Fernando Reitich
Professor
School of Mathematics
University of Minnesota
127 Vincent Hall
206 Church St., S. E.
Minneapolis, MN 55455
Office: 538 Vincent Hall
Phone: (612) 6261324
Fax: (612) 6262017
EMail: reitich at math dot umn dot edu
Teaching
Recent Publications
[1] A. Musbach, G. W. Meyer, F. Reitich and S. H. Oh,
Full wave modeling of light propagation and reflection ,
Comput. Graph. Forum 32 (2013), 2437.
[2] H. Kurkcu, N. Nigam and F. Reitich,
An integral representation of the Green function for a linear array of
acoustic point sources, J. Comput. Phys. 230 (2011), 28382856.
[3] A. Anand, Y. Boubendir, F. Ecevit and F. Reitich,
Analysis of multiple scattering iterations for highfrequency
scattering problems. II: The threedimensional scalar case, Numer.
Math. 114 (2010), 373427.
[4] B. Cockburn, D. Gupta and F. Reitich, Boundaryconforming discontinuous
Galerkin methods via extension from subdomains, J. Sci. Comput. 42
(2010), 144184.
[5] F. Ecevit and F. Reitich,
Analysis of multiple scattering iterations for highfrequency
scattering problems. I: The twodimensional case, Numer. Math. 114
(2009), 271354.
[6] H. Kurkcu and F. Reitich, Stable and
efficient evaluation of periodized Green's
functions for the Helmholtz equation at high frequencies, J.
Comput. Phys. 228 (2009), 7595.
[7] A. Malcolm, F. Reitich, J. Yang, M. Fatemi and J. Greenleaf,
Numerical modeling for assessment and design of ultrasound
vibroacoustography systems, in Biomedical Applications of
Vibration and Acoustics for Imaging and Characterizations, Mostafa
Fatemi and Ahmed AlJumaily, editors, ASME Press (2008), 2140.
[8] D. Nicholls and F. Reitich, Boundary
perturbation
methods
for
highfrequency
acoustic scattering: shallow
periodic gratings, J. Acoust. Soc. Amer. 123 (2008), 25312541.
[9] J. Yang, A. Abubakar, P. M. van den Berg, T. M. Habashy, and F.
Reitich,
A CGFFT approach to the solution of a stressvelocity formulation of
threedimensional elastic scattering problems , J. Comput. Phys.
227 (2008) 1001810039.
[10] F. Reitich and C. Turc, Highorder
numerical solutions in frequencyindependent computational times for
scattering applications associated with surfaces with composite
roughness, Waves in Random and Complex Media
18 (2008), 693720.
[11] A. Malcolm, F. Reitich, J. Yang, J. Greenleaf and M. Fatemi, A combined parabolicintegral equation
approach to the simulation of vibroacoustic
imaging, Ultrasonics 48 (2008), 553558.
[12] A. Anand and F. Reitich,
An efficient highorder algorithm for acoustic scattering from
penetrable thin structures in three dimensions, J. Acoust. Soc.
Amer. 121 (2007), 25032514.
[13] O. P. Bruno and F. Reitich, High
order methods for highfrequency
scattering applications, in Modeling and Computations in
Electromagnetics: A Volume Dedicated to JeanClaude Nedelec, Lecture
Notes in Computational Science and Engineering, H. Ammari, editor,
SpringerVerlag (2007), 129164.
[14] Q. Cao, R. Kanapady and F. Reitich, Highorder RungeKutta multiresolution
time domain methods for computational electromagnetics, IEEE
Transactions on Microwave Theory and Techniques 54 (2006), 33163326.
[15] D. Nicholls and F. Reitich, Stable,
highorder
computation
of
traveling
water waves in three dimensions,
European Journal of Mechanics B/Fluids 25 (2006), 406424.
Links to

Selected Institutes at the University of Minnesota

Selected School of Mathematics Seminars
Last Updated: December 2010
Math Home Page
reitich@math.umn.edu