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I. Chevalley, Mitchell

Let F be an arbitrary field,

and V an n-dimensional vector space over F.

We’ll define a reflection group

to be a finite subgroup

W ⊂ GL(V ) ∼= GLn(F)

for which the W -action on

the symmetric algebra

S := Sym(V ∗) ∼= F[x1, . . . , xn]

has invariant subring SW a polynomial algebra:

SW = F[f1, . . . , fn].
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Theorem(Serre 1967)

For finite subgroups W ⊂ GLn(F),

SW polynomial implies

W is generated by reflections.

Here reflection means the codimension of

its fixed space is 1.

Examples:

W = Sn = symmetric groups

W = G(d, e, n)= monomial groups

W = GLn(Fq) = finite general linear groups
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For |W | ∈ F
×, Chevalley (and Shephard-Todd)

had shown the converse also holds, plus an

interesting feature of the coinvariant algebra

S/(SW
+ ) = S/(f1, . . . , fn).

Theorem (Chevalley 1955)

For SW polynomial and |W | ∈ F
×,

one has an isomorphism of W -representations

S/(SW
+ ) ∼=

F[W ]−mod
F[W ]

Proof idea:

Apply the Normal Basis Theorem

to the Galois extension

Frac(SW ) = Frac(S)W →֒ Frac(S).
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So what? There are few groups W

with SW polynomial, after all...

Well, when |W | ∈ F×, the isomorphism

S/(SW
+ ) ∼=

F[W ]−mod
F[W ].

gives a consequence for any subgroup

W ′ ⊂ W : restrict to the W ′-fixed subspaces...

(S/(SW
+ ))W ′ ∼=

F[NW(W ′)]−mod
F[W ]W

′

‖ ‖

SW ′
/(SW

+ ) F[W/W ′]

where NW(W ′) is the normalizer of W ′ in W .
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Sounds good, but what about

when |W | 6∈ F×, like W = GLn(Fq)?

Theorem(Mitchell 1985)

For SW polynomial one has a Brauer-isomorphism

of W -representations

S/(SW
+ ) ≈

F[W ]−mod
F[W ]

In other words, they have

the same composition factors.

6



Unfortunately, given only a Brauer-isomorphism,

you can’t equate W ′-fixed spaces.

Also, since W ′ ⊂ W might have

SW ′
not Cohen-Macaulay,

one shouldn’t look only at

SW ′
/(SW

+ ) = SW ′
⊗SW F

= TorS
W

0 (SW ′
, F).

where F := SW/(SW
+ ) as SW -module.

One should look at the rest of Tori !
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Theorem(–, Smith, Webb)

For SW polynomial and any subgroup W ′ ⊂ W ,

one has a virtual-Brauer-isomorphism of

NW (W ′)-representations

TorS
W

∗ (SW ′
, F) ≈

F[NW(W ′)]−mod
F[W/W ′]

where virtual means the left side is

∑

i≥0

(−1)iTorS
W

i (SW ′
, F)

in an appropriate Grothendieck group.

Proof idea

Re-work homologically Chevalley’s

proof via Normal Basis Theorem.
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II. Springer and the conjecture we want.

When SW is polynomial, call c ∈ W a

regular element if it has an eigenvector

v ∈ V := V ⊗F F

fixed by no reflections.

Call the eigenvalue ω ∈ F
×

for c

when acting on v its regular eigenvalue.
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Theorem(Springer 1972)

Assume SW polynomial and |W | ∈ F
×.

Let C = 〈c〉 for some regular element c,

with regular eigenvalue ω−1.

Then one has an isomorphism of

W × C-representations

S/(SW
+ ) ∼=

F[W×C]−mod
F[W ].

Here on S/(SW
+ ),

• W acts by linear substitutions,

• C acts by scalar substitutions

c(xi) = ωxi

c(f) = ωdf if deg(f) = d,

while on F[W ] the groups W, C act by

left, right-multiplication.
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When |W | ∈ F×, one can again

take W ′-fixed spaces in Springer’s theorem,

giving an isomorphism of

NW (W ′) × C-representations

SW ′
/(SW

+ ) ∼=
F[NW (W ′)×C]−mod

F[W/W ′]

Just equating the C-character on both sides

already gives a great combinatorial consequence...

11



(III. Why might we care?)

Theorem 1:

(–,Stanton,White 2004, –,Stanton,Webb 2005)

Let W ⊂ GL(V ) be finite with SW polynomial,

and C the cyclic subgroup generated

by a regular element. Assuming |W | ∈ F×,

the triple (X, X(q), C)

X = any set with transitive W -action,

say X = W/W ′

X(q) =
Hilb(SW ′

, q)

Hilb(SW , q)

C translating the cosets wW ′ in X

exhibits the cyclic sieving phenomenon:

for any c ∈ C and ω a root-of-unity one has

|Xc| = [X(q)]q=ω .
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We suspect one does not need |W | ∈ F×.

This would follow from...

Conjecture: When SW is polynomial,

for any subgroup W ′ ⊂ W , one has a

virtual Brauer-isomorphism

of NW (W ′) × C-representations

TorS
W

∗ (SW ′
, F) ≈

F[NW (W ′)×C]−mod
F[W/W ′].

Known:

– without C-action (the earlier theorem).

– for W ′ = 1 (–,Stanton,Webb, 2005)
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Whence the combinatorial consequence?

X(q) :=
Hilb(SW ′

, q)

Hilb(SW , q)

=
∑

i≥0

(−1)iHilb(TorS
W

i (SW ′
, F), q)

Why might you, the invariant theorist, care?

For W ′ ⊂ W = GLn(Fq) it’s tough to

compute Hilb(SW ′
, t). But believing the

the conjecture, an easy, fast GAP computation

using regular elements in GLn(F) gives

Hilb(SW ′
, t)

Hilb(SW , t)
mod tq

n−1 − 1.
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