q-counting and invariant theory

Vic Reined University of Minnesota

Summer School in Algebraic Combinatorics Krakón 2022

Lecture
1: Invitation to q-counts
Monday \& representation theory

- quotients of Bodean algebras

2: Representation theory review
Tuesday \& reflection groups
3: Molien's Theorem
Thus day \& coinvaviant algebras
4: Cyclic Sieving Phenomena (CSP)
Thursday si springer's Theorem
see ECCO 2018 lecture notes
5: More CSP's
Friday \& the deformation idea

Lecture 1:
Invitation to q-counts
\& representation theory

- quotients of Bodean algebras

DEF'N: Boolean algebra

$$
2^{[n]}:=\left\{\begin{array}{c}
\text { all subsets of } \\
{[n]:=\{1,2, \ldots, n\}}
\end{array}\right\}
$$

thought of as a poses $:=P$
$:=$ partially ordered set

$$
\text { via } A \leq B \text { if } A \subseteq B
$$

EXAMPLES:

$$
2^{[2]}
$$

$2^{[n]}$ is a ranked poset, whose rank numbers

have many nice properties...
$2^{[4]}$

rank sizes:

$$
\begin{aligned}
& r_{4}=1=\binom{4}{4} \\
& r_{3}=4=\binom{4}{3} \\
& r_{2}=6=\binom{4}{2} \\
& r_{1}=4=\binom{4}{1} \\
& r_{0}=1=\binom{4}{0}
\end{aligned}
$$

PROPERTIES:

- Symmetry $\binom{n}{k}=\binom{n}{n-k}$
- Alternating sum

$$
\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\ldots \pm\binom{ n}{n}=0
$$

- Rank generating function

$$
\binom{n}{0}+\binom{n}{1} q^{1}+\binom{n}{2} q^{2}+\ldots=(1+q)^{n}
$$

- Unimodality

$$
\binom{n}{0} \leq\binom{ n}{1} \leq \ldots \leq\binom{ n}{\lfloor n / 2\rfloor}
$$

For any subgroup G of $G_{n}=\left\{\begin{array}{c}\text { permutations } \\ \text { of }[n]\end{array}\right\}$ these properties will generalize to the quotient poses

$$
\left.2^{[n]} / G:=G \text {-orbits } \bigcup \text { of subsets of }[n]\right]
$$

$$
\begin{array}{r}
\theta_{1} \leq \theta_{2} \text { if } \exists \delta_{1} \in \theta_{1} \\
\delta_{2} \in \theta_{2}
\end{array}
$$

with $\delta_{1} \subseteq S_{2}$
Several interesting combinatorial objects \& posets are of the form

$$
2^{[n]} / G
$$

EXAMPLE Black/white ned laces
$=2^{[n]} / C_{n}$ where $C_{n}=$ cyclic group

$$
\underset{\substack{n-123 \\
=n-\ldots y d e}}{ }\left\langle\begin{array}{c}
(1)
\end{array}\right.
$$

$2^{663} / c_{6}$

$$
r_{6}=1
$$

$$
r_{5}=1
$$

$$
r_{4}=3
$$

$$
r_{3}=4
$$

$$
r_{2}=3
$$

$\theta_{1}=\{134$,
356,
146, (5)
(6) (1)

125 ,
$236\}$
(4) - (3)

$$
r_{1}=1
$$

$$
r_{0}=1
$$

EXAMPLE Ferrers diagrams λ in a $k \times l$ rectangle

EXAMPLE Unlabeled graphs on n vertices

THEOREM For any subgroup G of G_{n}, the rank numbers $r_{0}, r_{1}, \ldots, r_{n}$ for $2^{(n)} / G$ saisify:

- Symmetry: $r_{k}=r_{n-k}$
- Alternating sum: $r_{0}-r_{1}+r_{2}-r_{3}+\ldots \pm r_{n}=\#$ selfde Bruin 959
complementary orbit

Rank generating function:
Redfield 1927, Poly 1937

$$
\left.\sum_{k=0}^{n} n q^{k}=\frac{1}{|G|} \sum_{\sigma \in G} \prod_{\substack{\text { codes } \\ C\left(1+q^{\prime}\right.}}^{|c|}\right)
$$

- Unimodality: $r_{0} \leq r_{1} \leq \ldots \leq r_{[1 / 2]}$
- Symmetry: $r_{k}=r_{n-k}$
- Unimodality: $r_{0} \leq r_{1} \leq \ldots \leq r_{[n / 2]}$

Altemating sum:
deBruin 7959
$r_{0}-r_{1}+r_{2}-r_{3}+\ldots \pm r_{n}=\#$ self - complementary orbits θ

\ldots and it does generalize $\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\ldots \pm\binom{ n}{n}=0$.

