g- counting and invariant theory

Vic Reiner University of Minnesota

Summer School in Algebraic Combinatorics Kraków 2022

## Lecture 1:

Invitation to q-counts & representation theory - quotients of Bodean algebras

DEF'N: Boolean algebra  $2^{[n]} := \left\{ all \text{ subsets of } \\ [n] := \left\{ 1, 2, ..., n^{2} \right\} \right\}$ 



2<sup>th]</sup> is a ranked poset, whose rank numbers ro, r, \_\_, rn (n)  $\begin{pmatrix} n \\ p \end{pmatrix} \begin{pmatrix} n \\ 1 \end{pmatrix}$ have many nice properties...



• Symmetry 
$$\binom{n}{k} = \binom{n}{n-k}$$

• Alternating sum  

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots \pm \binom{n}{n} = 0$$

Rank generating function  

$$\binom{\eta}{\upsilon} + \binom{\eta}{\imath}q' + \binom{\eta}{2}q^2 + \dots = (1+q)^n$$

• Unimodality  
$$\binom{n}{0} \leq \binom{n}{1} \leq \dots \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

For any subgroup 
$$G_1$$
 of  $G_n = \{pennutations\}$   
these properties will generalize to the  
quotient poset  
 $2^{(n)}/G_1 := G_1 - orbits ()$  of subsets of  $[n]$   
ordered via  
 $O_1 \leq O_2$  if  $\exists 8_1 \in O_1$   
 $S_2 \in O_2$   
with  $S_1 \subseteq S_2$   
Several interesting combinatorial  
objects a posets are of the form  
 $2^{(n)}/G_1$ 

- -





EXAMPLE Unlabeled graphs on n vertices =  $2^{\binom{[n]}{2}}/\binom{m}{n}$  semuting the edges of  $K_n$ Gn 25 (2 2 r6= 1 24 Q={K,Z,r\_=1 r.=2 rz=3 O₂={ □, 𝔅, ... } r\_=2 0 r,=1 r=1 0 0 0 0



Symmetry: rk=rn-k Unimodality: rosris...sr

Alternating sun: deBrujin 1959

ro-ri+r-rz+...trn= #self-complementary orbits O



... and it does generalize  $\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots \pm \binom{n}{n} = 0$ .





$$C_{6} = \left\{ 1, (123456), (135)(246), (14)(25)(36), (153)(264), (165432) \right\}$$

$$\frac{1}{|C_{6}|} \sum_{\sigma \in C_{6}} \prod_{\substack{cycles \\ c'm\sigma}} (|+q|^{1cl}) = \frac{1}{6} \left( (1+q)^{6} + 2(1+q^{6}) + 2(1+q^{3})^{2} + (1+q^{2})^{3} \right)$$

$$= \frac{1}{6} \left[ 1 + 6q + 15q^{2} + 20q^{3} + 15q^{4} + 6q^{5} + q^{6} + 2q^{6} +$$

(Re-usable!) Proof Ideas: Linearize, and re-interpret

cardinalities = dimensions

· generating functions or q-counts = groded dimensions or Hilbert series or graded traces

 prove equalitées via isomorphisms, inequalitées via linear injections / surjectors

• identities can arise from  
equality of traces  
for conjugate elements h, ghg<sup>1</sup>  
acting in a representation  

$$G \xrightarrow{\rho} GL(V)$$
 general linear grap

$$Trace(\rho(qhq^{-1})) = Trace(\rho(q)\rho(h)\rho(q)^{-1})$$
$$= Trace(\rho(h))$$

Linearize...  
let 
$$V = \mathbb{C}^{2}$$
 with  $\mathbb{C}$ -basis  $\{b, \omega\}$   
Elements  $T \in GL(V) \cong GL_{2}(\mathbb{C})$   
act linearly on  $V$ .  
EXAMPLES  
 $t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  swaps  
 $t(b) = \omega$   
 $t(b) = \omega$   
 $t(\omega) = b$   
 $s = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$   $t(b) = \omega$   
 $t(\omega) = b$   
 $s = \begin{bmatrix} b \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$  scales  
 $s(b) = -b$   
 $s(\omega) = \omega$   
(and in fact s, t are conjugate in GL(V),  
since t has eigenvalues  $\pm 1$ ,  $-1$   
eigenvectors  $b \pm \omega$ ,  $b - \omega$ )

The n<sup>th</sup> tensor power  

$$T^{n}(V) := V^{\otimes n} := V \otimes V \otimes ... \otimes V$$
  
has actions of ...  
GL(V) diagonally:  
 $T(v_{1} \otimes ... \otimes v_{n}) := T(v_{1}) \otimes ... \otimes T(v_{n})$   
Cand then expand  
this multi-linearly  
 $G_{n}$  positionally:  
 $\sigma(v_{1} \otimes ... \otimes v_{n}) := V_{\sigma(n)} \otimes ... \otimes V_{\sigma(n)}$ 

