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Abstract. We generalize work of Lascoux and Józefiak-Pragacz-Weyman on Betti

numbers for minimal free resolutions of ideals generated by 2 × 2 minors of generic

matrices and generic symmetric matrices, respectively. Quotients of polynomial rings
by these ideals are the classical Segre and quadratic Veronese subalgebras, and we

compute the analogous Betti numbers for some natural modules over these Segre and
quadratic Veronese subalgebras. Our motivation is two-fold:

• We immediately deduce from these results the irreducible decomposition

for the symmetric group action on the rational homology of all chessboard
complexes and complete graph matching complexes as studied by Björner,

Lovasz, Vrećica and Živaljević. This follows from an old observation on Betti

numbers of semigroup modules over semigroup rings described in terms of
simplicial complexes.

• The class of modules over the Segre rings and quadratic Veronese rings which
we consider is closed under the operation of taking canonical modules, and

hence exposes a pleasant symmetry inherent in these Betti numbers.

1. Introduction and Main Results.
Hilbert’s Syzygy theorem says that every finitely generated module M over a

polynomial ring A = k[x1, . . . , xn] has a finite resolution by free A-modules, i.e. an
exact sequence

(1.1) 0 → Aβh → · · · → Aβ1 → Aβ0 → M → 0.

In the case where each βi is as small as possible, this is called a minimal free
resolution, and the numbers βi are called the Betti numbers of M over A. If M is a
graded module over A it is known that βi = dimkTorA

i (M, k), where k is regarded
as the trivial A-module k = A/(x1, . . . , xn).

In a seminal work, Lascoux [La] computed TorA
• (M, k) in the case where A =

k[zij ] is the polynomial ring in the entries of a generic m × n matrix (zij), k
is a field of characteristic zero, and M is the quotient ring A/I where I is the
ideal generated by all t × t minors of the matrix (zij). In this situation, there
is an action of GLm(k) × GLn(k) on TorA

• (M, k) which is crucial for Lascoux’s
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analysis, and his result actually describes the decomposition of TorA
• (M, k) into

GLm(k)×GLn(k)-irreducibles. Józefiak, Pragacz, and Weyman [JPW] used similar
methods to compute TorA

• (M, k) where A is the polynomial ring k[zij ] in the entries
of a generic n × n symmetric matrix (zij = zji), I is the ideal generated by all
t × t minors, and M is the quotient A/I (again k has characteristic zero). Their
results also rely heavily on the inherent GLn(k)-action, and describe the irreducible
GLn(k)-decomposition of TorA

• (M, k).
The main results of this paper will generalize the results for 2 × 2 minors from

[La, JPW], as we now explain. Let k[x,y] := k[x1, . . . , xm, y1, . . . , yn] be a poly-
nomial ring in two sets of variables of sizes m, n respectively. The Segre subalgebra
Segre(m, n, 0) is the subalgebra generated by all monomials xiyj with 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Letting Am,n be the polynomial ring k[zij ] in the entries of a
generic m × n matrix (zij) as above, there is a surjection

φ : Am,n → Segre(m, n, 0)
zij �→ xiyj

The kernel of this surjection is well-known to be the ideal Im,n generated by the
2×2 minors of the matrix (zij), and hence Segre(m, n, 0) ∼= Am,n/Im,n. Identifying
x1, . . . , xm and y1, . . . , yn with the bases of two k-vector spaces V ∼= km and
W ∼= kn, then k[x,y] may be viewed as the symmetric algebra

Sym (V ⊕ W ) =
⊕

a,b≥0

SymaV ⊗ SymbW.

If we define
Segre(m, n, r) =

⊕
a,b≥0,a=b+r

SymaV ⊗ SymbW

for any integer r, then it is easy to check that Segre(m, n, 0) agrees with our ear-
lier definition, and in general Segre(m, n, r) is a finitely-generated module over
Segre(m, n, 0). Therefore the surjection φ endows Segre(m, n, r) with the structure
of a finitely-generated Am,n-module. Furthermore, if we identify zij with xi ⊗ yj ,
then Am,n

∼= Sym(V ⊗W ). As a consequence, the product of general linear groups
GL(V )×GL(W ) ∼= GLm(k)×GLn(k) acts compatibly on Am,n and Segre(m, n, r)
and hence also acts on TorAm,n• (Segre(m, n, r), k). The results of [La] for 2×2 minors
therefore describe the irreducible decomposition of TorAm,n• (Segre(m, n, 0), k) when
k has characteristic zero, and our first main result generalizes this to Segre(m, n, r).
Recall that the irreducible polynomial representations V λ of GLn(k) = GL(V ) are
indexed by partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0), and |λ| :=

∑
i λi. Similarly,

we denote by Wµ the irreducible representation of GLm(k) ∼= GL(W ) indexed by
the partition µ. The representation V λ corresponds to a Ferrers shape in which
λ1, . . . , λn are the row lengths.
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Theorem 1.1. For fields k of characteristic zero and all r ∈ Z, as a GLm(k) ×
GLn(k)-representation, TorAm,n• (Segre(m, n, r), k) is the direct sum of irreducible
representations V λ ⊗ Wµ where (λ, µ) runs through all pairs of partitions pictured
in Figure 1, with

• s arbitrary,
• λ, µ having at most m, n parts respectively,

and with the pair (λ, µ) occurring in homological degree s(s − r) + |α| + |β|, i.e.
in TorAm,n

s(s−r)+|α|+|β|(Segre(m, n, 0), k). Here α, β are as shown in the figure, and
αT , βT represent their conjugate partitions.

Figure 1. The pairs of partitions (λ, µ) indexing V λ⊗Wµ which occur
in TorAm,n• (Segre(m, n, r), k).

Similarly, if we let k[x] := k[x1, . . . , xn] then the dth Veronese subalgebra
Veronese(n, d, 0) is the subalgebra of k[x] generated by all monomials of degree d.
Letting An be the polynomial ring k[zij ] in the entries of a generic symmetric n×n
matrix (zij) (so zij = zji) as above, there is a surjection

φ : An → Veronese(n, 2, 0)
zij �→ xixj

The kernel of this surjection is well-known to be the ideal In generated by the 2×2
minors of the symmetric matrix (zij), and hence Veronese(n, 2, 0) ∼= An/In. If we
identify x1, . . . , xn with the basis of the k-vector space V ∼= kn, then k[x] may be
viewed as the symmetric algebra

SymV =
⊕
a≥0

SymaV.

Defining
Veronese(n, d, r) :=

⊕
a≡r mod d

SymaV
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for any r ∈ Z/dZ, it is easy to check that Veronese(n, d, 0) agrees with our ear-
lier definition, and in general Veronese(n, d, r) is a finitely-generated module over
Veronese(n, d, 0). Therefore the surjection φ endows Veronese(n, 2, r) for r ≡
0, 1 mod2 with the structure of a finitely-generated An-module. Furthermore, An

∼=
Sym(Sym2V ) so that GL(V ) ∼= GLn(k) acts compatibly on An and Veronese(n, 2, r),
and hence also acts on TorAn• (Veronese(n, 2, r), k). The results of [JPW] for 2 × 2
minors describe the irreducible decomposition of TorAn• (Veronese(n, 2, 0), k) when k
has characteristic zero, and our second main result generalizes this to Veronese(n, 2, r).

Theorem 1.2. For fields k of characteristic zero, and for r ≡ 0, 1 mod2, as a
GL(V )-representation, TorAn• (Veronese(n, 2, r), k) is the direct sum of irreducible
GL(V )-representations V λ where λ runs through all self-conjugate partitions λ, as
shown in Figure 2, with

• r ≡ |λ| mod 2,
• λ having at most n parts,

and with V λ occurring in homological degree
(

s
2

)
+ |α|

( i.e. in TorAn

( s
2 )+|α|(Veronese(n, 2, r), k)). Here s is the size of the Durfee square of

λ, and α is as shown in Figure 2.

Figure 2. The self-conjugate partitions λ indexing V λ which occur in
TorAm,n• (Veronese(n, 2, r), k) for r = 0, 1.

Our original motivation for performing these computations comes from an old ob-
servation (Proposition 3.1) that has been re-discovered many times (see e.g. [Sta1,
Theorem 7.9], [BH, Proposition 1.1], [CM]). The observation says that in the case
where M is a finitely generated semigroup module over an affine semigroup ring
S, and A is the polynomial ring in the generators of S, the groups TorA

• (M, k) are
isomorphic to direct sums of homology groups with coefficients in k for certain sim-
plicial complexes derived from S, M . As will be shown in Section 3 (and was alluded
to briefly in [BH]), this result applies to both Segre(m, n, r) and Veronese(n, 2, r).
Furthermore, the relevant simplicial complexes include as special cases the m × n
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chessboard complexes ∆m,n and the matching complex ∆n for the complete graph
on n-vertices, as defined and studied in [BLVZ]. Our computations of Tor allow us
to compute the rational homology (Theorem 3.3) for all chessboard complexes with
multiplicities, as defined in [BH, Remark 3.5], and for the class of complexes gener-
alizing the matching complexes ∆n which we call bounded-degree graph complexes.
As special cases, we deduce the following result about the complexes ∆m,n and ∆n.
For its statement, recall that the irreducible representations Sλ of the symmetric
group Σn are indexed by partitions λ with |λ| = n.

Theorem 1.3. For fields k of characteristic zero, as a Σm × Σn-representation,
the reduced homology H̃•(∆m,n; k) is the direct sum of irreducible representations
Sλ ⊗Sµ where (λ, µ) runs through all pairs of partitions pictured in Figure 1 with

• s arbitrary,
• |λ| = m, |µ| = n (so that r = m − n),

and with the pair (λ, µ) occurring in H̃s(s−r)+|α|+|β|(∆m,n; k). Here α, β are as
shown in Figure 1.

Also for fields k of characteristic zero, as a Σn-representation, the reduced ho-
mology H̃•(∆n; k) for r = 0, 1 is the direct sum of irreducible representations Sλ

where λ runs through all self-conjugate partitions λ, as shown in Figure 1, with
• |λ| = n,
• |λ| ≡ r mod 2,

and with Sλ occurring in H̃( s
2 )+|α|−1(∆n; k). Here s is the size of the Durfee square

of λ, and α as shown in the figure.

We should point out that although we were not originally aware of it, the results
in Theorem 1.3 are not new. In a recent preprint [FrH], Friedman and Hanlon
obtain exactly the same description as in Theorem 1.3 for the rational homology
of the chessboard complex ∆m,n, using a beautiful, but entirely different method
involving the spectral decomposition of discrete Laplacians on ∆m,n. Their method
uncovers further information about the irreducible decompositions of eigenspaces
for these Laplacians. Also, the same description as in Theorem 1.3 for the rational
homology of the matching complex ∆n was obtained independently by Bouc [Bo],
and also independently by Karagueusian [Ka].

There is another recent motivation for the computation of the rational homology
of the complete graph matching complex ∆n, ensuing from work of Vassiliev, which
is discussed in [BBLSW]. In particular, Table 3 of that reference lists homology
calculations of H̃i(∆m,n; k) for small values of i, char(k) and Theorem 1.3 (or the
results of [Bo, Ka]) accurately predict all of the non-torsion data which occurs in
this table.