Ramk generating function:
Redfield 1927, Polya 1937

$$
\left.\sum_{k=0}^{n} r q^{k}=\frac{1}{|G|} \sum_{\sigma \in G} \prod_{\substack{\text { cydes } \\ C(1+\sigma}}^{|c|}\right)
$$

$2^{[6]} / c_{6}$

$$
\begin{aligned}
& C_{6}=\{1,(123456),(135)(2466),(14)(25)(36),(153)(264),(165432)\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6}\left[1+6 q+15 q^{2}+20 q^{3}+15 q^{4}+6 q^{5}+q^{6}\right. \\
& +2 \\
& +2 \quad 3^{4} q^{3} \\
& \left.+1+3 q^{2}+3 q^{4}+q^{6}\right] \\
& =1+q+3 q^{2}+4 q^{3}+3 q^{4}+q^{5}+q^{6}
\end{aligned}
$$

(Re-usable!) Proof Ideas:
Linearize, and re-interpret

- Cardinalities $=$ dimensions
- generating functions or q-counts
= graded dimensions
or Hilbert series
or graded traces
- prove equalities via isomorphisms, inequalities via linear injections / surjectoons
- identities can arise from
equality of traces
for conjugate elements h, ghg^{-1}
acting in a representation group
$G \xrightarrow{\rho} G L(V) \bigcap_{\text {general linear group }}$

$$
\begin{aligned}
& \operatorname{Trace}\left(\rho\left(\rho h_{g}^{-1}\right)\right)=\operatorname{Trace}\left(\rho(g) \rho(h) \rho(g)^{-1}\right) \\
&=\operatorname{Trace}(\rho(h)) \\
& \operatorname{REcALL}: \operatorname{Trace}(A B)=\operatorname{Trace}(B A) \\
& \Rightarrow \operatorname{Trace}\left(P A P^{-1}\right)=\operatorname{Tr}\left(P^{-1} \cdot P A\right)=\operatorname{Tr}(A)
\end{aligned}
$$

Linearize...

$$
\text { let } V=\mathbb{C}^{2} \text { with } \mathbb{C} \text {-basis }\{b, w\}
$$

Elements $T \in G L(V) \cong G L_{2}(\mathbb{C}) \vartheta_{\text {abl }}$ 2×2 myertible act linearly on V.

EXAMPLES

$$
\begin{aligned}
& \left.t=\begin{array}{l}
b\left[\begin{array}{ll}
b & \omega \\
0 & 1 \\
1 & 0
\end{array}\right] \begin{array}{c}
\text { swaps } \\
t(b)=\omega \\
t(\omega)=b
\end{array} \\
\left.s=\begin{array}{c}
b \\
\omega
\end{array} \begin{array}{cc}
-1 & 0 \\
0 & +1
\end{array}\right] \begin{array}{l}
s \text { coles } \\
s(b)=-b \\
s(\omega)=\omega
\end{array}
\end{array} . \begin{array}{l}
\\
s
\end{array}\right]
\end{aligned}
$$

(and in fact s, t are conjugate in $G(V)$, since t has eigenvalues $+1,-1$ eigenvectors $b+w, b-\omega$)

The $n^{\text {th }}$ tensor power

$$
T^{n}(V):=V^{\otimes \theta^{n}}:=\underbrace{V \otimes V_{i} \ldots \otimes V}_{n \text { factors }}
$$

has actions of ...

- GL(V) diagonally:

$$
T\left(v_{1} \otimes \ldots \otimes v_{n}\right):=T\left(v_{1}\right) \otimes \ldots \otimes T\left(v_{n}\right)
$$

C and then expand this multi-lineorly

- Sn positionally: n.

$$
\sigma\left(v_{1} \otimes \ldots \otimes v_{n}\right):=V_{\sigma^{-1}(1)} \otimes \ldots \otimes V_{\sigma^{\prime}}(n)
$$

... and the actions commute:

$$
\begin{gathered}
\sigma T\left(v_{1} \otimes \ldots v_{n}\right)=T \sigma\left(v_{1} \otimes \ldots \otimes v_{n}\right) \\
\forall\left(v_{\sigma^{-1}(1)}\right) \otimes \ldots \otimes T\left(v_{\sigma^{-1}(n)}\right)
\end{gathered}
$$

