q-counting and invariant theory

Vic Reined University of Minnesota

Summer School in Algebraic Combinatorics Krakón 2022

Lecture
1: Invitation to q-counts
Monday \& representation theory - quotients of Bodean algebras

2: Representation theory review
Tuesday \& refection groups
3: Molien's Theorem
Thursday \& coinvaviant algebras
4: Cyclic Sieving Phenomena (CSP)
Thursday s Springer's Theorem

5: More CSP's
Friday \& the deformation idea

GOAL: Enhance the structure of the coinvaviant algebra (Springer's Theorem) to explain some interesting counting formulas:
CSP's = cyclic sieving phenomena
(S. Pfannerer's talk has more to say on CSP's)

We've already seen an instance of a CSP...
debruign 1959
THEOREM For any subgroup G of σ_{n}, consider

- the set $X:=2^{[n]} / G=G$-orbits O of subsets $A \subseteq\{1,2, \ldots, n\}$
$=[n]$
- the generating function

$$
\begin{aligned}
X(q): & =r_{0}+r_{1} q+r_{2} q^{2}+\ldots+r_{n} q^{n} \\
& \text { where } r_{k}=\# G \text { orbits } O \text { on }\binom{[n]}{k}
\end{aligned}
$$

- and the $\mathbb{Z} / 2 \mathbb{Z}$-action on X induced by complementation $A \mapsto[n], A$ Sending an orbit $O \stackrel{c}{\longmapsto} \mathcal{O}^{c}:=\{[n] A: A \in \mathcal{O}\}$.
Then $\underbrace{\#\{x \in X: c(x)=x\}}_{\text {\#of }}=$

Example

\qquad
This is an example of what Stembridge (1994) called a " $q=-1$ phenomenon":
A set X with an action of $\mathbb{Z} / 2 \mathbb{Z}=\{1, c\}$ and a polynomial $X(q)$ such that

$$
\begin{aligned}
& X(+1)=\# X \\
& X(-1)=\#\{x \in X: c(x)=x\}
\end{aligned}
$$

He found several interesting examples.

More generally...
DEFINITION: Say that a
R. Stanton-White Say nat a
2004

- finite set X
- with the action of a cyclic group

$$
C=\left\{1, c, c^{2},-, c^{m-1}\right\} \cong \mathbb{Z} / m \mathbb{Z}
$$

- and a polynomial $X(q)$
exhibit a cyclic sieving phenomenon (CSP)
if for every $c^{d} \in C$ one has

$$
\#\left\{x \in X: c^{d}(x)=x\right\}=[X(q)]_{q=} \xi^{d}
$$

$$
\text { where } \xi=e^{2 \pi i / m}=\text { primitive } \quad \text { m } \operatorname{m}^{\text {th }} \text { coot of } 1
$$

(Proto-) ExAMpLE

- $\operatorname{set} X=\binom{[n]}{k}=k$-element subsets of [n]
- action $\mathbb{C} \cong \mathbb{Z}(n \mathbb{Z}=\langle\underbrace{\substack{n-\text { cycle } \\(1,2,1, n)}}_{c:=}\rangle$
- polynomial $X(q)=\left[\begin{array}{l}n \\ k\end{array}\right]_{q} \begin{aligned} & \text { q-binomial } \\ & \text { coefficient }\end{aligned}$

$$
:=\frac{[n]!_{q}}{\left.\left.[k]!!^{[n-k}\right]\right]_{q}}
$$

where $[n]!]_{q}:=[n]_{q}[n-1]_{q} \cdots[3]_{q}[2]_{q}[1]_{q}$

$$
[n]_{q}:=1+q+q^{2}+\cdots+q^{n-1}=\frac{1-q^{n}}{1-q}
$$

exhibit a CSP.

EXAMPLE $\quad n=4 \quad k=2$

$$
\begin{aligned}
& X=\binom{[4]}{2} \\
& C=\left\langle\left(12 z_{3}\right)\right\rangle \\
& =\left\{e, c, c^{2}, e^{3}\right\}
\end{aligned}
$$

That Photo-EXAMPLE has many proofs, one of which generalizes to reflection groups, via...