The paper is structured as follows. Section 2 discusses the canonical modules of
Segre(m, n, r) and Veronese(n, 2, r), and explains how Theorems 1.1 and 1.2 respect
canonical module duality. It then uses this duality to prove Theorems 1.1 and 1.2.
Section 3 sketches the proof of the old observation on Betti numbers of semigroup
modules over semigroup rings needed to deduce Theorem 1.3. This section also
gives the result (Theorem 3.3) generalizing Theorem 1.3, about rational homology
of chessboard complexes with multiplicities and bounded-degree graph complexes.
Section 4 is devoted to remarks and open problems.
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2. Canonical modules and the proof of Theorems 1.1, 1.2.
The goal of this section is two-fold. First we review the definition of Cohen-

Macaulayness and canonical modules. A general reference for some of this material
is [Sta1]. Then we determine when Segre(m, n, r) and Veronese(n, d, r) are Cohen-
Macaulay and identify their canonical modules. We then explain how Theorems 1.1
and 1.2 respect canonical module duality and show how this implies the theorems.

Recall that for a finitely generated graded module M over the polynomial ring
A = k[x1, . . . , xn], the homological dimension h = hdA(M) is the length of a
minimal free resolution for M , i.e. it is the largest index h such that TorA

h (M, k) 
= 0.
If we denote by d the Krull dimension of the quotient A/AnnAM , then A is said to
be Cohen-Macaulay if hdA(M) = n− d. If M is a module over a finitely generated
graded k-algebra R which is not a polynomial ring, then one usually takes A to be a
polynomial ring in indeterminates which map to a minimal set of algebra generators
for R, and say that M is a Cohen-Macaulay R-module if it is Cohen-Macaulay as
an A-module.

When M is Cohen-Macaulay, the groups Exti
A(M, A) are known to vanish for

i < h, and the canonical module Ω(M) is defined to be the A-module Exth
A(M, A).

Because of the vanishing of the lower Ext groups, applying the functor HomA(·, A)
to the minimal free resolution (1.1) gives an exact sequence (and hence a minimal
free resolution)

0 ← Ω(M) ← (A∗)βh ← · · · ← (A∗)β1 ← (A∗)β0 ← 0

of Ω(M). We conclude from this resolution that TorA
i (M, k) and TorA

h−i(Ω(M), k)
are dual as k-vector spaces for all i.

Proposition 2.1. For an arbitrary field k, Segre(m, n, r) is a Cohen-Macaulay
Am,n-module if and only if either

• 0 ≤ r ≤ n − 1, or
• 0 ≤ −r ≤ m − 1, or
• m = n = 1 and r is arbitrary.

Proof. We observe that Segre(m, n, r) is the k-linear span of monomials xβ′
yβ′′

such that
∑m

i=1 β′
i −

∑n
j=1 β′′

j = r. The depth and Cohen-Macaulayness of such
modules constructed from solutions of linear Diophantine equations were studied
by Stanley [Sta2]. In particular, his Corollary 3.4 (with s = m, t = n, α = r and
ai = bj = 1 for all i, j) exactly gives the proposition. �

We must also address the Cohen-Macaulayness of the modules Veronese(n, d, r),
and furthermore identify the canonical modules of Segre(n, d, r) and Veronese(n, d, r).
A convenient approach is to use some facts from the invariant theory of finite (or
compact) groups which we now review (see [Sta3] for a nice survey).

Recall that if G is any subgroup of GL(V ) ∼= GLn(k), then identifying R =
k[x1, . . . , xn] with Sym(V ) defines a G-action on R. For the remainder of this
section, assume that k = C, and we will assume that G is a compact subgroup
of GLn(C). When G is compact, the subring RG of G-invariant polynomials is
finitely generated and Cohen-Macaulay by the methods of Hochster and Eagon
[HE]. More generally, for any irreducible character χ of G, one can define the module
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of χ-relative invariants RG,χ to be the χ-isotypic component of R. It is shown in
[Sta3, Theorem 3.10] that for G finite, RG,χ is a finitely generated Cohen-Macaulay
module over RG, (although Proposition 2.1 shows that Cohen-Macaulayness can fail
for compact groups G and non-trivial characters χ). One can furthermore identify
the canonical module Ω(RG,χ) in the cases where RG,χ is Cohen-Macaulay.

Lemma 2.2 [Sta3, Remark on p. 502]. Let G ⊂ GLn(C) be compact, χ an irre-
ducible character of G, det the determinant character of G, and χ the conjugate
character to χ, i.e. χ(g) = χ(g). Assume RG,χ is a Cohen-Macaulay RG-module.
Then we have the following isomorphism of graded RG-modules

Ω(RG,χ) ∼= RG,χ·det

up to an overall shift in grading.

We now apply these facts to Segre(m, n, r), Veronese(n, d, r). Let S1 be the circle
group

S1 = {eiθ}θ∈R/2πZ

embedded as a subgroup G ↪→ GL(V ⊕ W ) ∼= GLn+m(C) as follows:

eiθ �→
(

eiθ · IV 0
0 e−iθ · IW

)
.

Here IV , IW denote the identity matrices acting on V, W respectively. If we let
R = Sym·(V ⊕ W ) and let χr denote the character χ(eiθ) = eriθ of G, then it
is clear that Segre(m, n, 0) is the invariant subring RG, and Segre(m, n, r) is the
module of relative invariants RG,χr .

Similarly, embed the cyclic group Z/dZ as a subgroup G ⊆ GL(V ) ∼= GLn(C)
as follows:

ζ �→ e
2πi

d · IV

where ζ is a generator of Z/dZ. If we let R = Sym(V ) and let χr be the character
χ(ζ) = e

2πir
d of G, then it is clear that Veronese(n, d, 0) is the invariant subring

RG, and Veronese(n, d, r) is the module of relative invariants RG,χr .

