q-counting and invariant theory

Vic Reiner University of Minnesota

Summer School in Algebraic Combinatorics Krakón 2022

Lecture
1: Invitation to q-counts
Monday \& representation theory

- quotients of Bodean algebras

2: Representation theory review
Tuesday \& refection groups
3: Molien's Theorem
Thursday \& coinvaviant algebras
4: Cyclic Sieving Phenomena (CSP)
Thursday s Springer's Theorem
see ECCO 2018 lecture notes
5: More CSP's
Friday \& the deformation idea

Recall
DEFINITION: A representation of a group G on a vector space $V \cong \mathbb{C}^{n}$ is a homomorphism

$$
G \xrightarrow{P} G L(V) \cong G L_{n}(\mathbb{C})
$$

Combinatories provides many...
Examples

1. Permutation representations := those that factor

$$
\begin{aligned}
G \longrightarrow
\end{aligned} \mathbb{S}_{n} \xrightarrow{\rho_{\text {perm }}} G_{n \times n}(\mathbb{C})
$$

Some permutation representations:

- $G=C_{n}=\langle(12-n)\rangle \longrightarrow S_{n}$
and also $G \longrightarrow \mathbb{S}_{2^{n}}$.
The later's G-orbits were
black/white necklaces

$G=\tilde{G}_{k}\left[\sigma_{l}\right]$
and also
$G$$\longrightarrow G_{k l}$
The latter's G-orbits were Fevers diagrams $\lambda c_{k}\{$
$G=\tilde{G}_{n} \longrightarrow \mathcal{S}^{\prime}\binom{n}{2}$ and also $G \longrightarrow S_{2}\binom{n}{1}$
The later's G-orbits were unlabeled graphs

- The regular representation greg

$$
G \longleftrightarrow \mathcal{S}_{I G \mid} \xrightarrow{\text { pres }} G L(\mathbb{C} G)
$$

where $\rho_{\text {reg }}(g)(h):=g h \quad \forall h \in G$ $g \in G$

EXAMPLES (of representations, wontimed)
2. 1-dimensional representations

$$
G \rightarrow G L_{1}(\mathbb{C})=\mathbb{C}^{x}
$$

such as the trivial representation

$$
\mathbb{1}=\mathbb{1}_{G}: \begin{aligned}
& G
\end{aligned} \mathbb{C}^{x} \quad \underset{g}{ } \mapsto 1 \quad \forall g \in G
$$

or the determinant representation

$$
\begin{aligned}
\operatorname{det}: G L(V) & \longrightarrow \mathbb{C}^{x} \\
g & \longrightarrow \operatorname{det}(g)
\end{aligned}
$$

3. (Linear) symmetry groups of geometric objects $P \subset \mathbb{R}^{d}$

$$
G=\operatorname{Ant}_{\text {linear }}(P):=\{g \in G \ln (\mathbb{R}): g(P)=P\}
$$

egg.

$$
\begin{aligned}
G=\text { Ant }_{\text {linear }}(P) & \cong C_{4} \\
C & O_{2}(\mathbb{R}) \text { orthogonal } \\
& \hookrightarrow G G_{2}(\mathbb{R}) \\
& \longrightarrow G_{2}(\mathbb{C})
\end{aligned}
$$

4. (Real) reflection groups :=
finite subgroups $G \hookrightarrow O_{n}(\mathbb{R}) \hookrightarrow G_{n}(\mathbb{R}) \hookrightarrow G_{n}(\mathbb{C})$ generated by Euclidean reflections t

t fixes
$H=$ reflecting hyperplane,

Good examples of reflection groups are are $G=$ Ant $_{\text {linear }}(P)$ for regular polytopes P
G is transitive on maximal lags of faces \{vertex c edge c polygon $c \ldots c$ facet
$G=I_{2}(m)=$ dihedral group of order $2 m$
$=A^{\text {n }}$ linear $($ regular m-agon $)=\left\langle s, t\left[s^{2}=t^{2}=1\right.\right.$, $(s t)^{m}=1>$

$$
m=6
$$

$G=$ symmetries of regular $(n-1)$-simplex $\cong G_{n}$

$$
G \stackrel{\rho_{\mathrm{ref}}}{\longrightarrow} O_{n-1}(\mathbb{R})
$$

$G=$ symmetries of n-dimensional cube (=symmetries of n-dimensional cross-polytope) $=$ hyperoctahedral group B_{n}
$\simeq n \times n$ signed permutation matrices $\left[\begin{array}{ccc}0 & +1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0\end{array}\right]$

QUESTION: Can one classify all representations of a group G up to equivalence, meaning $G \xrightarrow[\rho^{\prime}]{\rho} G(C V)$

$$
G \xrightarrow{\rho^{\prime}} G L\left(v^{\prime}\right)
$$

have a \mathbb{C}-linear isomorphism $V \xrightarrow[\sim]{\varphi} V^{\prime}$ which is G-equivariant:

ANSWER: Y es, when G is finite and $V \cong \mathbb{C}^{n}$
A key tool are traces:
$\operatorname{DET}^{-1} N:$ The character X_{ρ} of $G \xrightarrow{\rho} G_{n}(\mathbb{C})$ is the (conjugacy) class function

$$
\begin{aligned}
& \text { meaning } \\
& X_{p}\left(g h g^{-1}\right)=X_{p}(h)
\end{aligned}
$$

$$
G \xrightarrow[g]{X_{p}} \mathbb{C}(\mathbb{C}(g):=\operatorname{Trase}(p(g))
$$

Finite group representation "theory "review"

1. Maschke's Theorem

One can always de compose $\rho=\bigoplus_{i=1}^{t} \rho_{i}$,
where $V=\underset{i=1}{t} V_{i}$ and each G-representation V_{i} is simple/ irreducible
ie., no G-stable subspaces U with

$$
\{0\} \nsubseteq U \subsetneq V_{i}
$$

2. The list of inequivalent irreducible representations $\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{r}\right\}$ has size $r=\# G$-conjugacy classes.

In fact,

- the character X_{ρ} determines ρ updo equivalence
- because the irreducible characters $\left\{x_{\rho_{1}}, x_{\rho_{2}, \ldots,} x_{\rho_{r}}\right\}$ give a C-basis for the \mathbb{E}-vector space of class functions $G \rightarrow \mathbb{C}$
- and this basis is orthonormal with respect to the Hermitian inner product

$$
\left\langle X_{1}, X_{2}\right\rangle_{G}:=\frac{1}{|G|} \sum_{g \in G} \overline{X_{1}(g)} \cdot X_{2}(g)
$$

3. Orthonormality \Rightarrow to uniquely decompose

$$
\rho=\bigoplus_{i=1}^{r} \rho_{i}^{\oplus m_{i}}
$$

into ireducibles $\rho_{1}, \rho_{2}, \longrightarrow \rho_{r}$,
since $X_{p}=m_{1} X_{\rho_{1}}+\ldots+m_{r} X_{\rho_{r}}$
one can compute the multiplicities m_{i} from

$$
\left\langle x_{\rho}, x_{p_{i}}\right\rangle_{G}=\left\langle\sum_{j=1}^{r} m_{j} x_{\rho_{j}}, x_{\rho_{i}}\right\rangle_{G}=m_{i}
$$

4. Similarly, it implies

$$
\text { 4. Similarly, } \begin{aligned}
\left\langle X_{p}, X_{p}\right\rangle & =\left\langle\sum_{j=1}^{r} m_{j} X_{\rho_{j}}, \sum_{i=1}^{n} m_{i} X_{\rho_{i}}\right\rangle_{G} \\
& =\sum_{j=1}^{n} m_{j}^{2} \overline{=1} 1
\end{aligned}
$$

$\rho=\rho_{i}$ is irreducible
(Standard) EXAMPLES

1. 1-dimensional representations $G \xrightarrow{\rho} \mathbb{C}^{x}$ are the same os their character: $\rho=X_{\rho}: G \rightarrow \mathbb{C}$
2. Permutation representations

$$
G \underset{\rho}{\underset{\sim}{\longrightarrow} G_{n} \xrightarrow{\text { Perm }}} G_{n}(\mathbb{C})
$$

have $\chi_{\rho}(\sigma)=\operatorname{Trace}\left(\rho_{\text {perm }}(\sigma)\right)=\#$ of Axed points $(=1$-aces) of σ

$$
\begin{aligned}
& \text { In particular, } \\
& \text { muttipiciety of } H_{G} \text { in } \rho=\left\langle X_{p}, X_{11}\right\rangle_{G} \\
&=\frac{1}{1 G} \sum_{\sigma \in G} \overline{X_{p}(\sigma)} \\
&=\frac{1}{\mid G} \sum_{\sigma \in G}(\# \text { of fixedponts of } \sigma) \\
&=\# G \text {-orbits on }[n] \\
& \begin{array}{l}
\text { Burnside's } \\
\text { Lemma } \\
\text { (and ore } \\
\text { cere }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and see } \\
& \text { EXR. } \\
& \hline 1.1 .2(e))
\end{aligned}
$$

3. The regular representation

$$
G \stackrel{\rho_{r e g}}{\longrightarrow} \widetilde{G}_{|G|} \longleftrightarrow G(\mathbb{O} G)^{\circ}
$$

has $\rho_{\mathrm{reg}}(g)(h)=g h \neq h$ if $g \neq e$

$$
\text { so } X_{\rho_{\text {reg }}}(g)=\text { Trace } \rho_{r e f}(g)=\left\{\begin{array}{l}
0 \text { if } g \neq e \\
|\sigma| \text { if } g=e .
\end{array}\right.
$$

Hence $\left\langle X_{\rho_{\text {reg }},}, X_{\rho_{i}}\right\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} \overline{X_{\rho_{\text {reg }}}(g)} \cdot X_{\rho_{i}}(g)$

$$
\begin{aligned}
& =\frac{1}{|G|} \cdot|G| \cdot X_{\rho_{i}(e)} \\
& =\operatorname{dim}_{C}\left(V_{i}\right) \text { if } G \xrightarrow{\rho_{i}} G L\left(V_{i}\right)
\end{aligned}
$$

COROLCARY The regular representation contains every irreducible ρ_{i} with multiplicity $\operatorname{dim}_{C}\left(V_{i}\right)$:

$$
\rho_{\text {reg }}=\bigoplus_{i=1}^{r} \rho_{i} \oplus \operatorname{dim}_{c}\left(v_{i}\right)
$$

\& take dimensions

$$
|G|=\sum_{i=1}^{r} \operatorname{dim}_{c}\left(V_{i}\right)^{2}
$$

4. Irreducible representations of

$$
\begin{aligned}
& \text { 4. Irreducible representations of } \\
& G=\mathscr{G}_{3}=\{e,|\underbrace{(12),(13),(23)}_{\text {aningaan classes }}|, \underbrace{(123) \quad(132)}\} ?_{0}^{D}
\end{aligned}
$$

$r=3$ conjugacy classes
$\Rightarrow 3$ irreducible representations
Start with its 1-dimensional characters: since $G_{3}=\left\langle\begin{array}{cc}(12) & (23) \\ \text { s } & \\ s & 1 \\ t\end{array}\right\rangle$
and s_{j} t are conjugate, any 1-dimensional character X has $X(s)=X(t)$.
Since $s^{2}=t^{2}=1$, also $X(s)=X(t) \in\{ \pm 1\}$.

Two possibilities:
$\mathcal{S}_{3} \xrightarrow{\|} \mathbb{C}^{x}$
$s, t \longmapsto+1$
$\sigma_{3} \xrightarrow{\sin } \mathbb{C}^{x}$
st $\longmapsto-1$

Need one more irreducible representation, and we claim the reflection representation
$\mathrm{S}_{3} \xrightarrow{\rho_{\text {ref }}} \mathrm{O}_{2}(\mathbb{R})$

$$
\hookrightarrow G L_{2}(\mathbb{C})
$$

is irreducible,

(23) e.g via computing its charader:

$$
\begin{aligned}
X_{\operatorname{ref}}(e) & =\operatorname{Trace}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=2 \\
X_{\text {ref }}((i, j)) & =\operatorname{Trace}\binom{\text { reflection }}{\text { in } \mathbb{R}^{2}}=\operatorname{Trace}\left[\begin{array}{cc}
+1 & 0 \\
0 & -1
\end{array}\right]=0 \\
X_{\operatorname{ref}}(\text { cijk) }) & =\operatorname{Trace}\binom{120^{\circ}}{\text { rotation }}=\operatorname{Trace}\left[\begin{array}{cc}
e^{2 x i} / 3 & 0 \\
0 & -2 \pi i / 3
\end{array}\right]=-1
\end{aligned}
$$

Hence $\left\langle X_{\text {ref }}, X_{\text {ref }}\right\rangle_{\sigma_{B}}=\frac{1}{3!} \sum_{\sigma \in G_{3}} \overline{X_{\text {ref }}(\sigma)} \cdot X_{\text {ref }}(\sigma)$

$$
=\frac{1}{3!}\left(\begin{array}{c}
e^{(112)} \\
e
\end{array} \cdot 2 \cdot 2+3 \cdot 0 \cdot 0+2 \cdot(-1)(-1)\right)=\frac{1}{(123)}(6)(6)=1
$$

irreducible

CONCLUSION
S_{3} has irreducible character table

	e	(12), (13), (23)	(123), (132)
11	1	1	1
Son	1	-1	1
Pref	2	0	-1

REMARK: In general, \mathcal{S}_{n} has irreducible representations $\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{r}\right\}=\left\{\rho_{\lambda}:\right.$:partitions $\left.\lambda_{0}+\eta\right\}$ with $\rho_{\lambda}(e)=\operatorname{dim}_{c} V_{\lambda}=: \operatorname{dim}(\lambda)=\frac{n!}{\prod_{\square \in \lambda} h_{D}}$ talks