... and the actions commute:

$$\sigma T(v, \otimes ... \otimes v_n) = T\sigma(v, \otimes ... \otimes v_n)$$

$$T(v_{\sigma'(n)}) \otimes ... \otimes T(v_{\sigma'(n)})$$

Since  $V = \mathbb{C}^2$  has  $\mathbb{C}$  basis  $\{b, \omega\}$ ,  $V^{\otimes n}$  has  $\mathbb{C}$ -basis  $\{e_A\}_{A = [n]}$ of monomial tensors indexed by words in  $\{b, \omega\}^n$ with A:= positions where b occurs

EXAMPLE n=4  $e_{\{2\}} = \omega \otimes b \otimes \omega \otimes \omega \iff \omega \otimes \omega \otimes \omega$  $e_{\{1,4\}} = b \otimes \omega \otimes \omega \otimes b \iff b \otimes \omega \otimes b$ 

Permutations  $\sigma \in G_h$  also permute these basis elements :  $\sigma(e_A) = e_{\sigma'(A)}$ e.g. (123) (buwb) = wwbb  $e_{[1,4]}$   $e_{[3,4]}$ A = i,4j  $\sigma'(A) = [3,4]$ 



Since the rank sizes ro, r, ..., r, of the orbit poset 2<sup>ChJ</sup>/G1 can be re-interpreted as  $r_{k} = \dim_{C} \left( \sqrt{69} \right)_{k}^{G} = \# \left( \frac{\ln 3}{k} \right) / G_{1}$ one can now give a (silly) proof of ... Symmetry: rk=rn-k proof: Recall  $t = \frac{5}{10} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in GL(V)$  swaps betwy and so it permutes the Gbasis Sen Jasim to Von via CA C P ENJIA e.g. t(bubuw) = ububb e<sub>[2,4,5</sub>] e11.37 Hence it gives a C-linear isomorphism  $(V^{\otimes n})_{k} \xrightarrow{t} (V^{\otimes n})_{n-k}$ . But since  $t \in GL(V)$  commutes with the action of  $G \subseteq G_n$ , this isomorphism t restricts to a C-linear isomorphism  $(V^{\otimes n})^{G}_{k} \xrightarrow{t} (V^{\otimes n})^{G'}_{n-k}$ 

dimension

rk

dimension

nk

On our way to less silly proofs, let's start  
by re-interpreting the rank generating function:  
**PROPOSITION:**  
The moduly 
$$S(q):= b \begin{bmatrix} q & 0 \\ 0 & 1 \end{bmatrix}$$
 in  $GL(V)$   
acts on  $(V^{\otimes n})^G$  with trace  $r_0 + r_1 q + r_2 q^2 + \dots + r_n q^n$ .  
**proof:** Since  $s(q)(b) = g \cdot b$   
 $s(q)(w) = 1 \cdot w$ ,  
 $s(q)$  scales every C-basis element  $e_A$  in  $V^{\otimes n}$ .  
 $s(q)(e_A) = q^{|A|} \cdot e_A$   
e.g.  $s(q)(bwbww) = gb \otimes w \otimes gb \otimes w \otimes w = g^2 bwbww$   
Hence  $s(q)$  scales all of  $(V^{\otimes n})_k$  by  $q^k$   
including the subspace  $(V^{\otimes n})_k^G$ .  
So its trace on  $(V^{\otimes n})_s^G = \bigoplus_{k=0}^m (V^{\otimes n})_k^G$   
is  $\sum_{k=0}^n q^k \cdot \dim_C (V^{\otimes n})_k^G = \sum_{k=0}^n r_k q^k$ 

PROPOSITION: The matrix 
$$S(q):= b \begin{bmatrix} b & w \\ q & 0 \\ 0 & 1 \end{bmatrix}$$
  
acts on  $(\sqrt{20n})^{G}$  with trace  $r_{0}+r_{1}q+r_{2}q^{2}+r_{1}r_{1}q^{2}$ .  
COROLLARY: In particular,  $s = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = S(-1)$   
acts on  $(\sqrt{20n})^{G}$  with trace  $r_{0}-r_{1}+r_{2}-...+r_{n}$ .  
This lets us prove ...  
Alternating sum:  $r_{0}-r_{1}+r_{2}-r_{3}+...+r_{n}=#self$ -  
complementary orbits of  
proof: Since  $t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  is anyingate to  $s = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$   
in GL(V), it acts with same trace on  $(\sqrt{20n})^{G_{1}}$ ,  
so with trace  $r_{0}-r_{3}+r_{2}-...+r_{n}$ .  
But since we saw it permutes  $t(e_{A}) = e_{1}r_{3} - A$ ,  
this means it also permutes the C-basis  
 $\{e_{0}\} = e_{0}$  if 0 is not self-complementary  
 $e_{0}$ , if 0 is not self-complementary  
 $e_{0}$ , if 0 is not self-complementary  
and  $A \in O$  has  $in_{1} - A \in O'$ 