Corollary 2.3. When k = C, the Veronese(n, d, 0)-modules Veronese(n, d, r) are
always Cohen-Macaulay. Furthermore, when k = C and whenever the modules
Segre(m, n, r), Veronese(n, d, r) are Cohen-Macaulay, their canonical modules are
described, up to a shift in grading, as follows:

Ω(Segre(m, n, r)) ∼= Segre(m, n, n− m − r)

Ω(Veronese(n, d, r)) ∼= Veronese(n, d,−n− r)

Proof. As noted above, Veronese(n, d, r) is a module of relative invariants for a
finite group, and hence is Cohen-Macaulay by [Sta3, Theorem 3.10]. Then Lemma
2.2 and our previous discussion identifies the canonical modules. �

As a consequence, the duality between the opposite Tor groups for Ω(M) and
M manifests itself in a combinatorial/representation theoretic duality inherent in
Theorems 1.1 and 1.2. The next result is the combinatorial manifestation of that
duality.
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Proposition 2.4.
For 0 ≤ r ≤ n − 1 or 0 ≤ −r ≤ m − 1, consider the operation of complementing

the shapes (λ, µ) within the rectangular shapes ((n−1)m, (m−1)n) and then rotating
both shapes 180 degrees. This operation gives an involution which pairs the shapes
predicted by Theorem 1.1 to occur in

TorAm,n

i (Segre(m, n, r), C)

with those predicted to occur in

TorAm,n

j (Segre(m, n, n− m − r), C)

where i + j = (m − 1)(n − 1).
For r ≡ 0, 1 mod2, consider the operation of complementing the self-conjugate

shape λ within the square shape nn, and then rotating 180 degrees. This operation
gives an involution which pairs the shapes predicted by Theorem 1.2 to occur in

TorAn
i (Veronese(n, 2, r), C)

with those predicted to occur in

TorAn
j (Veronese(n, 2,−n − r), C)

where i + j =
(

n
2

)
.

Remark. We note that since M = Segre(m, n, r), Veronese(n, d, r) are torsion
free modules over the subalgebras Segre(m, n, 0), Veronese(n, d, 0) respectively, in
both cases the quotient A/AnnA(M) is isomorphic to the corresponding subalge-
bra. Since we can compute the Krull dimensions of these subalgebras from the
known dimensions of the Segre and Veronese varieties, we conclude from Cohen-
Macaulayness that

hdAm,n
(Segre(m, n, r)) = mn − (m + n − 1) = (m − 1)(n − 1)

hdAn
(Veronese(n, 2, r)) =

(
n + 1

2

)
− n =

(n

2

)
.

Therefore in the dual pairing we should expect Tori, Torj to pair when i + j = h,
with exactly the values of h as stated in the Proposition.

Proof of Proposition 2.4. Figures 3(a) and 3(c) depict the relevant shapes (λ, µ) and
λ along with their complementary partners within the appropriately sized boxes. As
shown, the complementary shapes also fit the format of Figures 1 and 2, with their
parameters related to the original parameters as follows. For (λ, µ) with parameters
r, s the complements (λ′, µ′) have parameters r′ = n−m−r, s′ = n−1−s, as shown
in Figure 3(a). For self-conjugate λ with Durfee square of size s, the complement λ′

has Durfee square of size n−s, as shown in Figure 3(c). To see that the homological
degrees i, j of the original shapes and their complements, respectively, add up to
the appropriate homological dimension h, one has two alternatives. One can either
do a direct calculation in the two cases, or one can note that in both cases, i + j is
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the same as the total number of shaded squares depicted in Figures 3(b) or 3(d),
and count that the number of shaded squares is the appropriate value (m−1)(n−1)
or

(
n
2

)
. �

The pairing of shapes inside rectangular boxes as in the previous proposition
really is a pairing of dual vector spaces, and in fact a pairing of contragredient
representations, due to the following well-known result.

Proposition 2.5 [PW2, §0.2(c)]. Let λ be a partition with at most n parts and all
parts of size at most m. Let B be a rectangular box with n rows and m columns,
and let λ′ be the complement of λ within the box B, after rotating 180 degrees. Then
as GLn(C) representations we have

V λ′ ∼= (V λ)∗ ⊗ (det)⊗m

where (V λ)∗ denotes the contragredient representation to V λ, and det ∼= ∧m(V ) is
the one-dimensional determinant representation of GL(V ).

As a consequence of this proposition and from the dimensions of the rectangular
boxes which occur in Proposition 2.4, we can see what shift in grading is necessary
to turn some of the isomorphisms in Corollary 2.3 into graded isomorphisms:

Ω(Segre(m, n, r)) ∼= Segre(m, n, n− m − r)[(x1 · · ·xm)n−1(y1 · · · yn)m−1]

Ω(Veronese(n, 2, r)) ∼= Veronese(n, 2,−n− r)[(x1 . . . xn)n]

where M [xα] indicates the module M with multidegrees shifted up by α. If r = 0,
we can verify that these conjectural shifts in grading are actually correct: First
assume without loss of generality that m ≤ n, and compute the representations

TorAm,n

(m−1)(n−1)(Segre(m, n, 0), k) = V ((n−1)m−1,m−1) ⊗ W ((m−1)n)

TorAn

(n
2 )(Veronese(n, 2, 0), k) =

{
V (nn) if n is even

V (nn−1,n−1) if n is odd

known from the results of [La, JPW]. Then compare these with the easily com-
putable representations (recalling m ≤ n)

TorAm,n

0 (Segre(m, n, n − m), k) = V (n−m) ⊗ W ∅

TorAn
0 (Veronese(n, 2,−n), k) =

{
V ∅ if n is even
V (1) if n is odd

with which they are supposed to be paired. As a consequence, we immediately
deduce from Proposition 2.1, Proposition 2.3, and Proposition 2.4 the following:

Corollary 2.6. Theorem 1.1 is correct when r = 0 and when n − m − r = 0.
Theorem 1.2 is correct when r ≡ 0 mod2 and when −n − r ≡ 0 mod2. �

Finally, from this we can deduce Theorems 1.1, 1.2:

Proof of Theorems 1.1 and 1.2. Since Theorems 1.1 and 1.2 both assert that
groups TorA

• (M, C) have certain decompositions as GL(V )- or GL(V ) × GL(W )-
representations, we first claim they are polynomial representations, and hence it
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Figure 3. The pairing of partitions which are complementary within
rectangular boxes:
(a) the pairing for Segre(m, n, r).
(b) illustration for Segre(m, n, r) of why
i + j =(shaded area) = (m − 1)(n − 1).
(c) the pairing for Veronese(n, 2, r).
(d) illustration for Veronese(n, 2, r) of why i+ j = (shaded area) =

(
n
2

)
.
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suffices to check that they have the correct characters, i.e. that the dimensions of
weight-spaces TorA

i (M, C)γ are correct for each weight γ. To see this claim, we use
the fact that

TorA
• (M, C) ∼= TorA

• (C, M),

and we can compute the latter by tensoring the Koszul resolution of C as an A-
module with M and taking homology of the resulting complex. The terms in the
Koszul resolution are exterior powers of C-vector spaces tensored with A, and hence
are polynomial representations. Since M is always a polynomial representation, ten-
soring with it preserves polynomiality. Then the homology groups of the resulting
tensored complex are quotients of submodules of these polynomial representations,
and hence also polynomial.