Since $V=\mathbb{C}^{2}$ has \mathbb{C} basis $\{b, \omega\}$,

$$
V^{\otimes n} \text { has } \mathbb{C} \text {-basis }\left\{e_{A}\right\}_{A \subset[n]}
$$

of monomial tensors indexed by words in $\{b, \omega\}^{n}$ with $A:=$ positions where b oc curs

EXAMPLE $n=4$

$$
\begin{aligned}
& \text { eXAMPLE } n=4 \\
& e_{\{2\}}=\dot{\omega} \otimes \hat{b}^{2} \otimes \omega \otimes \omega \leftrightarrow \omega \omega \omega \omega \\
& e_{\{1,4\}}=b \otimes \omega \leftrightarrow \omega \otimes b \leftrightarrow b \omega \omega b
\end{aligned}
$$

Permutations $\sigma \in G_{n}$ also permute there basis elements:

$$
\begin{aligned}
\sigma\left(e_{A}\right) & =e_{\sigma^{-1}(A)} \\
\text { e.g. }(123)(\underbrace{b w w b}_{e_{\{1,4\}}}) & =\underbrace{\omega w b b}_{e_{\{3,4\}}} \\
A=\{1,4\} & \sigma^{-1}(A)=\{3,4\}
\end{aligned}
$$

Hence, for any subgroup G of G_{n},
the G-fixed subspace

$$
\left(V^{\left.()^{n}\right)}\right)^{G}:=\left\{x \in V^{\theta^{n}}: g(x)=x \quad \forall x \in G\right\}
$$

has \mathbb{C}-basis $\left\{e_{O}\right\}_{O \in 2^{[n]} / G}$
indexed by G-orbits θ, where $e_{O}:=\sum_{A \in O} e_{A}$ EXAMPLE $G=C_{4}$ inside G_{4} $e_{0,0}^{0-0}=\omega b \omega b+b \omega b \omega$
$e_{0,}=\omega b b b+b \omega b b+b b \omega b+b b b \omega$ both lie in $\left(V^{04}\right)^{G}$

Since the rank sizes $r_{0}, r_{1}, \ldots, r_{n}$ of the orbit poset $2^{[n]} / G$ can be reinterpreted as $r_{k}=\operatorname{dim}_{C}\left(V^{\otimes n}\right)_{k}^{G}=\#\binom{[n]}{k} / G$ one can now give a (silly) proof of ...

Symmetry: $r_{k}=r_{n-k}$
proof: Recall $t={ }_{\omega}\left[\begin{array}{ll}b & \omega \\ 0 & 1 \\ 1 & 0\end{array}\right] \in G L(v)$ swaps $b \stackrel{t}{\rightleftarrows} \omega$, and so it permutes the \mathbb{C}-basis $\left\{e_{A}\right\}_{A s[n]}$ for $V^{\text {on }}$
via $e_{A} \stackrel{t}{\longleftrightarrow} e_{[n J A}$

$$
\text { e.g. } t(\underbrace{\text { bwbww }^{2}}_{e_{\{1,3\}}})=\underbrace{\text { wbwbb }}_{e_{\{2,4,5\}}}
$$

Hence it gives a \mathbb{C}-linear isomorphism $\left(V^{\otimes n}\right)_{k} \xrightarrow[\sim]{t}\left(V^{\otimes n}\right)_{n-k}$. But since $t \in G L(V)$ commutes with the action of $G \subseteq G_{n}$, this isomophism t restricts to a \mathbb{C}-linear isomorphism

$$
\underbrace{\left(V^{(\infty n}\right)_{b}^{G}} \stackrel{t}{\sim}_{\left(V^{(\infty n}\right)_{n-k}^{G}}^{\underbrace{t}}
$$

dimension r_{k}
dimension

$$
r_{n-k}
$$

On our way to less silly proofs, let's start by re-interpreting the rank generating function:

PROPOSITION:
The matrix $S(q):=b\left[\begin{array}{ll}b & w \\ q & 0 \\ 0 & 1\end{array}\right]$ in $G L(V)$
acts on $\left(V^{(\otimes n}\right)^{G}$ with trace $r_{0}+r_{1} q+r_{2} q^{2}+\ldots+r_{n} q^{n}$.
proof: Since $s(q)(b)=$ B $^{. b}$

$$
\begin{aligned}
& s(q)(w)=b^{2}, w, \\
& s(q)(w)=1 \cdot w,
\end{aligned}
$$

$s(q)$ scales every \mathbb{C}-basis element C_{A} in $V^{\otimes n}$:

$$
s(q)\left(e_{A}\right)=q^{|A|} \cdot e_{A}
$$

e.g. $s(q)(b \omega b \omega \omega)=q b \otimes \omega \otimes q b \otimes \omega \otimes \omega=q^{2} b \omega b \omega \omega$

