### A glimpse of Minnesota combinatorics

#### Vic Reiner reiner@math.umn.edu

V. Reiner A glimpse of Minnesota combinatorics

ヘロト 人間 ト イヨト イヨト





2 Actitivities and interests



V. Reiner A glimpse of Minnesota combinatorics

ヘロア 人間 アメヨア 人間 アー









< ロ > < 同 > < 回 > < 回 > .









V. Reiner A glimpse of Minnesota combinatorics

< ロ > < 同 > < 回 > < 回 > .

## Personnel

#### Faculty

- Gregg Musiker (new!)
- Andrew Odlyzko
- Pavlo Pylyavskyy (new!)
- Vic Reiner
- Dennis Stanton
- Dennis White

#### Postdocs

- Jang Soo Kim
- Ricky Liu

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

## Personnel

#### Faculty

- Gregg Musiker (new!)
- Andrew Odlyzko
- Pavlo Pylyavskyy (new!)
- Vic Reiner
- Dennis Stanton
- Dennis White

#### Postdocs

- Jang Soo Kim
- Ricky Liu

э

< /₽ ▶

### More personnel

#### Students

- Adil Ali
- Pat Byrnes
- Alex Csar
- Kevin Dilks
- Rob Edman
- Jia Huang
- Thomas McConville
- Alex Miller
- Nathan Williams
- ... and more

 $\bullet \equiv \bullet$ 

## Activities

#### Weekly seminars:

- Combinatorics seminar (sometimes with subsidized dinner!)
- Student combinatorics seminar

2-semester grad course sequences:

- Intro to grad combinatorics (every other year)
- Topics in combinatorics (every other year)

< 回 > < 回 > < 回 >

## Activities

#### Weekly seminars:

- Combinatorics seminar (sometimes with subsidized dinner!)
- Student combinatorics seminar

#### 2-semester grad course sequences:

- Intro to grad combinatorics (every other year)
- Topics in combinatorics (every other year)

### Our interests

We are interested in central topics of combinatorics such as enumeration, as well as relations of combinatorics to the landscape of modern mathematics, such as

- algebra, including
  - representation theory
  - o number theory
  - commutative algebra
- geometry, including
  - discrete geometry
  - algebraic geometry
- topology
- probability
- analysis

< ロ > < 同 > < 回 > < 回 > .

### Our interests

We are interested in central topics of combinatorics such as enumeration, as well as relations of combinatorics to the landscape of modern mathematics, such as

- algebra, including
  - representation theory
  - number theory
  - commutative algebra
- geometry, including
  - discrete geometry
  - algebraic geometry
- topology
- probability
- analysis

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

### Our interests

We are interested in central topics of combinatorics such as enumeration, as well as relations of combinatorics to the landscape of modern mathematics, such as

- algebra, including
  - representation theory
  - number theory
  - commutative algebra
- geometry, including
  - discrete geometry
  - algebraic geometry
- topology
- probability
- analysis

< 回 > < 回 > < 回 >

### Our interests

We are interested in central topics of combinatorics such as enumeration, as well as relations of combinatorics to the landscape of modern mathematics, such as

- algebra, including
  - representation theory
  - number theory
  - commutative algebra
- geometry, including
  - discrete geometry
  - algebraic geometry
- topology
- probability
- analysis

・ 同 ト ・ ヨ ト ・ ヨ ト

### Our interests

We are interested in central topics of combinatorics such as enumeration, as well as relations of combinatorics to the landscape of modern mathematics, such as

- algebra, including
  - representation theory
  - number theory
  - commutative algebra
- geometry, including
  - discrete geometry
  - algebraic geometry
- topology
- probability
- analysis

・ 同 ト ・ ヨ ト ・ ヨ ト

### Our interests

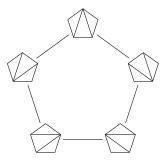
We are interested in central topics of combinatorics such as enumeration, as well as relations of combinatorics to the landscape of modern mathematics, such as