It remains to show that the weight spaces TorA
i (M, C)γ always have the correct

dimension asserted in Theorems 1.1 and 1.2. We start with Theorem 1.2, so that

A = An

M = Veronese(n, 2, r)

and the group acting is GL(V ). If n, r are not already in the cases covered by
Corollary 2.6, then n is even and r is odd. But then n + 1 is odd, so we know
that Theorem 1.2 is correct for Veronese(n + 1, 2, r). Therefore each weight space
TorAn

i (Veronese(n + 1, 2, r), C)γ̃ for γ̃ ∈ Nn+1 has the correct dimension predicted
by Theorem 1.2. Given a weight γ ∈ Nn, we can append an extra coordinate at the
end equal to zero to obtain a weight γ̃ ∈ Nn+1. Proposition 3.2 shows that

TorAn
i (Veronese(n, 2, r), C)γ

∼= H̃i−1(∆γ ; C)
∼= H̃i−1(∆γ̃ ; C)

∼= TorAn+1
i (Veronese(n + 1, 2, r), C)γ̃.

Here ∆γ and ∆γ̃ are as defined in Section 3, and the second isomorphism comes from
the crucial (but trivial) fact that ∆γ and ∆γ̃ are isomorphic simplicial complexes.
Theorem 1.2 for Veronese(n, 2, r) then follows from the well-known fact that the
dimension of the weight-space V λ

γ in the irreducible GLn(C)- representation V λ is
the same as for the weight space V λ

γ̃ in the irreducible GLn+1(C)- representation
V λ.

A similar argument works for Segre(m, n, r). If m, n, r are not already in the
cases covered by Corollary 2.6, then we can always choose m′ ≥ m and n′ ≥ n
such that n′ − m′ − r = 0 and either 0 ≤ r ≤ n′ − 1 or 0 ≤ −r ≤ m′ − 1. Then
Theorem 1.1 is correct for Segre(m′, n′, r), so the dimensions of each of the weight
spaces TorAm,n

i (Segre(m′, n′, r), C)(γ,δ) are as predicted by Theorem 1.1. A similar
argument using Proposition 3.2 then finishes the proof. �

3. Rational homology.
The goal of this section is to sketch the proof of an old observation on Betti

numbers of semigroup modules over semigroup rings, and then apply this to deduce
Theorem 1.3 and other consequences.
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To this end, we introduce some terminology. Let Λ be a finitely generated
additive sub-semigroup of Nd, and let M ⊆ Nd be a finitely-generated Λ-module,
i.e. λ + µ ∈ M for all λ ∈ Λ and µ ∈ M. The semigroup ring k[Λ] may be
identified with a subalgebra of k[z1, . . . , zd] generated by some minimal generating
set of monomials m1, . . . , mn. Then M gives rise to a finitely generated module
M = kM over k[Λ] inside k[z], simply by taking the k-span of all monomials of
the form zµ where µ ∈ M. Surjecting A = k[x1, . . . , xn] onto k[Λ] by xi �→ mi, we
endow k[Λ] and M with the structure of finitely generated A-modules. Furthermore,
all the rings and modules just defined carry an Nd-grading, and hence so does
TorA

• (M, k). We will refer to the αth-graded piece of TorA
i (M, k) by TorA

i (M, k)α

for α ∈ Nd.
Given µ ∈ M, define a simplicial complex Kµ on vertex set [n] := {1, 2, . . . , n}

as follows:

Kµ :=
{

F ⊆ [n] :
zµ∏

i∈F mi
∈ M

}
.

Proposition 3.1(cf. [BH, Proposition 1.1], [Sta1, Theorem 7.9], [CM], [Stu,
Theorem 12.12]). For Λ,M, A, M and µ ∈ M as above, we have

TorA
i (M, k)µ

∼= H̃i−1(Kµ; k)

where H̃ denotes reduced (simplicial) homology, and all other graded pieces TorA
i (M, k)α

for α 
∈ M vanish.

Proof. For completeness, we sketch the proof as in [BH, Proposition 1.1].
First note that TorA

i (M, k)µ
∼= TorA

i (k, M)µ. We can compute the right-hand
side starting with the well-known Koszul complex K resolving k as an A-module.
This complex has as its tth term Kt the module

∧t
An which is the free A-module

with A-basis
{ei1 ∧ · · · ∧ eit

}1≤i1<···<it≤n

and where ei carries the same Nd-grading as the monomial generator mi of k[Λ].
Tensoring the resolution K with the A-module M gives a complex K ⊗ M . Fix
µ ∈ Nd and restrict attention to the µth-graded piece (K ⊗ M)µ, which is a complex
of k-vector spaces. The tth term (K ⊗ M)t,µ in this complex has typical k-basis
element of the form

zγei1 ∧ · · · ∧ eit

where zγ ∈ M , and

(3.1) zγ · mi1 · · ·mit
= zµ.

