g- counting and invariant theory

Vic Reiner University of Minnesota

Summer School in Algebraic Combinatorics Kraków 2022

Recall
DEFINITION: A representation of a group G on
a vector space
$$V \cong \mathbb{C}^n$$
 is a homomorphism
 $G \xrightarrow{P} GL(V) \cong GL_n(\mathbb{C})$
Combinatorics provides many...
EXAMPLES
1. Permutation representations :=
4. a that factor

Chose that factor

$$G \longrightarrow G_n \xrightarrow{p_{\text{perm}}} G_{\text{ln}}(D)$$

 $\sigma \longmapsto n \times n \text{ permutation}$
 $e_{g}, \sigma_{=}(245)(13) \mapsto i \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$

Some permitation representations:

$$G = C_{h} = \langle (12 - n) \rangle \longrightarrow G_{h}$$
and also
$$G \longrightarrow G_{2^{n}}.$$
The latter's G-orbits were
$$G = G_{h}(G_{h}) \longrightarrow G_{h}(G_{h})$$
and also
$$G \longrightarrow G_{2^{h}}$$

$$G = G_{h} \longrightarrow G_{n}(G_{h})$$
and also
$$G \longrightarrow G_{2^{h}}(G_{h})$$
The latter's G-orbits were
$$G \longrightarrow G_{n}(G_{h})$$
and also
$$G \longrightarrow G_{2^{h}}(G_{h})$$
The latter's G-orbits were
$$Mabeled graphs$$

$$The regular representation freg
$$G \longrightarrow G_{1G_{1}} \xrightarrow{freg}, GL(CG)$$
where
$$p_{reg}(g)(h) := gh$$

$$WheG$$$$

QUESTION: Can one classify all representations
of a group G up to equivalence,
meaning
$$G \xrightarrow{\rho} GL(V)$$

 $G \xrightarrow{\rho'} GL(V')$
have a C-linear isomorphism $V \xrightarrow{\varphi} V'$
which is G-equivariant:
 $V \xrightarrow{\varphi} V'$
anisher G-equivariant:
 $V \xrightarrow{\varphi} V'$
answer: Yes, when G is further and $V \cong C''$
ANSWER: Yes, when G is further and $V \cong C''$
ANSWER: Yes, when G is further and $V \cong C''$
ANSWER: The character X_p of $G_1 \xrightarrow{\rho} G_h(C)$
is the (angugacy) class function
 $G \xrightarrow{X_p} C$
 $Y(y) = Y(y)$

2. The list of inequivalent meducible
representations
$$\{p_1, p_2, ..., p_r\}$$

has size $r = \# G$ -conjugacy classes.

• because the irreducible characters

$$\{\chi_{p_{4}}, \chi_{p_{2}}, ..., \chi_{p_{r}}\}$$
 give a C-basis
for the Grector space of class functions
 $G_{I} \rightarrow C$

• and this basis is orthonormal with respect to the Hermitian inner product $\langle \chi_1, \chi_2 \rangle_G := \prod_{i=1}^{n} \sum_{g \in G} \chi_i(g) \cdot \chi_i(g)$ 3. Orthonormality >> to uniquely decompose $p \in \bigoplus_{i=1}^{r} p_{i}^{\oplus m_{i}}$ ived meducides Pa, Pa, -, Pr, since $X_p = m_1 X_{p_1} + \dots + m_r X_{p_r}$ one can compute the multiplicaties m; from $\langle \chi_{p}, \chi_{pi} \rangle_{G} = \langle \sum_{j=1}^{i} m_{j} \chi_{pj}, \chi_{pi} \rangle_{G} = m_{i}$ 4. Similarly, it implies $\langle \chi_{\rho}, \chi_{\rho} \rangle_{G} = \langle \sum_{j=1}^{i} m_{j} \chi_{\rho_{j}}, \sum_{i=1}^{j} m_{i} \chi_{\rho_{i}} \rangle_{G}$ $= \sum_{j=1}^{2} m_{j}^{2} = 1$ p= p; is irreducible

(Standard) EXAMPLES 1. 1-dimensional representations $G \xrightarrow{P} \mathbb{C}^{\times}$ are the same as their character: $p = X_p : G \rightarrow C$

In particular,
multiplicity of
$$M_{G}$$
 in $\rho = \langle X_{P}, X_{M} \rangle_{G}$
= $\int_{G} \sum_{\sigma \in G} \langle X_{P}(\sigma) \rangle_{G}$
= $\int_{G} \sum_{\sigma \in G} \langle \# \circ f \text{ fixed points of } \sigma \rangle$
= $\int_{G} (\# \circ f \text{ fixed points of } \sigma)$
= $\# G - \text{ orbits on [n]}$
(and see
= $\# G - \text{ orbits on [n]}$

3. The regular representation
$$G \xrightarrow{Preg} G_{G} \xrightarrow{} GL(GG)$$

has $p_{reg}(g)(h) = gh \neq h$ if $g \neq e$
so $\chi_{preg}(g) = Trace p_{reg}(g) = \begin{cases} o & \text{if } g \neq e \\ |G| & \text{if } g = e \end{cases}$
Hence $\langle\chi_{preg}, \chi_{pi}\rangle_{G} = \frac{1}{|G|} \sum_{g \in G} \chi_{p(g)} \cdot \chi_{p(g)}$
 $= \frac{1}{|G|} \cdot |G| \cdot \chi_{pi}(e)$
 $= \dim_{C}(V_{i})$ if $G \xrightarrow{Pi} GL(V_{i})$
(OPOLARY The regular representation contains
every irreducible P_{i} with multiplicity $\dim_{C}(V_{i})$:
 $P_{reg} = \bigoplus_{i=1}^{m} p_{i}$
 $\int take dimensions$
 $|G| = \sum_{i=1}^{r} \dim_{C}(V_{i})^{2}$

Two possibilities:

$$G_3 \xrightarrow{1} C^{\times}$$

 $S_3 \xrightarrow{1} C^{\times}$
 $S_3 \xrightarrow{1} C^{\times}$
 $G_3 \xrightarrow{2} C^{\times}$
 $S_3 \xrightarrow{1} C^{\times}$
 $S_3 \xrightarrow{1} C^{\times}$
 $S_3 \xrightarrow{1} C^{\times}$

Need one more inveducible representation,
and we claim the reflector representation

$$G_{3} \xrightarrow{Pref} O_{2}(R)$$

$$G_{2}(R)$$

CON CLUSION

Ez has irreducible character table			
	е	(12), (13), (23)	(123), (132)
1[1	1	1
Sgn	1	-1	1
Pref	2	0	-1

REMARK: In general,
$$G_n$$
 has inveducible
representations $\{p_1, p_2, ..., p_r\} = \{p_n: partitions \lambda of n\}$
with $p_n(e) = \dim \sqrt{\lambda} =: \dim(\lambda) = \frac{n!}{\pi h_0}$
 $\int m \sqrt{\lambda} = \frac{1}{\pi h_0} \int \frac{1$