- algebra, including
  - representation theory
  - number theory
  - commutative algebra
- geometry, including
  - discrete geometry
  - algebraic geometry
- topology
- probability
- analysis



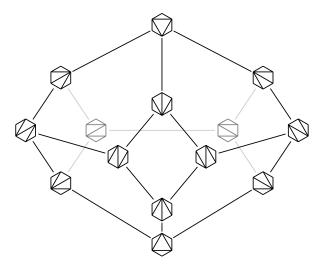
## Some counting

Ever counted the triangulations of a convex polygon? There are 5 for a pentagon...



< 一 →

#### There are 14 for a hexagon...



The numbers start  $1, 1, 2, 5, 14, 42, \cdots$ , and there are

$$\frac{1}{n+1}\binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}$$

for an (n+2)-sided polygon, but this isn't obvious!

This is called the  $n^{th}$  Catalan number. E.g. for n = 4, one has

$$\frac{1}{4+1}\binom{2\cdot 4}{4} = \frac{70}{5} = 14.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The numbers start  $1, 1, 2, 5, 14, 42, \cdots$ , and there are

$$\frac{1}{n+1}\binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}$$

for an (n+2)-sided polygon, but this isn't obvious!

This is called the  $n^{th}$  Catalan number. E.g. for n = 4, one has

$$\frac{1}{4+1}\binom{2\cdot 4}{4} = \frac{70}{5} = 14.$$

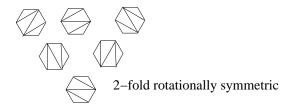
ヘロト 人間 ト イヨト イヨト

э.



## More counting

How many of them have 2-fold rotational symmetry? 3-fold rotational symmetry, etc?





3-fold rotationally symmetric

< A >

★ ∃ ▶ ★

#### There's a polynomial in q controlling this: the q-Catalan number

$$\frac{1}{[n+1]_q} \begin{bmatrix} 2n\\n \end{bmatrix}_q = \frac{[2n]_q}{[n+1]_q \cdot [n]_q}$$

where

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]!_q}{[k]!_q \cdot [n-k]!_q}$$

$$[m]!_q := [1]_q \cdot [2]_q \cdots [m-1]_q \cdot [m]_q$$

$$[m]_q := 1 + q + q^2 + \cdots q^{m-1} = \frac{1 - q^m}{1 - q}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

For example, with n = 4 again,

$$\frac{1}{[4+1]_q} \begin{bmatrix} 2 \cdot 4\\ 4 \end{bmatrix}_q = \frac{1}{[5]_q} \cdot \frac{[8]!_q}{[4]!_q \cdot [4]!_q}$$
$$= \frac{[8]_q [7]_q [6]_q [5]_q}{[5]_q [4]_q [3]_q [2]_q}$$
$$= \frac{(1-q^8)(1-q^7)(1-q^6)(1-q^5)}{(1-q^5)(1-q^4)(1-q^3)(1-q^2)}$$
$$= 1+q^2+q^3+2q^4+q^5+2q^6$$

 $+q^{7}+2q^{8}+q^{9}+q^{10}+q^{12}$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Theorem

Plugging in a primitive d<sup>th</sup> root-of-unity to the q-Catalan number

$$\frac{1}{[n+1]_q} \begin{bmatrix} 2n\\n \end{bmatrix}_q$$

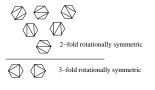
counts the d-fold rotationally symmetric triangulations of a regular (n + 2)-sided polygon.

ヘロト 人間 ト イヨト イヨト

For example, for the hexagon,

$$\frac{1}{[4+1]_q} \begin{bmatrix} 2 \cdot 4 \\ 4 \end{bmatrix}_q = 1 + q^2 + q^3 + 2q^4 + q^5 + 2q^6 + q^7 + 2q^8 + q^9 + q^{10} + q^{12}$$

=



14 plugging in 
$$q = e^{\frac{2\pi i}{1}} = +1$$
,  
6 plugging in  $q = e^{\frac{2\pi i}{2}} = -1$ ,  
2 plugging in  $q = e^{\frac{2\pi i}{3}}$ ,  
0 plugging in  $q = e^{\frac{2\pi i}{6}}$ .

ヘロア 人間 アメヨア 人間 アー

æ

What's with this *q*-binomial coefficient?

The *q*-binomial 
$$\begin{bmatrix} n \\ k \end{bmatrix}_q$$
 is full of meaning!

For example, when q is a power of a prime, and therefore counts the size of a finite field  $\mathbf{F}_{q}$ ,

the *q*-binomial counts *k*-dimensional subspaces of  $V = (\mathbf{F}_q)^n$ , the points in the Grassmannian manifold/variety Gr(k, V).

< ロ > < 同 > < 回 > < 回 > .

## Check this out...

#### The Catalan number

$$\frac{1}{n+1}\binom{2n}{n} = \frac{1}{2n+1}\binom{2n+1}{n}$$

also counts Z/(2n + 1)Z-orbits when one cycles *n* element subsets of  $Z/(2n + 1)Z \mod 2n + 1$ , and ...

• the q-Catalan number

$$\frac{1}{[n+1]_q} \begin{bmatrix} 2n\\n \end{bmatrix}_q = \frac{1}{[2n+1]_q} \begin{bmatrix} 2n+1\\n \end{bmatrix}_q$$

also counts  $\mathbf{F}_{q^{2n+1}}^{\mathsf{x}}$ -orbits when one lets  $\mathbf{F}_{q^{2n+1}}^{\mathsf{x}}$  cycle the *n*-dimensional  $\mathbf{F}_{q}$ -subspaces of  $\mathbf{F}_{q^{2n+1}} \cong (\mathbf{F}_{q})^{2n+1}$ .

▲ 伺 ▶ ▲ 国 ▶ ▲ 国 ▶

## Check this out...

The Catalan number

$$\frac{1}{n+1}\binom{2n}{n} = \frac{1}{2n+1}\binom{2n+1}{n}$$

also counts Z/(2n + 1)Z-orbits when one cycles *n* element subsets of  $Z/(2n + 1)Z \mod 2n + 1$ , and ...

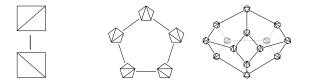
• the *q*-Catalan number

$$\frac{1}{[n+1]_q} \begin{bmatrix} 2n \\ n \end{bmatrix}_q = \frac{1}{[2n+1]_q} \begin{bmatrix} 2n+1 \\ n \end{bmatrix}_q$$

also counts  $\mathbf{F}_{q^{2n+1}}^{\mathsf{x}}$ -orbits when one lets  $\mathbf{F}_{q^{2n+1}}^{\mathsf{x}}$  cycle the *n*-dimensional  $\mathbf{F}_{q}$ -subspaces of  $\mathbf{F}_{q^{2n+1}} \cong (\mathbf{F}_{q})^{2n+1}$ .

### Flips between triangulations

#### Why did we draw triangulations connected by flip edges?



It makes an interesting convex polyhedron, the associahedron, but also reflects two bits of algebra and geometry...

