right|=[X(q)]_{q=\omega} .
$$

We suspect one does not need $|W| \in \mathbb{F}^{\times}$. This would follow from...

Conjecture: When S^{W} is polynomial, for any subgroup $W^{\prime} \subset W$, one has a virtual Brauer-isomorphism of $N_{W}\left(W^{\prime}\right) \times C$-representations

$$
\operatorname{Tor}_{*}^{S^{W}}\left(S^{W^{\prime}}, \overline{\mathbb{F}}\right) \quad \underset{\overline{\mathbb{F}}[}{ } \underset{\mathbb{F}\left[W / W^{\prime}\right] .}{\approx}
$$

$\overline{\mathbb{F}}\left[N_{W}\left(W^{\prime}\right) \times C\right]-\bmod$

Known:

- without C-action (the earlier theorem).
- for $W^{\prime}=1$ (-,Stanton,Webb, 2005)

Whence the combinatorial consequence?

$$
\begin{aligned}
X(q) & :=\frac{\operatorname{Hilb}\left(S^{W^{\prime}}, q\right)}{\operatorname{Hilb}\left(S^{W}, q\right)} \\
& =\sum_{i \geq 0}(-1)^{i} \operatorname{Hilb}\left(\operatorname{Tor}_{i}^{S^{W}}\left(S^{W^{\prime}}, \overline{\mathbb{F}}\right), q\right)
\end{aligned}
$$

Why might you, the invariant theorist, care?

For $W^{\prime} \subset W=G L_{n}\left(\mathbb{F}_{q}\right)$ it's tough to compute $\operatorname{Hilb}\left(S^{W^{\prime}}, t\right)$. But believing the the conjecture, an easy, fast GAP computation using regular elements in $G L_{n}(\mathbb{F})$ gives

$$
\frac{\operatorname{Hilb}\left(S^{W^{\prime}}, t\right)}{\operatorname{Hilb}\left(S^{W}, t\right)} \bmod t^{q^{n}-1}-1
$$