Equation (3.1) implies that (K ⊗ M)µ vanishes unless µ ∈ M. Furthermore, when
µ ∈ M, note that in the above basis vector, γ is uniquely determined by µ and
{i1, . . . , it} from equation (3.1). If we identify the above basis vector with the
oriented simplex [i1, . . . , it] in Kµ, one can check that (K ⊗ M)µ is identified with
the (augmented) simplicial chain complex C̃•(Kµ; k) up to a shift in grading by 1.
The proposition then follows. �
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To apply this result along with Theorems 1.1 and 1.2, we note that Segre(m, n, 0)
is the semigroup ring for the submonoid of Nm×Nn generated by {(ei, ej)}1≤i≤m,1≤j≤n

where ei is the ith standard basis vector, and Segre(m, n, r) is the semigroup mod-
ule generated over this semigroup by {(v, 0)} as v runs over all vectors in Nm with∑

i vi = r if r > 0 (and similarly {(0, w)} if r < 0). For any multidegree (γ, δ)
occurring in Segre(m, n, r), the complex K(γ,δ) from Proposition 3.1 is isomorphic
to the chessboard complex with multiplicities ∆γ,δ defined in [BH, Remark 3.5]:
∆γ,δ is the simplicial complex whose vertex set is the set of squares on an m × n
chessboard, and whose simplices are the sets F of squares having no more than γi

squares from row i and no more than δj squares from row j for all i, j. The isomor-
phism K(γ,δ)

∼= ∆γ,δ comes from identifying the generator (ei, ej) of the semigroup
with the square in row i and column j of the chessboard. Note that in the square-
free multidegree (γ, δ) = ((1, . . . , 1), (1, . . . , 1)), this complex ∆γ,δ = ∆m,n is the
m × n chessboard complex considered in [BLVZ], whose vertices are the squares of
the chessboard, and whose simplices are the sets of squares which correspond to a
placement of rooks on the board so that no two rooks lie in the same row or column.
The complex ∆3,3 is depicted in Figure 4(a).

Figure 4. (a) The chessboard complex ∆3,3 = ∆(1,1,1),(1,1,1). The
vertices are labelled by the generators xiyj of Segre(3, 3, 0). The trian-
gular face with vertices x2y1, x3y2, x1y3 is shown transparent so as not
to obscure the faces underneath.
(b) The matching complex ∆5 = ∆(1,1,1,1,1) with vertices labelled by
some of the generators xixj of Veronese(5, 2, 0). Note that the gen-
erators x2

i do not appear as vertices, since they do not divide into
x(1,1,1,1,1) = x1x2x3x4x5.

Similarly, Veronese(n, 2, 0) is the semigroup ring for the submonoid of Nn gen-
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erated by {(ei + ej)}1≤i≤j≤n , and Veronese(n, 2, 1) is the semigroup module over
this semigroup generated by {ei}1≤i≤n. For any multidegree γ which occurs in
Veronese(n, 2, r), the complex Kγ from Proposition 3.1 may be identified with what
we will call a bounded-degree graph complex ∆γ . In the square-free multidegree
γ = (1, . . . , 1), this complex ∆γ is the matching complex ∆n for a complete graph
on n vertices, as considered in [BLVZ]. The matching complex for a graph G is the
simplicial complex whose vertex set is the set of edges of G, and whose simplices are
the subsets of edges which form a partial matching, i.e. an edge-subgraph in which
every vertex lies on at most one edge. The isomorphism ∆(1,... ,1)

∼= ∆n comes from
the fact that ∆(1,... ,1) cannot use any vertices corresponding to the generators {2ei}
of the semigroup because of the square-free multidegree (1, . . . , 1), and the vertex
corresponding to the generator ei + ej may be identified with the edge between
vertices i and j in the complete graph. The matching complex ∆5 is depicted in
Figure 4(b). For more general γ which are not square-free, ∆γ is the bounded-
degree graph complex, whose vertices correspond to the possible loops and edges
in a complete graph on n vertices, and whose faces are the subgraphs (with loops
allowed) in which the degree of vertex i is bounded by γi. Here a loop on a vertex
is counted as adding 2 to the degree of the vertex.

We record the preceding observations in the following Proposition:

Proposition 3.2. For any field k there are isomorphisms

TorAm,n

i (Segre(m, n, r), k)(γ,δ)
∼= H̃i−1(∆γ,δ; k)

TorAn
i (Veronese(n, 2, r), k)γ

∼= H̃i−1(∆γ ; k).

We next consider symmetries which lead to group actions on these complexes.
Notice that one can re-index the rows and columns of the chessboard (which cor-
responds to permuting the coordinates of (γ, δ) independently via an element of
Σm × Σn), without changing the chessboard complex ∆γ,δ up to isomorphism.
Consequently, we may assume without loss of generality that γ, δ are partitions,
i.e. that their coordinates appear in weakly decreasing order. Therefore γ, δ are
completely determined by the multiplicities of the parts which occur in them, so we
can write γ = 1a12a2 · · · and δ = 1b12b2 · · · . With this notation, define the Young
or parabolic subgroup

Σa × Σb ↪→ Σm × Σn

where Σa = Sa1 ×Sa2 × · · · and similarly for Σb. Then Σa ×Σb acts as a group of
simplicial automorphisms of ∆γ,δ. Note that in the square-free case, it is the entire
group Σm × Σn which acts on ∆m,n.