THEOREM In a finite reflection group Springer $\quad G \subset G L_{n}(\mathbb{C})=G L(V)$,
say $c \in G$ is a regular element if it has an eigenvector $v \in V$, say $c(v)=\xi \cdot v$, lying on none of the reflecting hyperplanes.
Then its cyclic subgroup $C=\left\{e, c, c^{2},-, c^{m-1}\right\} \triangleq \mathbb{Z} / m \mathbb{Z}$ gives us an isomonphism of $G \times C$-representations:

$$
\begin{aligned}
& \text { convvariont algebra } \sim \text { requar representation PG } \\
& \begin{array}{cc}
\mathbb{C}\left(x_{1,-}, x_{n}\right] /\left(f_{n}, f_{n}\right) & \rightleftharpoons \rho_{\mathrm{reg}} \\
\omega & \ddots
\end{array} \\
& \text { - facts as before by } \\
& \text { near substitacions } \\
& \text { - facts by scalar }
\end{aligned}
$$

$h \stackrel{g}{\rightarrow}$ gl

- C right-tramslates

Here is a general CSP corollary:
THeorem When a finite reflection group ROW 2004 $G \subset G L_{n}(\mathbb{C})$ acts transitively on a set X, every regular element $c \in G$ gives a CSP:

- $X(\cong G / H$ for some subgroup H)

$$
\begin{aligned}
& \begin{array}{c}
v \\
C
\end{array}=\left\{e, c, e^{2},-, c^{m-1}\right\} \cong \mathbb{Z} / m \mathbb{Z} \\
& \text { - } X(q):=\frac{H_{i l}\left(\mathbb{C}[x]^{H}, q\right)}{H_{i} i b\left(C[x]^{G}, q\right)}=\prod_{i=1}^{n}\left(1-q^{d}\right) \cdot H_{i l b}\left(\mathbb{C}(x]^{H}, q\right)
\end{aligned}
$$

In other words,

$$
\#\left\{x \in X: c^{d}(x)=x\right\}=[X(q)]_{q}=\xi^{d}
$$

$\#\left\{\right.$ costs $\left.g H: c^{d} H=g H\right\} \quad$ where $\xi=e^{2 \pi i / m}$

How does this generalize the Proto-EXAMPLE?

- $X=\binom{[n]}{k}=\underbrace{\sigma_{n}}_{G} / \underbrace{\mathcal{S}_{k}}_{H} \times \widetilde{S}_{n-k}$
$G=S_{n}$ acts transitively on k-subsets of $[n]$
$H=G_{k} \times G_{n-k}$ is the stabilizer of $\{1,2,-, k\} \subset[n]$.
- The n-cycle $c=(12 \ldots n)$ inside \boldsymbol{S}_{n} is a regular element: acting on $V=\mathbb{C}^{n}$: it has an eigenvector $v=\left[\begin{array}{l}1 \\ \xi \\ \xi^{2} \\ \vdots\end{array}\right]$ where $\xi=e^{2 \pi i / n}$ with $c(v)=\zeta \cdot v \quad\left[\begin{array}{l}\zeta \\ \zeta \xi^{n-1}\end{array}\right]$, lying on no reflecting hyperplanes $x_{i}=x_{j}$ since its coordinates are distinct.