Hence $s(q)$ scales all of $\left(V^{(8 n}\right)_{k}$ by q^{k} including the subspace $\left(V^{(\theta n}\right)_{k}^{G}$.
So its trace on $\left(V^{(8 n}\right)^{G}=\bigoplus_{k=0}^{n}\left(V^{(8 n}\right)_{k}^{G}$

$$
\text { is } \sum_{k=0}^{n} q^{k} \cdot \underbrace{\operatorname{dim}_{\mathbb{C}}\left(V^{\otimes n}\right)_{k}^{G}}_{r_{k}}=\sum_{k=0}^{n} r_{k} q^{k}
$$

PROPOSITION: The matrix $S(q):=b\left[\begin{array}{ll}b & w \\ q & 0 \\ 0 & 1\end{array}\right]$ acts on $\left(V^{(\theta n}\right)^{G}$ with trace $r_{0}+r_{1} q+r_{2} q^{2}+\ldots+r_{n} q^{n}$. COROLCARY: In particular, $s=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]=s(-1)$ acts on $\left(V^{\text {on }}\right)^{G}$ with trace $r_{0}-r_{1}+r_{2}-\ldots \pm r_{n}$.

This lets us prove...
Alternating sum: $r_{0}-r_{1}+r_{2}-r_{3}+\ldots \pm r_{n}=$ \# self deBruijn 1959
prof: Since $t=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is wrinugate to $s=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ in $G(V)$, it acts with same trace on $\left(V^{\otimes n}\right) G$, so with trace $r_{0}-r_{1}+r_{2} \cdots \pm r_{n}$.
But since we saw it permutes $t\left(e_{A}\right)=e_{[n] \backslash A,}$ this means it also permutes the \mathbb{C}-basis

$$
t\left(e_{\theta}\right)= \begin{cases}e_{\theta} & \text { if } \theta \text { is self-complementary } \\ e_{O,} & \text { if } \theta \text { is not self-complementary } \\ \text { and } A \in \theta \text { has }[n] A \in \theta^{\prime}\end{cases}
$$

EXAMPLE

$$
\begin{aligned}
t\left(e_{o q}\right) & =t(b \omega b w+w b w b) \\
& =\omega b w b+b w b w=e_{0} \\
t\left(e_{0}\right) & =t(b w w w+w b w w \\
& +w w b w+w w b) \\
& =w b b b+b w b b \\
& =e_{0}+b b b+b b b w
\end{aligned}
$$

Hence the trace of t on $\left(V^{\otimes G}\right)^{n}$ is also this number of t-fixed orbits e_{θ}, that is, the number which are self-complementony.

Let's sketch proofs for the last two properties leaving details for the EXERCISE SESSIONS

- Rank generating function: Redfied 1927, Pola 1937

$$
\sum_{k=0}^{n} q^{k}=\frac{1}{|G|} \sum_{\sigma \in G} \prod_{\substack{\text { cycles } \\ C d \sigma}}^{1\left(1+q^{1 c}\right)}
$$

proof
proof

$$
\sum_{k=0}^{n} r_{k} q^{k}=\sum_{k=0}^{n} \operatorname{dim}_{\mathbb{C}}\left(V^{\otimes n}\right)_{k}^{G} \cdot q^{k}
$$

ExERCISE 1.12(d)
For a finite group rep.

$$
\begin{aligned}
& G \xrightarrow{\rho} G L(u) \text {, } \\
& \operatorname{dim}_{G} U^{G}=\frac{1}{1 G} \sum_{\sigma \in G} \operatorname{Trace}(\rho(\sigma))
\end{aligned}
$$

$$
=\frac{1}{|G|} \sum_{\sigma \in G} \underbrace{\left(\sum_{k}^{n} q^{k} \cdot \operatorname{Trace}_{(V o n)_{k}}(\sigma)\right)}_{k=0}
$$

Exercise $1.13(c)$
$\begin{gathered}\text { These two } \\ \text { are equal }\end{gathered}$
$|G|$
$\prod_{\sigma \in G}$
$\prod_{\substack{\text { cydes } \\ c \text { of } \sigma}}(1+q|c|)$

$$
\xlongequal{\nu} \sum_{k=0}^{n}\left(\frac{1}{|G|} \sum_{\sigma \in G} \operatorname{Trace}_{(v o r)_{k}^{(\sigma)}}^{(\sigma)} q^{k}\right.
$$