## Ptolemy's relation

For four cocircular points, one has

Ptolemy's relation among their mutual distances:



*Ptolemy: x x' = ac + bd* 

So one can get rid of x', expressing it as

$$x' = \frac{ac + bd}{x} = acx^{-1} + bdx^{-2}$$

< 一 →

3 🕨 🖌 🖻

## Ptolemy's relation

For four cocircular points, one has

Ptolemy's relation among their mutual distances:



*Ptolemy: x x' = ac + bd* 

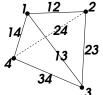
So one can get rid of x', expressing it as

$$x' = \frac{ac + bd}{x} = acx^{-1} + bdx^{-1}$$

### **Plücker's relations**

The 2 × 2 minors 
$$p_{ij} := \det \begin{bmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{bmatrix}$$
 of a 2 × 4 matrix  
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}$$

satisfy a Plücker relation:



# Plücker: P<sub>13</sub>P<sub>24</sub>=P<sub>12</sub>P<sub>34</sub>+ P<sub>4</sub>P<sub>23</sub>

So one can get rid of  $p_{24}$ , expressing it as

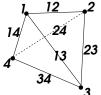
$$p_{24} = \frac{p_{12}p_{34} + p_{14}p_{23}}{p_{13}} = p_{12}p_{34}p_{13}^{-1} + p_{14}p_{23}p_{13}^{-1}$$

ъ

### **Plücker's relations**

The 2 × 2 minors 
$$p_{ij} := \det \begin{bmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{bmatrix}$$
 of a 2 × 4 matrix  
 $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}$ 

satisfy a Plücker relation:



Plücker: P<sub>13</sub>P<sub>24</sub>=P<sub>12</sub>P<sub>34</sub>+ P<sub>4</sub>P<sub>23</sub>

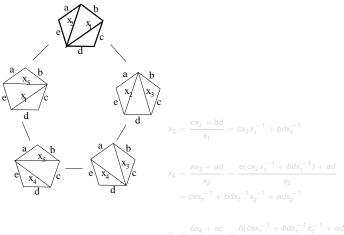
So one can get rid of  $p_{24}$ , expressing it as

$$p_{24} = \frac{p_{12}p_{34} + p_{14}p_{23}}{p_{13}} = p_{12}p_{34}p_{13}^{-1} + p_{14}p_{23}p_{13}^{-1}$$

For *n* cocircular points, (or  $2 \times 2$  minors of a  $2 \times n$  matrix),

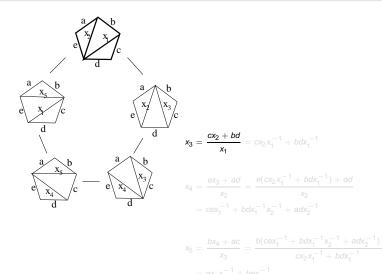
this lets one can express any distance as a rational function in the edges of a chosen triangulation

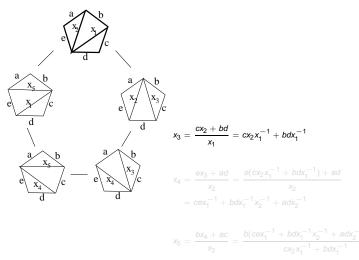
・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・



$$x_5 = \frac{bx_4 + ac}{x_3} = \frac{b(cex_1^{-1} + bdx_1^{-1}x_2^{-1} + adx_2^{-1}) + ac}{cx_2x_1^{-1} + bdx_1^{-1}}$$
$$= ax_1x_2^{-1} + bex_2^{-1}$$

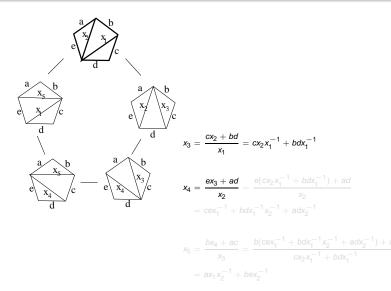
▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで



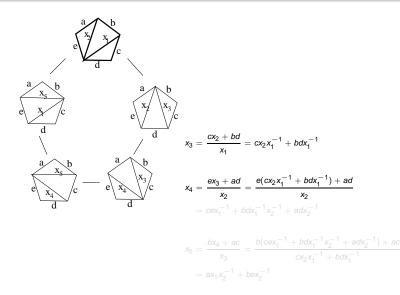


 $=ax_1x_2^{-1}+bex_2^{-1}$ 

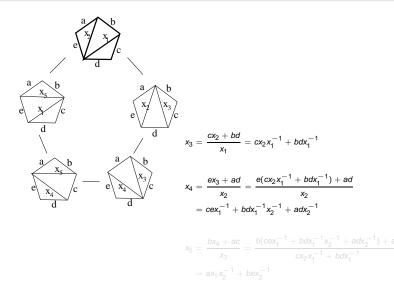
▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで



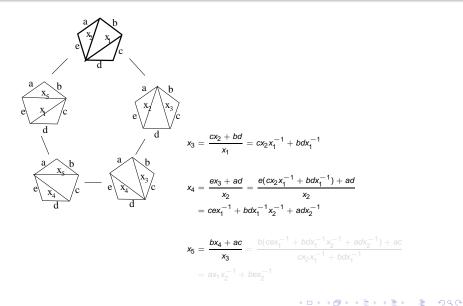
▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

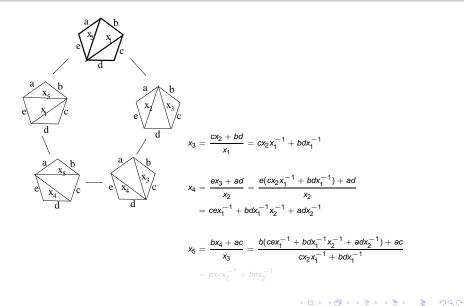


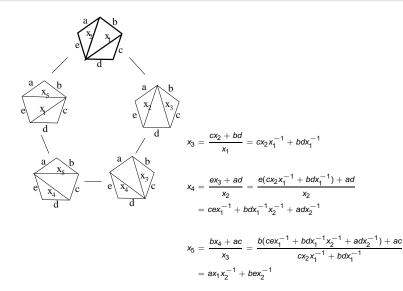
▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで



▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで







< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Laurent polynomials (the Laurent phenomenon),
- with nonnnegative coefficients.

The Ptolemy relations among mutual distances, and Plücker relations in the coordinate ring for the Grassmannian of 2-planes are the first examples of cluster algebras.

< 回 > < 回 > < 回 >

- Laurent polynomials (the Laurent phenomenon),
- with nonnnegative coefficients.

The Ptolemy relations among mutual distances, and Plücker relations in the coordinate ring for the Grassmannian of 2-planes are the first examples of cluster algebras.

< 回 > < 回 > < 回 >

- Laurent polynomials (the Laurent phenomenon),
- with nonnnegative coefficients.

The Ptolemy relations among mutual distances, and Plücker relations in the coordinate ring for the Grassmannian of 2-planes are the first examples of cluster algebras.

< 回 > < 回 > < 回 >

- Laurent polynomials (the Laurent phenomenon),
- with nonnnegative coefficients.

The Ptolemy relations among mutual distances, and Plücker relations in the coordinate ring for the Grassmannian of 2-planes are the first examples of cluster algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Cluster algebras arise more generally, related to

- triangulations on other surfaces with boundary.
- coordinate rings of all Grassmannians.

Finding explicit formulas for the Laurent polynomials, and proving they have nonnegative coefficients is a combinatorial challenge.

< □ > < 同 > < 回 > < 回 > < 回 >

Cluster algebras arise more generally, related to

- triangulations on other surfaces with boundary.
- coordinate rings of all Grassmannians.

Finding explicit formulas for the Laurent polynomials, and proving they have nonnegative coefficients is a combinatorial challenge.

< □ > < 同 > < 回 > < 回 > < 回 >

Cluster algebras arise more generally, related to

- triangulations on other surfaces with boundary.
- coordinate rings of all Grassmannians.

Finding explicit formulas for the Laurent polynomials, and proving they have nonnegative coefficients is a combinatorial challenge.

### Thanks for listening!

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

∃ 990