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1. Heron's formula (Theorem 9 in §4.5).  Here is a proof that doesn't depend on the formulas from 

§4.4. The starting point is the observation that there are two different ways to use the Pythagorean 
Theorem to write a formula for  h2  in the following figure.   

By definition,  F  is the foot of the altitude (perpendicular) drawn from  B  to  AC .  As usual,  a, b  
and  c  denote the lengths of the sides opposite the vertices  A, B,  and  C  respectively.  We define  x  
to be the distance from  C  to  F:  positive in case  F  is in the ray  CA   and negative if not.  (We 
would get a negative value if we had an obtuse angle at  C.)  Similarly,  b -x  is the distance 
(with ± sign) from  A  to  F.   
      With this setup,  h2 = a2 - x2,  and also  h2 = c2 - (b - x)2 = c2 - b2 + 2bx - x2.  Setting these two 
expressions equal, we obtain:   
                a2 - x2 = c2 - b2 + 2bx - x2, 
so that: 
               2bx = a2 + b2 - c2,        and therefore       x = (a2 + b2 - c2)/2b . 
Substituting this into the equation  h2 = a2 - x2,  we obtain: 
                h2 = a2 – ((a2 + b2 - c2)2/4b2)  = (2a2b2 + 2a2c2 + 2b2c2 - a4 - b4 - c4)/4b2 . 
This leads to a formula which is equivalent to formula (3.3) of the text: 
                           ||ΔABC||2 = 1/4 b2h2 = (2a2b2 + 2a2c2 + 2b2c2 - a4 - b4 - c4)/16 . 
   
    And exactly as in the text, the numerator can be factored.  One way to see that is to note that the 
numerator, namely  -(c4 - 2(a2 + b2)c2 + (a4 - 2a2b2 + b4)),  is of 4th degree in  c  with only even 
exponents and is thus a quadratic expression in  c2.  If we set it equal to zero and regard it as a 
quadratic equation with  c2  as the unknown, then the quadratic formula produces the following roots: 
              c2 = (a2 + b2 ) ± 4a

2
b
2  = (a2 ± 2ab + b2) 

Therefore, we have the following factorization: 
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              -(c4 - 2(a2 + b2)c2 + (a4 - 2a2b2 + b4)) = -(c2 - (a + b)2)(c2 - (a - b)2). 
Since the last terms are differences of squares, this leads to: 
             -(c4 - 2(a2 + b2)c2 + (a4 - 2a2b2 + b4)) = -(c + (a + b))(c - (a + b))(c + (a - b))(c - (a - b)). 
If the minus sign is absorbed into the second factor on the right, then we obtain a nearly final result: 
            ||ΔABC||2 = (a + b + c)(a + b - c)(a  + c - b)(b + c - a))/16 
To get a more traditional version of the formula, we set  s = (a + b + c)/2  (sometimes called the 
semi-perimeter)  and then observe that  s - a = (a + b + c)/2,  and so forth, thus leading to: 
           ||ΔABC||2 = s(s - a)(s - b)(s - c),       or       !ABC = s(s " a)(s " b)(s " c)    
   

2. §4.4: Another proof of Theorem 7.   Here, we'll use a figure very similar to the one used in the proof 
of Heron's formula presented above.  Indeed, the only change is that we've labeled the distance from 

 A  to  F  as  y  instead of  b - x,  since we'll actually want to find its value.   
      As in the previous proof, we have two ways to calculate  h  namely  h2 = a2 - x2,  and also  
h2 = c2 - y2.  Setting them equal to each other, we obtain the following equation: 
                a2 - x2 = c2 - y2. 
And here is our other equation: 
                x + y = b. 
Substituting  y = b - x  into the first equation, we have  a2 - x2 = c2 - b2 + 2bx - x2.  Thus: 
               2bx = a2 + b2 - c2,       so that       x = (a2 + b2 - c2)/2b . 
By doing a similar calculation, or by setting  y = b - (a2 + b2 - c2)/2b , we obtain: 
                y = (b2 + c2 - a2)/2b . 
Now, what does this tell us about the barycentric coordinates of  F?  A preliminary guess might be 
that  F = (y/b,0,x/b)Δ = ((b2 + c2 - a2)/2b2,0, (a2 + b2 - c2)/2b2)Δ,  but this guess would be wrong!!  
Well, at a minimum, it would be the "opposite" of what's predicted in Theorem 6.  To see why, and to 
determine which choice really is correct, consider the actual barycentric coordinates  F = (r,0,t) Δ.  
In rectangular coordinates, this is  F = rA + tC.  So, to get the distance from  A,  we calculate: 
               F - A = (rA + tC) - A = (r - 1)A + tC = -tA + tC = t(C - A).   
Thus, the signed(±) distance from  A  is  tb.  In other words, the distance from  A  to  F  is associated 
with the 3rd barycentric coordinate.  And in a similar way the distance from  B  to  F  is associated 
with the 1st barycentric coordinate.  Accordingly: F = ((a2 + b2 - c2)/2b2,0, (b2 + c2 - a2)/2b2)Δ,    
The results can summarized as in the following table.  (The above calculation above gives the middle 
row.) 
 

Vertex opposite side Foot of altitude 
A BC  (0, (a2 + b2 - c2)/2a2, (a2 + c2 - b2)/2a2)Δ 
B AC  ((a2 + b2 - c2)/2b2,0, (b2 + c2 - a2)/2b2)Δ 
C AB  ((a2 + c2 - b2)/2c2, (b2 + c2 - a2)/2c2, 0)Δ 
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3. §4.4: A proof of Theorem 8 (or the equivalent Corollary 10).  Actually, this amounts to a solution of 

Problem 43, and is possibly “improper” material for that reason.  But I’ll proceed with it anyway.  
Let  E, F,  and  G  be the feet of the altitudes passing through  A, B,  and  C  respectively, and let  
O = (r,s,t)Δ  be the orthocenter.  By the table,  E = (0, (a2 + b2 - c2)/2a2, (a2 + c2 - b2)/2a2)Δ.  Since  O  
is on the altitude through  A,  we have  (r,s,t) = u(1,0,0) + v(0, (a2 + b2 - c2)/2a2, (a2 + c2 - b2)/2a2)  
in  R3,  where  u  and  v  are real numbers with  u + v = 1.  We can use this to get information about 
the ratio between  s  and  t.  More specifically, we look at the second and third components of the 
vectors in this equation to see that  ((a2 + b2 - c2)/2a2, (a2 + c2 - b2)/2a2)  and  (s,t)  are linearly 
dependent in  R2,  thereby showing that the usual determinant is equal to zero:  
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It follows that  s(a2 +c2 - b2) = t(a2 + b2 - c2).  Working in a similar way with the altitude through  C,  
we show that  r(b2 + c2 - a2) = s(b2 + c2 - a2).  These equations have very nice symmetry, but our 
“multiplier method” would work better with  r, s,  and  t  divided (rather than multiplied) by various 
algebraic expressions.  To accomplish this we divide both of our equations by the product 
(b2 + c2 - a2)(b2 + c2 - a2)(a2 + b2 - c2).  This process yields the following equations: 
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We can multiply out the denominators in the following manner: 
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so that: 
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Now, let  λ  be the common value of these ratios.  Then we have  r = λ(a4 – b4 –c4 + 2b2c2),  
s = λ(b4 - a4 -c4 + 2a2c2),  and  t = λ(c4 – a4 –b4 + 2a2b2).  Substituting these equations into the basic 
identity  r + s + t = 1,  we obtain: 
                                      λ((a4 – b4 – c4 + 2b2c2) + (b4 - a4 - c4 + 2a2c2) + (c4 – a4 – b4 + 2a2b2)) = 1, 
or simply: 
         λ(2a2b2 + 2a2c2 + 2b2c2 - a4 – b4 –c4) = 1,     so that    
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By one of the intermediate steps in the proof of Heron’s formula, this becomes   
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4. §4.7: The barycentric coordinates of the incenter.  We’ll give a version of the proof of this formula 
(Theorem 17 on page 100) based on a slightly different viewpoint from what is presented in the text.  
Another significant feature is that the formula can be derived without using the existence of angle 
bisectors (Proposition 16 of §4.7).  And in fact, the proof in the text also works from a similar frame 
of reference if you study it carefully.   
   

      The discussion that follows is based on the proof that was presented in class.  Thus, we are 
looking for an incenter (whose existence we need to prove): a point in the interior of the triangle that 
is given in barycentric coordinates as  I = (r,s,t)Δ.  Thus, we need to find formulas for the barycentric 
coordinates, under the assumption that  r, s, and t  all are positive.  We denote the radius of the 
inscribed circle as  ρ  (rather than  r)  to avoid confusion with the first barycentric coordinate.  
Accordingly,  ρ  is the distance of  I  from each side of the triangle.   
   
      By Theorem 32 of Chapter 3,  the distance of  I = (r,s,t)Δ  from  AC   is  hBs,  where  hB  is the 
distance from  B  to  AC ,  i.e., the length of the altitude from  B  to  AC .  Thus, we have the equation 
 ρ = hBs.  {Literally applied, the theorem requires multiplying by  |s|  rather than  s,  but  s > 0  
because we are looking for a point in the interior of the triangle.}  In a similar way, we obtain the 
equations   ρ = hAr  and  ρ = hCt.   If we eliminate  ρ  from these three equations, we are left with the 
following two equations: 
              hAr = hBs     and     hBs = hCt. 
   
To get an equation that relates the altitudes to other known quantities, we observe (for instance) that 
we have the relation  ||ΔABC|| = hBb/2,  which gives  hB = 2||ΔABC||/b.  Using this, along with similar 
equations that involve the other altitudes, we can transform our equations into: 
              2r||ΔABC||/a = 2s||ΔABC||/b     and     2s||ΔABC||/b = 2t||ΔABC||/c, 
or after canceling common factors: 
             r/a = s/b     and     s/b = t/c. 
Along with these two equations, we have the standard equation  r + s + t = 1.  One way to solve the 
resulting system involves setting  λ  equal to the common value of the ratios  r/a, s/b and  t/c.  Thus,  
λ = r/a = s/b = t/c  so that  r = aλ,  s = bλ,  and  t = cλ.  Substituting these values into the equation  

r + s + t = 1,  we find that  (a + b + c)λ = 1, so that  
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previous equations, then we obtain the following formula: 

               

! 

I =
a

a + b + c
,

b

a + b + c
,

c

a + b + c

" 

# 
$ 

% 

& 
' 

(

. 

This certainly identifies a point in the interior of  ΔABC  which is equidistant from the 3 sides of the 
triangle.   
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Incidentally, we also can combine this with the equations  ρ = hBs  and  hB = 2||ΔABC||/b  to derive 

the formula  ! = 2 "ABC
a + b + c

,  also given in the text as part of Theorem 16. 

   
5. §4.7:  The existence of angle bisectors (An alternative approach).  This result corresponds to 

Proposition 16 on page 98 of the text.  By definition, an angle bisector of  ∠BAC  is a ray  

! 

AQ  in 
the interior of  ∠BAC  such that  ∠BAQ ≅ ∠CAQ.  {And because  Q  is in the interior of the angle, it 
follows that  |∠BAQ| and |∠CAQ|  both are equal to  |∠BAC|/2.}  Proposition 16 asserts that an angle 
bisector exists and is unique.  Proving that result (or at least mentioning it) before discussing 
Theorem 17 certainly is the more traditional approach.  On the other hand, showing that a ray with 
the required angle congruence properties lies in the interior of the angle is somewhat intricate.  This 
(somewhat subtle) question seems generally to be ignored in high school geometry courses, probably 
to avoid confusing students who are learning geometry for the first time.   
   
     On the other hand, having already proven our result about the incenter, we actually have a 
somewhat less intricate means available to prove the existence of the angle bisector: 
   
Proposition.  If  I  is the incenter of  ABC,  then  

! 

AI   is the angle bisector of  ∠BAC  
   
PROOF.  To get started, let’s recall that we’ve shown that I  is in the interior of  ∠BAC,  so it follows 
that the entire ray  

! 

AI   is contained in the interior of this angle.  Next, let  B′  be the point of  

! 

AC   
closest to  I,  and let  C′  be the point of  

! 

AB  closest to  I.   

                               
B! 

C! 

 
Then the triangles  ΔAB′I  and  ΔAC′I   have right angles at  B′ and C′  respectively.  Hence, we can 
apply the Pythagorean theorem to show that  

! 

| A " B |
2
= | AI |

2 # " B I |
2
= | AI |

2 #$2   and similarly that  

! 

| A " C |
2
= | AI |

2 #$2 .  In particular, we have  

! 

| A " C |=| A " B |.  Therefore, we can apply the SSS criterion 
to conclude that  ΔAB′I ≅ ΔAC′I.  It follows that there is an isometry that maps  A  to itself,  I  to 
itself, and  B′  to  C.  We conclude that  ∠BAI ≅ ∠CAI,  so that we have an angle bisector, as claimed.   
   
Remark.  The isometry constructed in the previous proof maps the ray  

! 

AI   to itself and maps the 
ray  

! 

A " B   to the ray  

! 

A " C .  We can use this fact as a starting point of proving that every point of  

! 

AI   
is equidistant from the lines  

! 

AB and 

! 

AC .   
             

6. Chapter 5:  The inner product and the cosine.  In Chapter 2, we defined angular measure of an 
angle, whose sides are rays with direction indicators  U  and  V,  to be equal to the integral 

 ds

1 ! s2U,V

1

" ,  We also observed that this expression defines the integral as a strictly decreasing 
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function of its lower endpoint, and we decided to call this function the arccosine.  Thus, the 
arccosine turns out to be a strictly decreasing function that maps the closed interval  [-1,1]  to the 
closed interval  [0,π].  Since a strictly increasing function or a strictly decreasing function is a 
bijective mapping from its domain to its range, it has an inverse function.  The inverse function of the 
arccosine function is the cosine.  Thus, the cosine is a strictly decreasing function that maps the 

interval  [0,π]  to the interval  [-1,1].  So, if  θ = ds

1 ! s2U,V

1

"  = arccos(〈U,V〉)  is the measure of our 

angle, then we have  〈U,V〉 = cos(θ)  in the case where  U  and  V  are unit vectors.    
More generally,   if  U  and  V  are direction indicators of the sides of an angle (but not necessarily 
unit vectors), and if  θ  is the angular measure, then we have the following important identity: 
             〈U,V〉 = ||U|| ||V|| cosθ,  
which may be familiar from vector calculus courses.  To check it in our situation, we observe that 
 U = aU0  and  V = bV0,  where  U0  and  V0  are unit vectors, and  a  and  b  are positive real numbers.  
(We want  U0  and  V0  to point in the same direction as  U  and  V  respectively.)  So,  ||U|| = a,  and  
||V|| = b,  while  〈U,V〉 = ab〈U0 ,V0〉.  Therefore, the identity  〈U,V〉 = ||U|| ||V|| cosθ  follows from the 
previously known formula  〈U0 ,V0〉 = cos(θ).   
   

7. Chapter 5:  The cosine function, the inner product, and right angle trigonometry.  Historically, the 
most basic definition of the cosine of an angle was the quotient of adjacent side over hypotenuse in a 
right triangle.  In our formulation, this is fairly immediate in the case where the unit vector  (1,0)  is 
one of the sides of an angle.   
 

To check this algebraically, we set  U = (1,0)  and  V = (v1,v2)  and then calculate:   
    〈U,V〉 = 〈(1,0),(v1,v2〉 = v1.  Thus,  (v1,0) = v1U = 〈U,V〉U  turns out to be at the base of the 
perpendicular from the point  V  to the line  OU .  A negative value of  〈U,V〉  is interpreted as 
meaning that the base of this perpendicular lies on the ray opposite to  OU .   
   
   

8. 5.4:  About the law of cosines.   As noted in the text, the proof of the "first version" of the Law of 
Cosines uses Lemma 42 of Chapter 1.  Since that lemma isn't proved in the text, we'll first state and 
prove a variant of that auxiliary result. 
   
Lemma.   Let  A, B,  and  C  be points in  |R n.  Then: 
                            ||A-B||2 = ||A-C||2 + ||B-C||2 - 2〈(A-C),(B-C)〉 
   
Proof:   We recall that  ||A-B||2 = 〈(A-B),(A-B)〉  and then insert the "missing term", namely  C,  to 
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make  A-B  appear as a difference of differences.  More plainly, the idea is to write: 
                            A-B = (A-C) - (B-C). 
Using this, we calculate the inner product: 
                       〈(A-B),(A-B)〉 = 〈(A-C) - (B-C), (A-C) - (B-C)〉 
                                              = 〈(A-C), (A-C)〉 - 〈(A-C),(B-C)〉 - 〈(B-C), (A-C)〉 + 〈(B-C),(B-C)〉.  
{Formally, we used the fact that the inner product is linear in each of the variables.  More informally, 
we can view it as similar to expanding the binomial expression  (X-Y)2.}  Next, we can use the 
symmetry of the inner product:  〈U,V〉 = 〈V,U〉 to obtain:  
                           〈(A-B),(A-B)〉 = 〈(A-C), (A-C)〉 - 2〈(A-C),(B-C)〉 + 〈(B-C),(B-C)〉. 
Finally, we replace each inner product  〈U,U〉  with the square of the corresponding norm to obtain: 
                           ||A-B||2 = ||A-C||2 + ||B-C||2 - 2〈(A-C),(B-C)〉, 
thus proving the lemma. 
   
      To apply this when we're thinking of  A, B,  and  C  as the vertices of a triangle in  |R 2,  we use the 
letters  a, b,  and  c  to denote the lengths of  BC , AC ,  and  AB   respectively.  Thus: 
�                           c =  AB  = ||A-B||,  
and so forth.  If we make these substitutions we obtain the identity: 
                           c2 = a2 + b2 - 2〈(A-C),(B-C)〉. 
As a final step, we apply the identity  〈U,V〉 = ||U|| ||V|| cosθ  from the previous section, with 
 U = A-C,  V = B-C,  and  θ = |∠ΑCB| = |∠C|  to obtain the following identity: 
                           c2 = a2 + b2 - 2||A-C||·||B-C|| cos(C),  
from which we deduce the law of cosines. 
   
Law of Cosines (1st version).   Given  ΔABC,  let  a = BC , b = AC ,  and  c = AB .  Then: 
                           c2 = a2 + b2 - 2ab cos(C), 
Just to check that our answer makes sense at least in a special case, note that if  |∠C| = π/2,  then  
cos(C) = 0,  and we recover the usual Pythagorean identity  c2 = a2 + b2 .   
   
    Finally, we can transform our main identity algebraically to obtain the other version of the law of 
cosines. 
   
Law of Cosines (2nd version).   Given  ΔABC,  let  a = BC , b = AC ,  and  c = AB .  Then: 

                           cos(C) = a
2 + b2 ! c2

2ab
, 

   
In particular, if  c2 < a2 + b2,  this gives a positive value of  cos(C),   corresponding to an acute angle 
at  C.     On the other hand, if  c2 > a2 + b2,  the formula gives a negative value of  cos(C),   
corresponding to an obtuse (i.e., non-acute) angle at  C.  
 

Go back: 
To the class homepage 
   
To the homework page 
   
To the course description 

http://www.math.umn.edu/~roberts/math5335/index.html
http://www.math.umn.edu/~roberts/math5335/hw.html
http://www.math.umn.edu/~roberts/math5335/description.html