Similarly, one can re-index the vertices [n] of the complete graph (which corre-
sponds to permuting the coordinates of γ via an element of Σn), without changing
the bounded degree graph complex ∆γ up to isomorphism. Consequently, we may
assume without loss of generality that γ is a partition, and completely determined
by the multiplicities of the parts which occur, so we can write γ = 1a12a2 · · · . There
is then a Young subgroup Σa ↪→ Σn acting as a group of simplicial automorphisms
of ∆γ , and in the square-free case it is the entire symmetric group Σn which acts
on ∆n.
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In order to state our next result, we need to recall the notion of a weight space in
a GLn(k)-representation (see [FuH] for this and other facts from the representation
theory of GLn(k)). Let diag(x) denote the diagonal matrix in GLn(k) having
eigenvalues x1, . . . , xn. It is known that when k has characteristic zero, any finite-
dimensional (rational) representation U of GLn(k) decomposes as a direct sum of
k-vector spaces

U =
⊕

γ∈Nn

Uγ

where Uγ is the xγ-eigenspace for diag(x), and Uγ is usually called the weight space
of U corresponding to the weight γ. It is well-known and easy to see that when we
act on γ by an element of Σn by permuting coordinates we obtain a weight γ′ whose
weight space Uγ′ is isomorphic to Uγ . As a consequence, in studying weight spaces
we may restrict attention to those with γ a partition (i.e. a dominant weight), so
γ = 1a12a2 · · · . As in the previous two paragraphs, the Young (parabolic) subgroup
Σa ↪→ Σn ↪→ GLn(k) acts on U and preserves Uγ , so that Uγ is a Σa-representation.

Theorem 3.3.

• Let (γ, δ) ∈ Nm × Nn be partitions, r := |γ| − |δ|, Σa × Σb the group
described above, and k a field of characteristic zero. Then as a Σa × Σb-
representation, the reduced homology H̃•(∆γ,δ; k) of the chessboard complex
with multiplicity ∆γ,δ is isomorphic to the direct sum of the (γ, δ)-weight
spaces ⊕

(λ,µ)

(
V λ ⊗ Wµ

)
(γ,δ)

as (λ, µ) runs through the same indexing set as in Theorem 1.1, and where
(λ, µ) occurs in H̃s(s−r)+|α|+|β|−1(∆γ,δ; k).

• Let γ ∈ Nn be a partition, r := |γ| mod 2, and Σa the permutation group
as described above. Then as a Σa-representation, the reduced homology
H̃•(∆γ ; k) of the complete graph matching complex ∆γ is isomorphic to the
direct sum of the γ-weight spaces

⊕
λ

V λ
γ

as λ runs through the same indexing set as in Theorem 1.2, and where λ
occurs in H̃( s

2 )+|α|−1(∆γ ; k).

Proof. By Proposition 3.2 we have

H̃i−1(∆γ,δ; k) ∼= TorAm,n

i (Segre(m, n, r), k)(γ,δ)

where r := |γ| − |δ|. Since the grading by multidegrees (γ, δ) ∈ Nm × Nn is easily
seen to coincide with the decomposition of TorAm,n

i (Segre(m, n, r), k) into GLn(k)×
GLm(k)-weight spaces, the assertion for ∆γ,δ then follows from Theorem 1.1.
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Similarly, by Proposition 3.2 we have

H̃i−1(∆γ ; k) = TorAn
i (Veronese(n, 2, r), k)γ

where r := |γ| mod 2, and hence the assertion for ∆γ follows from Theorem 1.2. �

Proof of Theorem 1.3. We simply recall the fact that the (1, . . . , 1) weight-space
V λ

(1,... ,1) of the irreducible GLn(k)-representation V λ affords the irreducible Σn-
representation Sλ. This fact follows, for example, from a comparison of Weyl’s
construction of V λ with the Specht construction of Sλ (see [FuH, Part I §§4 and
6]). �

Remark 3.4
The reader may be unsatisfied with our general description of the rational ho-

mologies H̃•(∆γ,δ; k), H̃•(∆γ ; k), since the answers are stated in terms of the mys-
terious Σa-representations on the weight-spaces V λ

γ of the irreducible GLn(k)-
representations V λ. However, we would like to point out that from this description
one can deduce their decompositions into irreducible Σa-representations, once one
knows the irreducible Σa-decomposition of V λ

γ . The latter decomposition can be
reduced to computations of Littlewood-Richardson coefficients and some instances
of the plethysm problem, as we now explain. The authors would like to thank Mark
Shimozono and William Doran for explaining this reduction to us.

Let γ = 1a12a2 . . . tat , and let GLa be the subgroup

GLa1 × · · · × GLat
↪→ GLn(k).

By restriction, ResGLn

GLa
V λ becomes a GLa-representation, and as such has a decom-

position into GLa-irreducibles

ResGLn

GLa
V λ ∼=

⊕
(ρ1,... ,ρt)

(V ρ1 ⊗ · · · ⊗ V ρt)⊕cλ
ρ1,... ,ρt

where cλ
ρ1,... ,ρt

is a nonnegative integer which can be computed using the Littlewood-
Richardson rule [FuH, p. 455]. In fact, cλ

ρ1,... ,ρt
has the following combinatorial

interpretation: it is the number of column-strict (semi-standard) tableaux of shape λ
and content (ρ1, . . . , ρt) which are Yamanouchi with respect to each of the alphabets
1, 2, . . . , a1 and a1 + 1, . . . , a1 + a2 and a1 + a2 + 1, . . . , a1 + a2 + a3, etc. We refer
the reader to [FuH] for the definition of column-strict tableaux and contents. A
tableaux is said to be Yamanouchi with respect to an alphabet a, a+1, . . . , b−1, b if
when one restricts attention to the entries of the tableaux that lie in this alphabet,
and read these entries from right to left in a row, proceeding from the top row and
moving down, one obtains a word that has more occurrences of the letter i than
the letter i + 1 in any initial segment, for all i.

Now using the inclusions

Σa ↪→ GLa ↪→ GLn(k)
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it is easy to see that we have the following isomorphism of Σa-representations:

V λ
γ

∼=
⊕

(ρ1,... ,ρt)

(V ρ1
1a1 ⊗ V ρ2

2a2 · · · ⊗ V ρt
tat )

⊕cλ
ρ1,... ,ρt

where Σai
acts on V ρi

iai for each i.
Consequently, we have reduced the original description to the following prob-

lem: given a, b nonnegative integers, and ρ a partition with |ρ| = ab, how do we
decompose the Σa-representation V ρ

ba into Σa irreducibles Sν with |ν| = a? By a
result of Gay [Ga], this is an instance of the plethysm problem [FuH, Part I §6]:
the multiplicity of Sν as a Σa-representation in V ρ

ba is the same as the multiplic-
ity of V ρ in Sν(SymbV ) where Sν is the Schur functor [ABW] corresponding to
ν. Alternatively, the above multiplicity is the same as the coefficient of the Schur
function sρ in the plethysmic composition sν [s(b)]. Algorithms for computing these
multiplicities are contained in [CGR].

4. Remarks and open problems.
Most of the results in this paper have been limited to the case where k has

characteristic zero, since some of the methods involved break down in positive
characteristic. The question of how TorA(·, k) varies with the characteristic of k
for the Segre and quadratic Veronese modules, and consequently what torsion can
occur in the homology of the chessboard and matching complexes ∆m,n, ∆n is wide
open, and of great interest. For this reason, we review some of what little is known
here.

Hashimoto [Has1] was the first to show that TorA5,5
3 (Segre(5, 5, 0), k) depends

upon whether k has characteristic 3, and consequently that ∆5,5 has 3-torsion
in its 2-homology (see also [BLVZ, Proposition 2.3] which contains an error that
was later corrected). Anderson [An] showed that TorA7

5 (Veronese(7, 2, 0), k) de-
pends upon whether k has characteristic 5, by an explicit calculation of H̃4(∆γ , Z)
for the multidegree γ = (2, 2, 2, 2, 2, 2, 2). Bouc [Bo] showed that H̃1(∆7) has 3-
torsion (see also Table 3 of [BBLSW]), and hence TorA7

2 (Veronese(7, 2, 1), k)γ for
γ = (1, 1, . . . , 1) will depend upon whether the characteristic of k is 3. More speci-
ficially, Bouc shows that H̃k(∆3k+4; Z) = Z/3Z for k ≥ 1, and also for k ≥ 3 that
H̃k(∆3k+3; Z) is a finite 9-torsion group requiring at least 3k + 2 generators.

On the other hand, the resolutions of determinantal ideals generated by t × t
minors of an m×n matrix are known to be characteristic-free when t = m, m−1, m−
2 by results of Eagon and Northcott [EN], Akin, Buchsbaum, and Weyman[ABW2],
and Hashimoto [Has2], respectively. This implies (using the 2× 2 minor case) that
Segre(m, n, 0) has a characteristic free resolution whenever m ≤ 4. This suggests
the following problems:

Problem 4.1. Does Segre(m, n, r) have a characteristic-free resolution for m ≤ 4?
Does Veronese(n, 2, r) have a characteristic-free resolution for n ≤ 6? Equivalently
do the complexes ∆γ,δ have torsion-free integral homology whenever γ has at most
4 parts, and similarly for ∆γ when γ has at most 6 parts?

One might be tempted to approach Problem 4.1 by showing that the complexes
∆γ,δ and ∆γ are homotopy equivalent to wedges of spheres in the above situations.
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This was indeed verified by Xun Dong (personal communication) for ∆γ,δ when γ
has at most 2 parts. However Dong points out that it is not true already for the
3× 4 chessboard complex ∆(1,1,1),(1,1,1,1), since it was observed in [BLVZ] that this
complex triangulates a 2-dimensional torus.

Another question deals with vanishing theorems and the connectivity of the
associated simplicial complexes. In [BLVZ], it is proven that ∆m,n is topologically
(ν − 2)-connected, where

ν = min
{

m, n,

⌊
1
3
(m + n + 1)

⌋}

and it is conjectured that this bound is tight, i.e. that ∆m,n has some nontrivial
(ν − 1)-homology. It is also proven there that ∆n is

(⌊
n+1

3

⌋ − 2
)
-connected.

Problem 4.2. Generalize these connectivity results to arbitrary chessboard com-
plexes with multiplicity ∆γ,δ and the multi-matching complexes ∆γ .

Such results would give constraints on the resolutions of Segre(m, n, r) and Veronese(n, 2, r)
which are independent of the field characteristic.

Remark 4.3
It turns out that the modules Segre(m, n, r) belong to a larger family of modules

Mt,λ supported in determinantal varieties for t × t minors with t ≥ 2, which we
briefly describe below. These modules were considered in a recent preprint of
Weyman [We]. We thank Mark Shimozono and an anonymous referee for pointing
out that the methods of Lascoux [La] and Pragacz and Weyman [PW1] can be used
to describe TorA

• (Mt,λ, Q), thus generalizing Theorem 1.1.
Let A := Am,n = Sym(V ⊗W ) as above. Let It be the ideal in A generated by the

t × t-minors of the m × n matrix (zij). Let Yt := Spec(A/It) be the determinantal
variety, and let X := Spec(A), an affine space which we identify with V ∗ ⊗ W ∗ =
Hom(V, W ∗). Let G be the Grassmannian of (t − 1)-dimensional quotients of V .
We have the tautological exact sequence of vector bundles on G

0 → R → VG → Q → 0

where VG := OG ⊗ V . Similarly define WG := OG ⊗ W . Inside of X × G =
Hom(V, W ∗) × G there is a subbundle

Z := Hom(Q,W∗
G) = {(ϕ, U) : ϕ induces a map U → W ∗}.

Let ρ : Z → G be induced by the projection onto the second factor in X × G. For
any partition λ := (λ1, . . . , λt−1) with at most (t− 1)-parts, let LλQ be the vector
bundle on G obtained by applying the Schur functor [ABW1] associated with λ to
Q. Then Mt,λ := H0(Z, ρ∗(LλQ)) is an A-module supported on Yt. If t = 2 and λ
has a single part λ1 = r, then Mt,λ = Segre(m, n, r).

Presumably, although we have not checked this, similar constructions and reso-
lutions exist generalizing Theorem 1.2.

Acknowledgments. The authors would like to thank Mark Shimozono and William
Doran for the content of Remark 3.4, and Naoki Terai for the references [Sta1, The-
orem 7.9] and [Has2]. They also thank Mark Shimozono and an anonymous referee
for pointing out the content of Remark 2.7.
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