- Unimodality: $r_{0} \leq r_{1} \leq \ldots \leq r_{[r / 2]}$
proof We want to show that

$$
\begin{aligned}
& \text { etch: We want to show that } \\
& \operatorname{dim}_{\mathbb{C}}\left(V^{(2 n}\right)_{k}^{r_{k}} \leq r_{k+1} \quad \text { for } k<\frac{n}{2} \\
& \operatorname{dim}_{\mathbb{C}}\left(V^{(2 n}\right)_{k+1}^{G}
\end{aligned}
$$

so look for a \mathbb{G} linear injection
(*) $\quad\left(V^{\left(\theta^{n}\right.}\right)_{k}^{G} \longleftrightarrow\left(V^{\otimes n}\right)_{k+1}^{G}$ when $k<\frac{n}{2}$.

It would be even better to have a G linear injection

$$
\left(V^{* n}\right)_{k} \xrightarrow{U_{k}}\left(V^{\otimes n}\right)_{k+1} \text { for } k<\frac{n}{2}
$$

that commutes with the action of σ_{n} on $\left(V^{()^{n}}\right)_{k}$, and hence with every subgroup $G m G_{n}$.

Then it would restrict to an injection as in ($*$).

There is an obvious candidate for U_{k}, namely $\left(V^{\otimes n}\right)_{k} \xrightarrow{U_{k}}\left(V^{\otimes n}\right)_{k+1}$
given by

$$
e_{A} \longmapsto \sum_{\substack{B=[n]: \\|B|=k+1 \\ B \supset A}} e_{B}
$$

EXAMPLE $n=5$

$$
\begin{aligned}
& U_{2}\left(e_{\{1,3\}}\right)=e_{\{1,2,3\}}+e_{\{1,3,4\}}+e_{\{1,3,5\}} \\
& \text { ie. } U_{2}(b w b w w)=\text { bbbww }+ \text { bwbbw }+ \text { bwbwb }
\end{aligned}
$$

EXERCISE 1.1.4(a) arks you to check U_{k} that commutes with the action of G_{n}.

EXERCISE $11.4(b)$-(f) takes you through a proof that U_{k} is injective for $k<n / 2$, by showing the map $D_{k}\left(e_{A}\right):=\sum_{B \subseteq[n]:} e_{B}$

$$
|B|=k-1,
$$

$$
B \subset A
$$

satisfies the commutation relation

$$
D_{k+1} U_{k}-U_{k-1} D_{k}=(n-2 k) \cdot I d_{\left((\sin)_{k}\right.}
$$

which leads to a proof that
$D_{k+1} U_{k}$ is positive definite for $k<\frac{n}{2}$,
$\Rightarrow D_{k+1} U_{k}$ is non-singular,
$\Rightarrow \quad U_{k}$ is injective.

RENIARK 1: This commutation relation

$$
D_{k+1} U_{k}-U_{k-1} D_{k}=(n-2 k) \cdot I d_{\left(v^{2 n+}\right)_{k}}
$$

and injectivity of U_{k} are closely related to representations of $s_{2}(\mathbb{C})$ on $V=\mathbb{C}^{2}$ and on $V^{* n}$
and theory of crystal bases as in Prof. Schilling's lectures.

REMARK 2: One can extend the above theory to show (Stanley 1984) that the posits $2^{[n]} / G$ are all

$$
\text { Peck:=} \begin{aligned}
\text { rank-symmetric (we saw) } \\
\text { rank-unimodal (we saw) } \\
\text { stronglySpemer : }=\text { for all } k, \text { the max } \\
\text { size }\left|A_{1}\right|+\left|A_{2}\right|+\ldots+\left|A_{k}\right| \\
\text { of a union of } k \\
\text { autichains in } 22^{[n]} / G \\
\text { is the max of } r_{i_{i}}+\ldots+r_{i k}
\end{aligned}
$$

Hard!
(Hard! stronger property of a symmetric chain decomposition

= decomposition into disjoint saturated chains, each symmetric about the middle rank

THEOREM (Hersh \& Schilling 2011)

$$
2^{[n]} / C_{n} \text { asdic group }
$$

does have an explicit symmetric chain decomposition
(inspired by the theory of crystal bases \sum_{0})

