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§0. Introduction.

This paper is concerned with an important theorem due to Fyodor L. Zak, which
appeared in [Za1]: Let X ⊂ PN be a (reduced and irreducible) subvariety. A k –
secant space to X is a k – dimensional linear subspace of PN which is spanned by
k + 1 points from X, the k – secant variety of X in PN is the (closure of the) union of
all the k – secant spaces of X. Zak denotes this space by Sk(X), we shall also use a
different terminology: Whenever X and Y are subvarieties of PN , we define their join
XY in PN as the closure of the union of all lines in PN spanned by a point from X
and a point from Y . This defines a commutative and associative operation on the set
of subvarieties of PN , making it into a commutative monoid, see [Å] for details. We
have Sk(X) = Xk+1.

Zak considers a relative secant defect, defined as

δk(X) = dim(Xk) + dim(X) + 1− dim(Xk+1).

We shall always assume that the ground field is algebraically closed of charac-
tristic zero. Under this assumption, Zak states the following

Theorem. (Zak’s Theorem on Superadditivity) Let X ⊂ PN be a nonsingular
projective variety, such that δ1(X) > 0. Let p and q be integers such that Xp+q 6= PN .
Then δp+q(X) ≥ δp(X) + δq(X).

The assumption that δ1(X) > 0 was not explicitly stated in the formulation of
this theorem in Zak’s paper referred to above, but it is quite clear from the introduction
that only this case is considered. In fact, there are counter examples to the asserted
inequality (for p = q = 2) if δ1(X) = 0, and also for singular varieties, see §2 below.

In the applications of this theorem in his paper [Za1], Zak uses the theorem
above only in the case q = 1.

The present paper grew out of an effort to understand Zak’s proof of superaddi-
tivity. The proof is not easy to follow, in particular it is not easy to see precisely how
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the assumption δ1(X) > 0 is used for p, q ≥ 2. In fact, if q = 1 the claim is true also
when δ1(X) = 0, it is then an immediate consequence of the string of inequalities

δ1 ≤ δ2 ≤ δ3 ≤ . . . ≤ δq

which holds as long as Xq 6= PN . See Proposition 1.2.
When q = 1, we give in §4 an alternative proof of the theorem, which is of an

infinitesimal nature: One reasons with embedded tangent spaces and their projections
where Zak works with the actual varieties. In §3 we show some results about embedded
tangent spaces which are used in the alternative proof. In the case q = 1 we also fully
understand Zak’s proof, of which we will give an exposition and fill in some details in
the following two sections, §1 and §2. Our contribution to this picture essentially is
Proposition 2.4.

Zak’s proof is truly impressive, blending as it does a mastery of intricate technical
algebraic reasoning with profound intuition from “synthetic geometry” in a modern
setting. Unfortunately the case of p and q ≥ 2 remains a mystery to us, as we have not
been able to fill in the details in this case. But we also know of no counter examples.
In §2 we analyze in some detail what seems to be needed to make Zak’s proof work
in the case q ≥ 2. To sum up, the conclusion of the superadditivity theorem does not
hold in the case p, q ≥ 2 if the hypothesis δ1 > 0 is dropped.

This subject has also been treated by Barbara Fantechi in [Fa], independently of
our work. Her approach is to verify that Zak’s proof works if the secant variety Sq−1(X)
satisfies a regularity condition which she introduces, called almost smoothness, see §2
for the definition. Since smoothness implies almost smoothness, her result then yields
a proof of superadditivity in the case when q = 1, along the lines of Zak’s proof. But
examples show that almost smoothness for Sq−1(X) is a stronger property than what
is really needed, see our Remark 2.11.

Our approach to the general problem has not been to look for new, global con-
ditions on the geometry of the secant varieties, but rather to study the local structure
along the various entry point loci, see §1 for the definition and §2 for the discussion.

We would like to thank Bjørn Ådlandsvik for several enlightening conversations
on higher secants and related topics.

This research was supported by a grant from the Norwegian Research Foundation
for Science and the Humanities.

§1. Generalities.

In general, let V0, . . . , Vr ⊂ PN be subvarieties. We use the notation of joins V0 · · ·Vr

from the introduction, and if Vi = {xi}, then we denote the join by x0 · · ·xr. Put

S0
V0,...,Vr

= S0
V =

 (v0, . . . , vr, u) = (v, u)

∣∣∣∣∣∣
vi ∈ Vi, i = 0, . . . , r
dim(v0 · · · vr) = r
u ∈ v0 · · · vr


in V0 × V1 × . . . × Vr × PN . Here V denotes the tuple (V0, . . . , Vr) and v denotes
(v0, . . . , vr). Let

SV = S0
V
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We introduce the notation ϕV = prPN : SV −→ PN , pV
i = prVi : SV −→ Vi. The

join of V0, . . . , Vr is V0 · · ·Vr = ϕV (SV ). and as stated in §0 we write Sk(X) = Xk+1.
When V0 = . . . = Vr = X we put SV = Sk

X and ϕV = ϕk, pV
i = pk

i . Another
frequent case is when Vi = Sai(X) = Xai+1, where a0, . . . ar are integers such that
a0+a1+. . .+ar = k−r. (Zak makes the additional assumption that a0 ≤ a1 ≤ . . . ≤ ar.
This is not needed other than as a normalizing convention, and since it tends to destroy
the symmetry, we will omit this assumption here.) Again we let a denote the tuple
(a0, . . . , ar), and put ϕV = ϕa = ϕa0,...,ar , pV

i = pa
i = pa0,...,ar

i and SV =
SSa(X) = SSa0 (X),...,Sar (X) where Sa(X) denotes the tuple (Sa0(X), . . . , Sar (X)).
Clearly we have ϕa(SSa(X)) = ϕk(Sk

X) = Sk(X).
Letting vk ∈ Sk(X), we define

Yvk
= p0,k−1

0 ((ϕ0,k−1)−1(vk)) ⊆ X(1)

as the variety of entry points for vk in X. For a general point vk ∈ Sk(X) it is the
closure of the subset

Y 0
vk

=
{

x ∈ X

∣∣∣∣ ∃vk−1 ∈ Sk−1(X) such
that vk ∈ xvk−1 and vk−1 6= x

}
More generally, let a0 + a1 = k − 1 as above. Then we have the morphisms

ϕa0,a1 : SSa0 (X),Sa1 (X) −→ Sk(X),

pa0,a1
i : SSa0 (X),Sa1 (X) −→ Sa0(X),

and we define, for vk ∈ Sk(X) Y a0
vk

= pa0,a1
0 ((ϕa0,a1)−1(vk)), Y a1

vk
= pa0,a1

1 ((ϕa0,a1)−1(vk)).
In general we put

sk(X) = dim(Sk(X)) and δk(X) = dim(Yvk
)

where vk is a general point of Sk(X). With n = dim(X), we have the result below,
which shows that this definition of δk(X) is equivalent to the one given in the introduc-
tion. When no confusion is possible, we shall write sk instead of sk(X) and δk instead
of δk(X):

Proposition 1.1 The following equality holds for all k such that Sk(X) 6= PN :

sk = sk−1 + n + 1− δk.

The proof is straightforward. The following forms part of Proposition 3 in [Za1]:

Proposition 1.2 We have the inequalities

δ1 ≤ δ2 ≤ . . . ≤ δk0 ≤ n

where k0 is minimal among the numbers k such that Sk(X) = PN .
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Next, we recall the following basic result. The simplest proof we know is due to
B. Ådlandsvik, [Å], Corollary 1.10.

Theorem 1.3 (Terracini’s Lemma) Let X and Y be subvarieties of PN
k , where k is

an algebraically closed field, not necessarily of characteristic 0. Let x ∈ X and y ∈ Y ,
and let u be a point on the line xy. Then we have an inclusion of embedded tangent
spaces tXY,u ⊇ tX,xtY,y. If k is of characteristic 0, then this inclusion is an equality for
all u in some open dense subset of the join XY .

Let Z ⊂ PN be any projective scheme, and let Y ⊂ Z be a projective subscheme.
Then we denote by T ∗(Y, Z) the union of all relative tangent stars t∗Y,Z,y as y ∈ Y . t∗Y,Z,y

is the union of all lines through y which are limiting positions of lines y′z, with y′ ∈ Y
and z ∈ Z. The (usual) tangent star at a point z ∈ Z is the union of all lines through
z which are limiting positions of secant lines to Z, thus t∗Z,z = t∗Z,Z,z. We have the
diagram

˜PN ×PN

PN ×PN

⊂ -˜Y × Z

⊂ -Y × Z

⊂ -TY (Z)

⊂ -Y

P(Ω1

PN )

PN

-

-
? ???

π∆fY,Z π∆(Y ) f

λ

pr2

Here π∆ denotes the blowing up of PN × PN with center in the diagonal ∆,
π∆(Y ) the blowing up of Y × Z with center in the diagonal ∆(Y ) in Y × Y , identified
with the canonical subscheme of Y × Z, TY (Z) is the exceptional divisor. λ induces
the identity on the exceptional divisor of the blowing up π∆. λ is a P1 – bundle. We
have that

Y Z = pr1(π∆(λ−1(λ( ˜Y × Z))))

In fact, the fiber f−1(y) parametrizes the directions of all lines through the point
y ∈ PN . Thus if t ∈ P(Ω1

PN ), then the fiber λ−1(t) consists of a line with a selected
point on it – namely, the point y = f(t) and the line through it given by the direction
which corresponds to t. So for y ∈ Y , the limiting position of secant lines y′z, as
y′ ∈ Y and z ∈ Z approach y ∈ Y , are parametrized by TY (Z)y. In particular, if
Y = Z then this fiber is the projectivized (usual) tangent star, and if y is a smooth
point then it is the projectivized tangent space. In general it is the projectivized relative
tangent star. Thus

t∗Y,Z,y = pr1(π∆(λ−1(λ(TY (Z)y))))

and
T ∗(Y,Z) = pr1(π∆(λ−1(λ(TY (Z)))))
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We now have the following result, which is due to Zak:

Theorem 1.4 If T ∗(Y, Z) 6= Y Z, then

dim(Y Z) = dim(Y ) + dim(Z) + 1

Proof. Assume that

m = dim(Y Z) ≤ dim(Y ) + dim(Z)

but that T ∗(Y, X) 6= Y Z. Choose a linear subspace L ⊂ PN of codimension m, so
L ∩ Y Z 6= ∅, and such that L ∩ T ∗(Y, Z) = ∅ and L ∩ Z = ∅. Let

p = pL : Z −→ Pm−1

be induced by the projection with center L. Let

ϕ = p× p|Y×Z : Y × Z −→ Pm−1 ×Pm−1

be the induced morphism. Then ϕ is a finite morphism, and hence dim ϕ(Y × Z) =
dim(Y ) + dim(Z) ≥ m. We recall the Connectedness Theorem of Fulton and Hansen
(see Theorem 3.1 in [FL]):

Theorem 1.5 Let X be a complete variety, and let f : X −→ Pm×Pm be a morphism
with dim(f(X)) > m. If ∆ denotes the diagonal, then f−1(∆) is connected.

Thus in our situation we get that ϕ−1(∆Pm−1) is connected. Moreover, there
exist y ∈ Y and z ∈ Z such that y 6= z and L∩yz 6= ∅. But ϕ−1(∆Pm−1) = ∆Y ∪D,
where

D = {(y, z) ∈ Y × Z| y 6= z and p(y) = p(z)}

By connectedness we therefore have D ∩ ∆Y 6= ∅. Let (y, y) be a point in this
intersection. Then there exists a line ` ⊂ PN , which is a limiting position of lines
of the form y′z meeting L, where y′ ∈ Y and z ∈ Z when y′, z −→ y. Then
` ∩ L 6= ∅. As ` ⊂ T ∗(Y, Z) and L ∩ T ∗(Y,Z) = ∅, this is a contradiction, and the
proof is complete.

Following Zak we now prove:

Corollary 1.6 If Sk(X) 6= PN , then δk(X) ≤ n− δ1(X)

Indeed, let u be a general point of Sk(X). Then by Terracini’s Lemma we get
T ∗(Yu, X) ⊂ tSk(X),u. Hence we must have YuX 6= T ∗(Yu, X), so dim(YuX) =
δk(X) + n + 1. Since S1(X) ⊃ YuX and dim(S1(X)) = 2n + 1 − δ1(X), the claim
follows.
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§2. Comparison of the cases q = 1 and q > 1.

Let p, q be integers such that p, q ≥ 0 and p + q = k. We then have the following
diagram, where the dotted arrows are only rational maps.

SSp(X),Sq−1(X)(1) SSp−1(X),Sq(X)

SX,Sp−1(X),Sq−1(X)

··········
	

· · · · · · · · · ·
R

λ µ

Sk(X)

?

ϕ0,p−1,q−1

@
@

@
@

@R

�
�

�
�

�	

ϕp,q−1 ϕp−1,q

On the dense open subset where it is defined, λ is given by λ(x, vp−1, vq−1, u) =
(vp, vq−1, u) where {vp} = xvp−1∩vq−1u. Similarly µ(x, vp−1, vq−1, u) = (vp−1, vq, u)
where {vq} = xvq−1 ∩ vp−1u. The situation is shown in the diagram

��
���

���
���

���
���

���

���
���

���
���

���
���

��

vp−1

t t
t

t

t
t vq−1

vq

x

@
@

@
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@
@

@
@

@
@@

u

vp(2)

We will now show that

ϕp,q−1(λ(µ−1(vp−1, vq, u))) = u.(3)
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Indeed, let Γ(µ) ⊂ SX,Sp−1(X),Sq−1(X) × SSp−1(X),Sq(X) denote the closed graph of
the correspondence µ. Then µ−1(vp−1, vq, u) = Γ(µ)(vp−1,vq,u) which is contained in
Γ(µ)u. Thus equality (3) follows. (3) implies similarly that

λ−1(λ(µ−1(vp−1, vq, u))) ⊆ (ϕ0,p−1,q−1)−1(u)(4)

Thus

p0,p−1,q−1
0

[
λ−1(λ(µ−1(vp−1, vq, u)))

]
⊆ p0,p−1,q−1

0 ((ϕ0,p−1,q−1)−1(u))(5)

In fact

Yu = p0,a1,...,ar

0 ((ϕ0,a1,...,ar )−1(u))(6)
= p0,a1,...,ar

0 ((SX,Sa1 (X),...Sar (X))u)

when a1 + . . . + ar = k − r. Hence for a general point u ∈ Sk(X),

δk = dim(Yu) ≥ dim p0,p−1,q−1
0

[
λ−1(λ(µ−1(vp−1, vq, u)))

]
(7)

We next show that

dim λ(µ−1(vp−1, vq, u)) = dim µ−1(vp−1, vq, u) = δq(8)

We note first that λ and µ obviously are dominating. Next we compute the dimension of
the fiber of µ and its image under λ. Since we are considering a general point u, we may
restrict our attention to open dense subschemes of SX,Sp−1(X),Sq−1(X), SSp−1(X),Sq(X)

and SX,Sp(X),Sq−1(X). Thus we may assume that λ and µ are morphisms: Namely, we
have the situation

SX,Sp−1(X),Sq−1(X) ⊃

Γ(λ)

D(λ, µ)

Γ(µ)

∩

∪

?

6

-

@
@

@
@R

�
�

�
��

-

@
@

@
@

�
�

�
�

µ

λ

µ

λ

SSp(X),Sq−1(X)

SSp−1(X),Sq(X)

(9)

where D(µ, λ) is (isomorphic to) a dense open subset of Γ(µ) and Γ(λ) and is such
that both µ and λ are defined on it. Then it follows that for a general point σ ∈
SSp−1(X),Sq(X)

dim µ−1(σ) = dim Γ(µ)− dim SSp−1(X),Sq(X)

= dim D(µ, λ)− dim SSp−1(X),Sq(X)

= dim µ−1(σ)
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Now assume that

dim µ−1(σ) = dim λ(µ−1(σ))

To show is that
dim µ−1(σ) = dim λ(µ−1(σ))

But this is clear since ≥ holds, and moreover = holds if we replace the fiber µ−1(σ) by
the open (not necessarily dense but of the same dimension) subset µ−1(σ). This proves
the emphasized assertion above.

To prove (8), note that when we observed that λ is dominating, then the set of
points x satisfying the condition of the argument

∃vp−1 such that vp ∈ xvp−1 and (x, vp−1, vq−1, u)
maps to (vp, vq−1, u)

constitute a dense subset of the variety Yvp of entry points for vp in X. Thus

dim λ−1(vp, vq−1, u) = δp(10)

and similarly
dim µ−1(vp−1, vq, u) = δq(11)

which proves the last equality in (8). To prove the first equality, it now suffices to show
that λ induces a generically finite morphism

ν : µ−1(vp−1, vq, u) −→ SSp(X),Sq−1(X)

To see this, let (vp, vq−1, u) ∈ im(ν). Then the set of points in µ−1(vp−1, vq, u)
which map to (vp, vq−1, u) consist of those points (x, vp−1, vq−1, u) such that the config-
uration in (2) holds. In this picture vp, vp−1, vq, vq−1 and u are given. This determines
x uniquely, unless vp = vp−1, and (hence) vq = vq−1. But then u ∈ Sk−1(X),
contradicting the assumption that u be a general point of Sk(X). Thus we have shown
that ν is generically 1 – 1. Hence the remaining part of (8) follows.

It is an immediate consequence of (8) and (10) that

dim λ−1[λ(µ−1(vp−1, vq, u))] = δp + δq(12)

In view of (7) and (12) the proof of the general version of Zak’s Theorem on
Superadditivity would be complete if we could show the following:

Lemma 2.1 (First Conjectured Lemma) The restriction of the morphism

p0,p−1,q−1
0 : SX,Sp−1(X),Sq−1(X) −→ X

to the closed subscheme λ−1[λ(µ−1(vp−1, vq, u))] is finite – to – one at a generic point
of that subscheme.
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Analysis of proof. Let y ∈ p0,p−1,q−1
0 [λ−1(λ(µ−1(vp−1, vq, u)))] be a general

point. Then (p0,p−1,q−1
0 )−1(y) consits of quadruples (y, v′p−1, vq−1, u) where

vp ∈ yv′p−1, {vp} = xvp−1 ∩ vq−1u, vq ∈ xvq−1

To show is that there only exist a finite number of such triples. The configuration is
as follows:

B
B

B
B

B
B

B
B

BB

B
B
B
B
B
BB

B
B

B
B

B
B

B
BB

B
B
B
B
BB

���
���

���
���

���
���

��

�
���

���
���

���
���

���
�

vp−1

t
t

v′p−1

t

t y

t
vk−1

t
t

t
t vq−1

vq

x

@
@

@
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@
@

@
@

@
@@

u

vp(13)

Choose vk−1 as indicated, {vk−1} = v′p−1vq−1 ∩ yu. Then

Y q−1
vk−1

= pp−1,q−1
1 [(ϕp−1,q−1)−1(vk−1)]

⊇
{

w ∈ Sq−1(X)
∣∣∣∣ ∃v′p−1 ∈ Sp−1(X) such

that w ∈ vk−1v
′
p−1 and v′p−1 6= w

}
where the subset on the second line is dense in Y q−1

vk−1
. Similarly, we also have

Y q−1
vq

= p0,q−1
1 [(ϕ0,q−1)−1(vq)]

⊇
{

w ∈ Sq−1(X)
∣∣∣∣ ∃x ∈ X such

that w ∈ vqx and x 6= w

}
where again the subset is dense.

Now the configuration of (13) holds if and only if vq−1 satisfies the two conditions
for w, i.e. vq−1 ∈ Y q−1

vk−1
∩ Y q−1

vq
. Thus the assertion of Lemma 2.1 would follow if we

could show the

Lemma 2.2 (Second Conjectured Lemma) If y is a general point as above, and
vk−1 is an entry point for uy in Sk−1(X), then Y q−1

vk−1
∩ Y q−1

vq
is a finite set.

This, in turn, would follow from the

Lemma 2.3 (Third Conjectured Lemma) Suppose that Sk−1(X) 6= PN . Let
vk−1 ∈ Sk−1(X) be a general point, and Y q−1

vk−1
be the locus of entry points for vk−1

in Sq−1(X), as above. Then dim(Y q−1
vk−1

X) = dim(Y q−1
vk−1

) + n + 1.
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We show that Lemma 2.3 implies Lemma 2.2: Namely, assume the negation.
Then for fixed, general v = (vp−1, vq, u) and fixed, general y ∈ p0,p−1,q−1

0 [λ−1(λ(µ−1(v)))]
there would exist an infinite number of points (y, v′p−1, vq−1, u) satisfying (13). Thus
the locus of points x ∈ X which can appear in (13) is infinite. This is easily seen to
contradict the hypothesis that Y q−1

vk−1
be of maximal dimension. Thus the implication

is proven.
The proof of superadditivity is completed for q = 1 by the following

Proposition 2.4 The conjectured Lemma 2.3 is true when q = 1.

Proof. We have Sq−1(X) = X, put Y q−1
vk−1

= Y ⊂ X. It suffices to show

T ∗(Y, X) 6= Y X.(14)

To see this, let L = tSk−1(X),vk−1
. vk−1 is a general point of Sk−1(X), hence smooth.

Thus dim L = sk−1, in particular L 6= PN . Since X 6⊆ L, we have Y X 6⊆ L, so
(14) will follow if we can show that T ∗(Y, X) ⊆ L. X is smooth, so for all y ∈ Y

t∗Y,X,y = tX,y ⊂ L,(15)

and the claim follows.
In order to make this work for q > 1, one needs a generalization of (14):

T ∗(Y q−1
vk−1

, Sq−1(X)) 6= Y q−1
vk−1

Sq−1(X) = Y q−1
vk−1

Xq(16)

This will imply the claim in Lemma 2.3: By Theorem 1.4, (16) implies that dim(Y q−1
vk−1

Sq−1(X))
= dim(Y q−1

vk−1
)+sq−1+1 But since q ≥ 2, we can write Y q−1

vk−1
Sq−1(X) = Y q−1

vk−1
XSq−2(X),

and hence obtain the diagram

Y q−1
vk−1

X

SY q−1
vk−1

,X

Y q−1
vk−1

Sq−1

SY q−1
vk−1

,X,Sq−2(X) SY q−1
vk−1

,Sq−1(X)-
ϕ

�
���

����

��
���

��

α

?

β

?

β′

-

-

⊂

⊂

(17)

Let u ∈ Y q−1
vk−1

Sq−1(X) be a general point. Then there exists a point v ∈ Y q−1
vk−1

X such
that u ∈ vw for some w ∈ Sq−2(X). For the purpose of computing fiber dimensions
we may replace S by S0 in the top level of the diagram. Then every point in β−1(v) gives
a point in β′−1(u) by adding the coordinate w. Now ϕ(β′−1(u)) = α−1(u). We need to
conclude dim(α−1(u)) ≥ dim(β−1(u)), This follows if we have ϕ finite – to – one over
α−1(u). If this were not so, there would exist a point (y, vq−1, u) ∈ SY q−1

vk−1
,Sq−1(X)

with ϕ−1(y, vq−1, u) infinite. Thus the line yvq−1 would meet Sq−2(X) in infinitely
many points and hence be contained in Sq−2(X). So u ∈ Sq−2(X), i.e., not a general
point. Thus it suffices to prove (16), which in the present approach amounts to proving
the following assertion:
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For all y ∈ Y q−1
vk−1

we have t∗Yvk−1 ,Sq−1(X),y ⊆ tSk−1(X),vk−1
.(18)

Remark 2.5 This presents a non – trivial difficulty. The assertion of (18) is false for
some counter examples to superadditivity for which δ1 = 0, see below. Thus this is
where the assumption of δ1 > 0 would have to be used: In fact, it was not needed in
the case of q = 1, as we have noted above. If X is a cone (thus singular), then (18)
fails completely, as is easily seen.

Let Y be a nonsingular rational curve of degree d in PN−2 ⊂ PN , and let L be
a line such that L ∩PN−2 = ∅, so that CL(Y ) is a 3- dimensional cone in PN .

In [Da], M. Dale constructed families of smooth surfaces Xd,b ⊂ CL(Y ). The
subscript b is the degree of the curve which is the intersection of the surface X = Xd,b

with a generating plane of the cone CL(Y ). In the case where b = 1 and Y is a rational
normal curve, this type of surface is a rational normal scroll. Let B be the blowup of
PN along L. It is well known that there is a commutative diagram:

PN ×PN−2

B

∩

?

-�

pr1

�
�

�
�	

�
�

�
�

π @
@

@
@R

@
@

@
@pr2

λ

PN−2PN

(19)

where π is the structural map of the blowing up, and λ is a P2 – bundle map. In
fact, B is the graph of projection from L, and the exceptional divisor is isomorphic to
L × PN−2. It is also well known that B ∼= P(O⊕2

PN−2 ⊕ OPN−2(1)) as schemes over

PN−2.
Now, we consider a nonsingular rational curve Y ⊂ PN−2 ⊂ PN . It will always

be assumed that Y spans PN−2. The blowing up ˜CL(Y ) along L of the cone CL(Y )
fits into a commutative diagram:

CL(Y )× Y

˜CL(Y )

∩

?

-�

pr1

�
�

�
�	

�
�

�
�

π @
@

@
@R

@
@

@
@pr2

λ

YCL(Y )

(20)

and ˜CL(Y ) is the closure of the graph of the projection from L of CL(Y ) onto Y .
Alternately, ˜CL(Y ) ∼= P(OY ⊕OY (1)). Since Y ∼= P1 is embedded as a curve of degree
d, we have an isomorphism ˜CL(Y ) ∼= P(OP1 ⊕OP1(d)) of schemes over P1. Let E be
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the exceptional divisor of the blowing up π. It follows by the observation above that λ
is a P2 – bundle and that E ∼= L× Y ∼= P1 ×P1.

For any b ≥ 1, the invertible sheaf L(b) = OP(F )(b)⊗λ∗(OP1(1)) is very ample.
Following Dale, we define Z ⊂ CL(Y ) to be the scheme of zeros of a sufficiently general
section of L(b), so that Z is a nonsingular surface and Z ∩E is a nonsingular curve on
E ∼= P1 ×P1. We define Xd,b = π(Z).

Proposition 2.6 Let X = Xd,b be defined as above. Then X is a nonsingular surface.

Proof. Because of the isomorphism E ∼= P1 ×P1 and our hypotheses about Z,
it follows that Z ∩ E is a smooth curve of type (b, 1) on P1 ×P1. Hence Z intersects
each fiber of the projection π : CL(Y ) −→ CL(Y ) transversally at a single point. Thus
π maps Z bijectively onto its image, and π|Z is unramified. Therefore π|Z is proper
and quasi – finite, and hence finite. Since π|Z is also bijective and unramified it follows
that Z is mapped isomorphically onto its image.

We are now ready to state and prove our main results about these surfaces.

Theorem 2.7 Let Y be a nonsingular rational curve of degree d in PN−2, and let
X = Xd,b ⊂ CL(Y ) be defined as above. Then:

(i) Sk(X) = CL(Sk(Y )) for all k ≥ 1. Equivalently, Xk = Y kL for all k ≥ 2.

(ii) If N ≥ 5, then δ1(X) = 0.

(iii) dim(Sk(X)) = 2k + 3 for all k such that 2k + 3 ≤ N .

(iv) δk(X) = 1 for all k > 1 such that 2k + 3 ≤ N .

Corollary 2.8 If N ≥ 11, then δ4(X) < 2δ2(X).

Proof. Without loss of generality, we may assume that N ≥ 5. Since Y is a curve
which spans PN−2, we have dim(Sk(Y )) = 2k + 1 for all k such that 2k + 1 ≤ N − 2
(see [Å], Corollary 1.5).

Clearly Sk(X) ⊂ CL(Sk(Y )) for all k. In particular, dim(CL(S(Y ))) = 5 and
dim(S(X)) = 5 because X is not the Veronese surface. Thus S(X) = CL(S(Y )) and
dim(Sk(X)) ≤ dim(CL(Sk(Y ))) = 2k + 3. Let k0 be the first subscript k such that
dim(Sk(X)) < 2k + 3. Then dim(Sk0−1(X)) = 2k0 + 1, and dim(Sk0(X)) ≤ 2k0 + 2.
Now Proposition 1.3 of [Å] asserts that if X and Y are subvarieties of PN such that
dim(XY ) = dim(X) + 1, then X is a cone whose vertex contains Y . This implies that
Sk0(X) = XSk0−1(X) is a cone whose vertex contains X, but as the vertex is a linear
subspace, Sk0(X) = PN . Hence Sk(X) = CL(Sk(Y )) for all k < k0. This implies (i).
(iii) and (iv) are easy consequences of (i).

We shall see how the proof of superadditivity fails if applied to X = Xd,b. We
investigate whether or not Lemmas 2.1, 2.2 and 2.3 are valid in this case. In particular
suppose that k = 4 and p = q = 2. Since Sq−1(X) = S(X) is a cone with vertex L
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and Sk−1(X) = S3(X) = S(S(X)), it follows that for a general point vk−1 ∈ Sk−1(X),
the entry point set Y q−1

vk−1
is a union of planes which contain L. The entry point set

Y q−1
vq

has dimension δ2 = 1. It is not hard to see that Y q−1
vq

is a union of curves which
are contained in planes which contain L. Since a general point of Sq−1(X) = S(X) is
contained in a unique plane which contains L, the intersection Y q−1

vk−1
∩ Y q−1

vq
contains

at least one of these curves. Thus, the intersection is not finite. In other words, the
conclusion of Lemma 2.2 does not hold. The conclusion of Lemma 2.3 also does not
hold. The point is that Y q−1

vk−1
is a cone with vertex L. Since X intersects each generating

plane of the cone CL(Y ) in a curve, we have tX,x ∩ L 6= ∅ for every x ∈ X. Therefore,
it follows from Terracini’s Lemma that dim(Y q−1

vk−1
X) < dim(Y q−1

vk−1
) + dim(X) + 1.

Returning to general theory, note that clearly (18) means that the singularities
of Sq−1(X) are not “too bad” along Y q−1

vk−1
: The restricted tangent stars are not too

much bigger than the tangent cones there.
The approach taken by Barbara Fantechi in [Fa] is to introduce a condition on the

singularities which the higher secant variety Sq−1(X) can have: In general she defines
a point z of the embedded variety Z ⊂ Pn to be almost smooth if the tangent star of Z
at z is contained in the join zZ. With the above considerations it is then proved that
the conjectured lemmas hold if one assumes that Sq−1(X) is almost smooth, see her
Theorem 2.5.

While this certainly settles the question for q = 1, it is not clear how to verify
the condition of almost smoothness for Sq−1(X) when q > 1. Also, the condition is
rather special since one can have superadditivity without this condition being satisfied,
as we can see from the following class of examples.

Let 2 ≤ d ≤ n
2 , and let V = Pd × Pn−d ⊂ PN , embedded by the Segre

embedding. We consider PN ⊂ PN+1, and set Z = CP (V ), where P ∈ PN+1 − PN .
Define X = Z ∩H, where H is a general hypersurface of degree ≥ 2 in PN+1 such that
P 6∈ H. Thus X is a nonsingular variety of dimension n.

Proposition 2.9 In the situation above we have

(i) Sk(X) = CP (Sk(V )) for all k ≥ 1.

(ii) δ1(X) = 1.

(iii) δk(X) = 2k for k = 2,...,d, and Sd(X) = PN+1.

Corollary 2.10 If d ≥ 2, then δ2(X) > 2δ1(X).

Proof. We show first that δk(V ) = 2k for all k ≤ d and Sd(V ) = PN . Indeed,
V ⊂ PN can be described as the zero-set of the 2×2 minors of a (d+1)×(n−d+1) matrix
of homogeneous indeterminates and Sk(V ) is then the zero – set of the (k+2)× (k+2)
minors of this matrix. Hence, the codimension of Sk(V ) in PN is (d − k)(n − d − k)
for k ≤ d, and Sd(V ) = PN . It follows that

dim(Sk(V ))− dim(Sk−1(V )) = codim(Sk−1(V ))− codim(Sk(V )) = n + 1− 2k,
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for k = 1, ..., d. This implies that δk(V ) = 2k for k ≤ d.
In particular, dim(S(V )) = 2n − 1. Since Z = CP (V ), we have dim(S(Z)) =

dim(S(V )) + 1 = 2n. By Terracini’s Lemma Theorem 1.3, this implies that
dim(tZ,x ∩ tZ,y) = 2 for general points x, y ∈ X ⊂ Z. The tangent spaces tX,x and tX,y

are the intersections of tZ,x and tZ,y with the hyperplanes tH,x and tH,y respectively.
It follows that if H is sufficiently general, then

dim(tX,x ∩ tX,y) = dim(tZ,x ∩ tZ,y)− 2 = 0.

By Terracini’s Lemma, this implies that dim(S(X)) = 2n. Therefore S(X) = S(Z).
It is clear that Sk(X) ⊂ Sk(Z) = CP (Sk(V )). This implies that dim(Sk(X)) ≤

dim(Sk(V )) + 1. Since S(X) = S(Z) = CP (S(V )), we have P ∈ tS(X),v for gen-
eral v ∈ S(X). Equivalently, P ∈ tX,xtX,y for general x, y ∈ X. It follows that
P ∈ tSk(X),u for every k ≥ 1 and general u ∈ Sk(X). For general x ∈ X, projec-
tion from P maps tX,x onto tV,x′ , where x′ ∈ V is the image of x. Since tSk(X),u

is a span of tangent spaces tX,x, projection from P must also map tSk(X),u onto
tSk(V ),u′ , where u′ ∈ Sk(V ) is the image of u. Since P ∈ tSk(X),u, it follows that
dim(tSk(X),u) = dim(tSk(V ),u′) + 1. Therefore, dim(Sk(X)) = dim(Sk(V )) + 1, and
Sk(X) = CP (Sk(V )). This proves (i). Conclusion (ii) is already proved, and (iii)
follows because dim(Sk(X))− dim(Sk−1(X)) = dim(Sk(V ))− dim(Sk−1(V )).

Remark 2.11 This class of varieties shows that Fantechi’s notion of almost smoothness
as a condition on Sq−1(X) in order to have the superadditivity result for q is not
sufficiently general: Indeed, by (i) in Proposition 2.9 we find that this condition does
not hold in this case for q ≥ 1: Recall that almost smoothness for the the embedded
variety Z ⊂ PN at z means that the tangent star of Z at z is contained in the join
zZ. When Z is a cone with z in the vertex, this will be true only when Z is a linear
subspace of PN .

We end this section by some details concerning the local geometric structure
of the secant variety Sq−1(X). We put Y = Y q−1

vk−1
. In the case where Sq−1(X) is

smooth at y, the inclusion t∗Y,Sq−1(X),y ⊆ tSk−1(X),vk−1
follows in the same way as in

the proof of Proposition 2.4 above. In the case where Sq−1(X) is singular at y, the
validity of this inclusion seems more doubtful, for reasons which we will explain in the
next paragraph.

It is easy to check the inclusion for any point y ∈ Y such that vk−1 lies on a line
of the form yz, where z ∈ Sp(X) and z 6= y. Indeed, Terracini’s lemma implies the
stronger inclusion tSq−1(X),y ⊆ tSk−1(X),vk−1

. On the other hand, this inclusion is not
obvious in the case when y ∈ Y merely lies on some line ` which is a limiting position
of lines of the form y′z′, where y′ ∈ Y , z′ ∈ Sp(X), and vk−1 ∈ y′z′. If Sq−1(X) is
smooth at y, then the inclusion follows as before: Indeed, the linear space tSk−1(X),vk−1

contains certain irreducible components of the closed set T = ∪y∈Y tSq−1(X),y because
tSq−1(X),y ⊆ tSk−1(X),vk−1

for every y in some dense open subset of Y . If Sq−1(X) is
singular at y, it is not clear how to verify the corresponding inclusion. The point is
that there does not seem to be any way to conclude that tSk−1(X),vk−1

contains the
particular irreducible component of T which contains tSq−1(X),y.
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§3. Entry Point Loci and their Tangent Spaces.

We consider closed subvarieties X ⊂ PN and Y ⊂ PN , and define XY to be their
join as defined in the introduction and in §1. We will be especially interested in the
case where X ⊂ Y , but this hypothesis will not actually be used in this section. In §4,
however, we shall apply our results to the case where Y = Xk for some k ≥ 2.

Let S ⊂ X ×Y ×PN be the join correspondence. Recall that S is the closure of

S0 = {(x, y, z)| x ∈ X, y ∈ Y, x 6= y, and z ∈ xy} ,

where as before xy denotes the line joining the points x and y, i.e., the join of {x}
and {y}. We have the maps p1 : S −→ X, p2 : S −→ Y , and p3 : S −→ PN

induced by the projections, and similarly the morphism p1,2 : S −→ X × Y . If (x, y) ∈
X × Y − ∆, then p−1

1,2(x, y) ∼= P1. Thus, dim(S) = dim(X) + dim(Y ) + 1. Moreover
p3(S) = XY ; it follows that dim(XY ) ≤ dim(X) + dim(Y ) + 1. Hence an immediate
generalization of the secant defects considered earlier is the join defect defined by
δ(X, Y ) = dim(X) + dim(Y ) + 1− dim(XY ).

It follows from standard facts that dim(p−1
3 (z)) = δ(X, Y ) for general z ∈ XY .

Our first goal is to describe the tangent spaces of the fibers p−1
3 (z), where z ∈ XY , and

z /∈ X ∪Y . In an obvious way, we can define the embedded tangent space tS,(x,y,z) as a
subspace of PN ×PN ×PN , or more precisely as a subspace of tX,x× tY,y×PN , where
tX,x and tY,y are the enbedded tangent spaces of X and Y at x and y, respectively.
Clearly, the tangent space at (x, y, z) to the fiber p−1

3 (z) is contained in tX,x× tY,y × z,
and the linear tangent space map (dp3)(x,y,z) is induced by the projection of tX,x ×
tY,y ×PN onto the third factor. It follows from standard facts that the tangent space
to the fiber is actually equal to ker(dp3)(x,y,z).

Proposition 3.1 Let X and Y be as above; let x ∈ X and y ∈ Y be points such that
x /∈ tY,y and that y /∈ tX,x, and let z ∈ xy with z 6= x, y. Let (ξ, η) ∈ tX,x × tY,y. Then:

(a) If (ξ, η, z) is contained in the tangent space of the fiber, then ξ ∈ tX,x ∩xtY,y

and similarly η ∈ tY,y ∩ ytX,x.
(b) If ξ ∈ tX,x ∩ xtY,y, then there is a unique point η ∈ tY,y ∩ ytX,x such that

(ξ, η, z) is contained in the tangent space of the fiber.

Proof. As in [FR], §2, we begin by working with with affine open sets. We can
choose an affine open piece AN ⊂ PN with x, y, z ∈ AN . Let X0 = X ∩ AN and
Y0 = Y ∩ AN ; assume that x = (x1, . . . , xN ) ∈ X0 and y = (y1, . . . , yN ) ∈ Y0. By
renumbering variables we may assume that y1 6= x1. Then the defining equations of S
in some neighborhood of (x, y, z) are:

(zi − xi)(y1 − x1) = (z1 − x1)(yi − xi), i = 2, . . . , N

together with the defining equations of X0 and Y0 in the appropriate sets of variables.
Therefore, the condition for (x, h, z) ∈ A3N to be in the embedded tangent space of S
at (x, y, z) is:
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(ζi − ξi)(y1 − x1) + (η1 − ξ1)(zi − xi) = (ηi − ξi)(z1 − x1) + (ζ1 − ξ1)(yi − xi)(1)

for i = 2, . . . , N, together with the defining equations of tX,x in the ξ – variables and
the defining equations of tY,y in the η – variables.

As noted in [FR], we may assume that the coordinate system is such that xi =
yi = zi = 0 for i = 2, . . . , N . Under this assumption, (1) simplifies to:

(ζi − ξi)(y1 − x1) = (ηi − ξi)(z1 − x1), i = 2, . . . , N,

or equivalently:

(y1 − x1)ζi = (z1 − x1)ηi − (z1 − y1)ξi, i = 2, . . . , N.(2)

Note that there is no condition on ζ1, because the line x2 = . . . = xN = 0 lies in
the join correspondence S. (More precisely, x× y × xy lies in S.)

Suppose that (ξ, η, ζ) ∈ ker(dp3)(x,y,z). The subspace ker(dp3)(x,y,z) ⊂ tS,(x,y,z)

is defined by the equations ζ1−z1 = ζ2 = . . . = ζN = 0. If we substitute these equations
into (2), we obtain:

ξi =
z1 − x1

z1 − y1
ηi for i = 2, . . . , N.(3)

Conversely, it is easy to see that if (3) is satisfied, then (ξ, η, z) ∈ ker(dp3)(x,y,z).
To prove (a) it is enough to show that if (3) holds, then (1, ξ1, . . . , ξN ) is a linear

combination of (1, x1, 0, ..., 0), (1, η1, ..., ηN ), and (1, y1, 0, ..., 0). Let ρ = z1−x1
z1−y1

. Then
we can use (3) to show that

(1, ξ1, ..., ξN )− ρ(1, η1, ..., ηN ) = (1− ρ, ξ1 − ρη1, 0, ..., 0).

Since y1 6= x1, the expression on the right side of this last equation is a linear
combination of (1, x1, 0, ..., 0) and (1, y1, 0, ..., 0). This implies that ξ ∈ tX,x ∩ xtY,y,
which proves (a).

To prove (b), suppose that ξ ∈ tX,x ∩ xtY,y. Then

(ξ1, ..., ξN ) = σ(η′1, ..., η
′
N ) + (1− σ)(x1, 0, ..., 0)

for some σ ∈ k and (η′1, ..., η
′
N ) ∈ tY,y. We define (η1, ..., ηN ) ∈ tY,y by the formulas

η1 − y1 =
z1 − y1

z1 − x1
σ(η′1 − y1) =

σ

ρ
(η′1 − y1)

ηi =
z1 − y1

z1 − x1
ση′i =

σ

ρ
η′i for i = 2, ..., N,

where ρ is defined as above. With this choice of η it follows that (3) is satisfied, so that
(ξ, η, z) ∈ ker(dp3)(x,y,z). It is clear from (3) that η2, ..., ηN are uniquely determined
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by ξ. Since x /∈ tY,y, any line parallel to xy meets tY,y in at most one point. Therefore
η1 is also uniquely determined. This completes the proof of (b).

Let X and Y be closed subvarieties of PN , and let u ∈ XY . As in §1 we denote
the variety of entry points for u in X by Xu. Recall that it is the closure of

{x| x ∈ X and u ∈ xy for some y ∈ Y, y 6= x} .

The entry point set Yu in Y is given in a similar way. The following observation will
be useful in proving the main result of this section.

Lemma 3.2 Let X and Y be closed subvarieties of PN . If S is the join correspondence,
and p3 : S −→ XY is defined as above, then p−1

3 (u) ⊆ Xu × Yu × {u} for general
u ∈ XY .

Proof. We have p−1
3 (u) ∩ S0 ⊆ Xu × Yu × {u} because S0 is closed in

(X × Y − ∆) × PN . If p3(S − S0) 6= XY , then p−1
3 (u) = p−1

3 (u) ∩ S0 for every u ∈
XY − p3(S−S0), so that the conclusion is immediate in this case. In general, we have
dim p−1

3 (u) = dim p−1
3 (u) ∩ S0 = δ(X, Y ) for every u in some dense open subset

U0 ⊂ XY . If p3(S − S0) = XY , then there is a dense open subset U1 ⊂ U0 such
that dim p−1

3 (u) ∩ (S − S0) < δ for every u ∈ U1. In this case, p−1
3 (u) is the closure of

p−1
3 (u) ∩ S0 for every u ∈ U1, so that the conclusion of the lemma follows.

It would be interesting to know whether the inclusion p−1
3 (u) ⊆

Xu × Yu × {u} holds for all u ∈ XY , or at least to have a more precise version of
the lemma.

We can now state and prove the main result of this section.

Proposition 3.3 Let X and Y be closed subvarieties of PN
k , where the field k is of

characteristic 0, as before. Let u be a general point of XY − (X ∪ Y ) and let x and y
be general points of the entry point varieties Xu and Yu, respectively, such that u ∈ xy.
In particular, assume that x /∈ tY,y and y /∈ tX,x. Then tXu,x = tX,x ∩ xtY,y and
tYu,y = tY,y ∩ ytX,x

Proof. Let S be the join correspondence, and let p3 : S −→ XY be defined
as before. Then p−1

3 (u) ∩ (S − Sing(S)) is smooth of dimension δ(X, Y ) for general
u ∈ XY − (X ∪Y ). Moreover, p−1

3 (u) ⊆ Xu×Yu×{u} for general u, and each general
u ∈ XY lies on at least one line xy such that x /∈ tY,y and that y /∈ tX,x. Since
u /∈ X ∪ Y , each line through u contains at most finitely many points of X ∪ Y . This
implies that dim(Xu) = dim(Yu) = δ(X, Y ) and that p1 : S −→ X and p2 : S −→ Y
induce generically finite morphisms of p−1

3 (u) onto Xu and Yu respectively. By generic
smoothness, the corresponding tangent space maps are surjections of the tangent space
tp−1

3 (u),(x,y,u) onto tXu,x and tYu,y, respectively. Therefore, the conclusion follows from
Proposition 3.1.

§4. An alternative Proof.

In this section we will present an alternative proof of the case q = 1 in Zak’s theorem.
Specifically we prove the following, where the notation is as in §1:
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Theorem 4.1 Let X ⊂ PN be a nonsingular projective variety which spans PN . Then
δk+1 ≥ δk + δ1 for all k such that Xk+1 = Sk(X) 6= PN .

If δ1 = 0 then the claim is proved in Proposition 1.2. So assume that δ1 ≥ 1.
The proof uses our description of the tangent spaces of the variety of entry points,
Terracini’s Lemma, and the Fulton – Hansen Connectedness Theorem. We will discuss
the case k = 1 before presenting the general case. This is done only to exhibit the
main ideas separately from the notational complexities of the general case.

The case k = 1: In the first part of the proof, we will show that three general
embedded tangent spaces of X have empty intersection. In doing this, we will use a
method of applying the connectedness theorem which is due to Zak, along with our
description of the tangent space of an entry point set.

Let u be a general point of X2 = S(X), and let Xu be the corresponding entry
point locus in X. Let T (Xu, X) = ∪{tX,x| x ∈ Xu}. Then T (Xu, X) ⊂ tS(X),u by
Terracini’s Lemma, Theorem 1.3. Since S(X) 6= PN , the tangent space tS(X),u is a
proper subspace of PN , so that XuX 6⊆ tS(X),u . Hence, T (Xu, X) 6= XuX. Exactly
as in the proof of Proposition 2.4, it follows from Theorem 1.4 that dim(XuX) =
dim(Xu) + dim(X) + 1. By Theorem 1.3 we conclude that

tXu,x ∩ tX,z = ∅ for general x ∈ Xu, z ∈ X.

If x, y is a general pair of points such that u ∈ xy, then

tXu,x = tX,x ∩ xtX,y,

by Proposition 3.3. On the other hand, if x and y are general points of X and u is a
general point of the line xy, then u is a general point of S(X) = X2. Therefore

tX,x ∩ xtX,y ∩ tX,z = ∅ for general x, y, z ∈ X.

It follows a fortiori that

tX,x ∩ tY,y ∩ tX,z = ∅ for general x, y, z ∈ X.(1)

Remark. In the case δ1 = 1, Theorem 1.3 implies that the pairwise intersections
tX,x ∩ tY,y, etc. are points, so that the relation (1) is an immediate consequence of the
fact that X is not a cone. But this identity is not as obvious in the case δ1 ≥ 2,
since the pairwise intersections then have dimensions ≥ 1. There does not seem to be
any elementary way to rule out the possibility that the triple intersection could be a
variable point.

To finish the proof in this case, we study incidence properties of certain subspaces
of PN . Thus, let x, y, z be general points of X; let M1 = tX,x, M2 = tX,y, and N =
tX,xtX,y. Let Λi = tX,z ∩ Mi for i = 1, 2. Now, N = tS(X),u, where u is a general
point of xy. We have dim(Λi) = δ1 − 1 by Theorem 1.3, and dim(tX,z ∩ N ) = δ2 − 1
similarly. The relation (1) implies that Λ1 ∩ Λ2 = ∅, therefore dimΛ1Λ2 = 2δ1 − 1.
Since Λ1 ∩ Λ2 ⊂ tX,z ∩N , it follows that δ2 ≥ 2δ1, as claimed.

The proof in general. To simplify the notation, we will prove the equivalent
statement that δk ≥ δk−1 +δ1 provided that Xk 6= PN . Let u be a general point of Xk,
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and let Xu be the corresponding entry point set on X. Define T (Xu, X) as before, it is
contained in tXk,u by the same argument as in the special case. Because Xk 6= PN the
tangent space tXk,u is a proper subspace of PN , thus XuX 6⊆ tXk,u. As in the special
case it then follows that dim(XuX) = dim(Xu) + dim(X) + 1, which implies as before
that

tXu,x ∩ tX,z = ∅ for general x ∈ Xu, z ∈ X.

By Proposition 3.3 we have tXu,x = tX,x∩xtXk−1,v, where (x, v) ∈ X×Xk−1 is a
general pair such that u ∈ xv. As in the special case, we must check that the hypotheses
of Proposition 3.3 are satisfied, namely that u /∈ Xk−1, v /∈ tX,x, and x /∈ tXk−1,v. For
this we first take x ∈ X and v ∈ Xk−1 to be general points and then take u to be a
general point of the line xy. It is not hard to see that u can be moved to any point
of some dense open subset of Xk by moving x and v through appropriate dense open
subsets of X and Xk−1 respectively. The equality tXu,x ∩ tX,z = ∅ leads immediately
to:

tX,x ∩ xtXk−1,v ∩ tX,z = ∅ for general x, z ∈ X and v ∈ Xk−1.

As before it follows that

tX,x ