Fernando Reitich

Professor

School of Mathematics
University of Minnesota
127 Vincent Hall
206 Church St., S. E.
Minneapolis, MN 55455

Office: 538 Vincent Hall
Phone: (612) 626-1324
Fax: (612) 626-2017
E-Mail: reitich at math dot umn dot edu


Teaching




Recent Publications

[1] A. Musbach, G. W. Meyer, F. Reitich and S. H. Oh, Full wave modeling of light propagation and reflection , Comput. Graph. Forum 32 (2013), 24-37.
[2] H. Kurkcu, N. Nigam and F. Reitich, An integral representation of the Green function for a linear array of acoustic point sources, J. Comput. Phys. 230 (2011), 2838-2856.
[3] A. Anand, Y. Boubendir, F. Ecevit and F. Reitich, Analysis of multiple scattering iterations for high-frequency scattering problems. II: The three-dimensional scalar case, Numer. Math. 114 (2010), 373-427.
[4] B. Cockburn, D. Gupta and F. Reitich, Boundary-conforming discontinuous Galerkin methods via extension from subdomains, J. Sci. Comput. 42 (2010), 144-184.
[5] F. Ecevit and F. Reitich, Analysis of multiple scattering iterations for high-frequency scattering problems. I: The two-dimensional case, Numer. Math. 114 (2009), 271-354.
[6] H. Kurkcu and F. Reitich, Stable and efficient evaluation of periodized Green's functions for the Helmholtz equation at high frequencies, J. Comput. Phys. 228 (2009), 75-95.
[7] A. Malcolm, F. Reitich, J. Yang, M. Fatemi and J. Greenleaf, Numerical modeling for assessment and design of ultrasound vibro-acoustography systems, in Biomedical Applications of Vibration and Acoustics for Imaging and Characterizations, Mostafa Fatemi and Ahmed Al-Jumaily, editors, ASME Press (2008), 21-40.
[8] D. Nicholls and F. Reitich, Boundary perturbation methods for high-frequency acoustic scattering: shallow periodic gratings, J. Acoust. Soc. Amer. 123 (2008), 2531-2541.
[9] J. Yang, A. Abubakar, P. M. van den Berg, T. M. Habashy, and F. Reitich, A CG-FFT approach to the solution of a stress-velocity formulation of three-dimensional elastic scattering problems , J. Comput. Phys. 227 (2008) 10018-10039.
[10] F. Reitich and C. Turc, High-order numerical solutions in frequency-independent computational times for scattering applications associated with surfaces with composite roughness, Waves in Random and Complex Media 18 (2008), 693-720.
[11] A. Malcolm, F. Reitich, J. Yang, J. Greenleaf and M. Fatemi, A combined parabolic-integral equation approach to the simulation of vibro-acoustic imaging, Ultrasonics 48 (2008), 553-558.
[12] A. Anand and F. Reitich, An efficient high-order algorithm for acoustic scattering from penetrable thin structures in three dimensions, J. Acoust. Soc. Amer. 121 (2007), 2503-2514.
[13] O. P. Bruno and F. Reitich, High order methods for high-frequency scattering applications, in Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-Claude Nedelec, Lecture Notes in Computational Science and Engineering, H. Ammari, editor, Springer-Verlag (2007), 129-164.
[14] Q. Cao, R. Kanapady and F. Reitich, High-order Runge-Kutta multiresolution time domain methods for computational electromagnetics, IEEE Transactions on Microwave Theory and Techniques 54 (2006), 3316-3326.
[15] D. Nicholls and F. Reitich, Stable, high-order computation of traveling water waves in three dimensions, European Journal of Mechanics B/Fluids 25 (2006), 406-424.




Links to



Last Updated: December 2010

Math Home Page
reitich@math.umn.edu