Let's sketch proofs for the last two properties  
leaving details for the EXERCISE SESIONS  
Rank generating tunction:  
Reated 1927, Polya 1937  

$$\frac{\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \prod_{\substack{i \neq 0 \\ i \neq 0}}^{n} \prod_{\substack{k=0 \\ i \neq 0}}^{n} \prod_{\substack{i \neq 0 \\ i \neq 0}}^{n} \prod_{\substack{k=0 \\ i \neq 0}}^{n} \prod_{\substack{i \neq 0 \\ i \neq 0}}^{n} \prod_{\substack{k=0 \\ i \neq 0}}^{n} \prod_{\substack{i \neq 0 \\ i \neq 0}}^{n} \prod_{\substack{k=0 \\ i \neq$$

• Unimodality: 
$$r_{0} \leq r_{1} \leq \dots \leq r_{\lfloor \frac{N}{2} \rfloor}$$
  
Proof  
Stanley 1982:  $r_{0} \leq r_{1} \leq \dots \leq r_{\lfloor \frac{N}{2} \rfloor}$   
Proof  
State 1982:  $r_{k} \leq r_{k+1}$  for  $k < \frac{n}{2}$   
 $\dim_{\mathbb{C}} (\sqrt{20n})_{k}^{\mathbb{G}}$   $\dim_{\mathbb{C}} (\sqrt{20n})_{k+1}^{\mathbb{G}}$   
 $\dim_{\mathbb{C}} (\sqrt{20n})_{k}^{\mathbb{G}}$   $\dim_{\mathbb{C}} (\sqrt{20n})_{k+1}^{\mathbb{G}}$   
 $(*)$   $(\sqrt{20n})_{k}^{\mathbb{G}} \longrightarrow (\sqrt{20n})_{k+1}^{\mathbb{G}}$  when  $k < \frac{n}{2}$ .

It would be even better to have a Glinear injection  

$$(V^{\otimes n})_k \xrightarrow{U_k} (V^{\otimes n})_{k+1}$$
 for  $k < \frac{n}{2}$   
that commutes with the action of  $\mathfrak{S}_n$  on  $(V^{\otimes n})_k$ ,  
and hence with every subgroup  $\mathfrak{S} n \mathfrak{S}_n$ .

Then it would restrict to an injection as in (\*).

There is an obvious candidate for 
$$U_k$$
,  
namely  $(V^{\otimes n})_k \xrightarrow{U_k} (V^{\otimes n})_{k+1}$   
given by  $e_A \longmapsto \sum_{\substack{B \subseteq Cn \\ B \mid B \mid = k+1, \\ B \geq A}} e_B$ 

EXAMPLE n=5  

$$U_2(e_{\{1,3\}}) = e_{\{1,2,3\}} + e_{\{1,3,4\}} + e_{\{1,3,5\}}$$
  
i.e.  $U_2(bwbww) = bbbww + bwbbw + bwbwb$ 

EXERCISE 1.1.4(a) asks you to check Uk that commutes with the action of Gn.

EXERCISE 114(6)-(f) takes you through a  
proof that 
$$U_{k}$$
 is injective to  $k < \frac{1}{2}$ , by  
showing the map  $D_{k}(e_{A}) := \sum e_{B} e_{B} e_{M}$ :  
 $B \in M$ :  
 $B \in A$   
satisfies the commutation relation  
 $D_{kH} U_{k} - U_{k-1} D_{k} = (n-2k) \cdot Id_{poin}$   
which leads to a proof that  
 $D_{kH} U_{k}$  is positive definite for  $k < \frac{1}{2}$ ,  
 $\Rightarrow D_{kH} U_{k}$  is non-singular,  
 $\Rightarrow U_{k}$  is injective.

REMARK 1: This commutation relation  $\mathcal{D}_{k+1}\mathcal{U}_{k} - \mathcal{U}_{k-1}\mathcal{D}_{k} = (n-2k) \cdot \mathrm{Id}_{(p^{on})_{k}}$ and injectivity of Uk are closely related to representations of SL(C) on  $V = C^2$ and on  $V^{\otimes n}$ 

and theory of crystal bases as in Prof. Schilling's lectures.

THEOREM (Hersh & Schilling 2011) 2<sup>Enj</sup>/Cn Layolic group does have an explicit symmetric chain decomposition (inspired by the theory of crystal bases ? )