What about $X(q)$? We claim...

$$
\begin{aligned}
& X(q)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]!q}{\left.(k))_{q}[n-k]\right]_{q}} \\
&=\frac{1}{(1-q) \cdots\left(1-q^{k}\right) \cdot(1-q) \cdots\left(1-q^{n-k}\right) /(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)} \\
&=H_{i l}\left[\left(\mathbb{C}[\underline{x}]^{G G_{k} \times E_{n-k}}, q\right) / H_{i l b}^{H}\left(\mathbb{C}[x]^{G}, q\right)\right.
\end{aligned}
$$

since just as

$$
\mathbb{C}[x]^{\mathscr{G}_{n}}=\mathbb{C}\left[e_{1}, e_{2}, \ldots, e_{n}\right]^{<\text {degrees }}
$$

one also has

$$
\begin{aligned}
& \mathbb{C}[x]^{G_{k} \times \sigma_{n \cdot k}}=\mathbb{C}\left(e_{1}\left(x_{1,-1} x_{k} x_{j}\right)_{5, j}^{2 \ldots} e_{k}\left(x_{12}, x_{k}\right),{ }^{\text {degrees }}\right. \\
& \left.e_{1}\left(x_{k+1, \ldots,}^{1} x_{n}^{2}\right), \cdots, e_{n-k}^{n-k}\left(x_{k+1, \ldots}, x_{n}\right)\right]
\end{aligned}
$$

RECAP:
THeorem When a finite reflection group $G \subset G L_{n}(\mathbb{C})$ act bransituely on a set X, every regular element $c \in G$ gives a CSP:

- $\underset{\sim}{\mathcal{V}}(\cong / H$ for some subgroup $H)$
- $C=\left\{e, c, e_{c}^{2}, \ldots, c^{m-1}\right\} \cong \mathbb{Z} / m \mathbb{Z}$
- $X(q):=\frac{H_{i l}\left(\mathbb{C}[x]^{H}, q\right)}{H_{i l}\left(\mathbf{C}[\underline{x}]^{G}, q\right)}=\prod_{i=1}^{n}\left(1-q d_{i}\right) \cdot H_{i l b}\left(\mathbb{C}(\underline{x}]^{H}, q\right)$

Photo- $\operatorname{6xampLE}$

- $X=\binom{[n]}{k}=\mathscr{S}_{n} / \mathscr{S}_{k} \times \widetilde{S}_{n-k}$
$\cdots \quad$ recycle
- $\left.C=\left\langle\begin{array}{c}n-\text { cycle } \\ 1\end{array} 2 \ldots n\right)\right\rangle$ inside Sn $_{n}$
- $X(q)=\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{\operatorname{Hilb}_{i l}\left(\mathbb{C}[\underline{x}]^{\sigma_{k} \times G_{n-k}}, q\right)}{\operatorname{Hilb}\left(\mathbb{C}[x]^{G_{n}}, q\right)}$

Q: How to get the ESP THEOREM from Springer's?
A: Our favorite technique: comparison of traces?
Sketch
proof:
Springer gave us a $G \times C$-rep isomorphism

Taking H-fixed subspaces leaves a C-repisomouphism where we can compare the brace of c^{d} on both sides.

$$
(\mathbb{C}[x] /(\perp))^{H} \cong(\mathbb{C} G)^{H} \text { as } C \text {-reps }
$$

Compare the brace of c^{d} on both sides:

LEFT:
$(\mathbb{C}[x] /(\underline{f}))^{-1}$ is a graded \mathbb{E}-vector space, and c^{d} acts via scalar $\left(\xi^{d}\right)^{k}$ in the $k^{\text {th }}$ homogeneous piece.

Also, can show

$$
\begin{aligned}
X(q) & =\frac{H_{i}\left[b\left(\mathbb{C}[x]^{H}, q\right)\right.}{H_{i} \mid b\left(\mathbb{C}[x]^{0}, q\right)} \\
& =H_{i} i b\left((\mathbb{C}[\underline{x}] /(f))^{H}, q\right)
\end{aligned}
$$

Hence c^{d} acts on left with trace $\left[X\left(X_{q}\right)\right]_{q=\xi^{d}}$

RIGHT:
One can identify

$$
(\mathbb{C} G)^{H} \cong \mathbb{C}[H \backslash G]
$$

permutation representation of C on $X=G / H$, where $c^{d}(g H)=d^{d} g H$

Hence c^{d} acts on right with brace

$$
W\left\{x \in X: c^{d}(x)=x\right\}
$$

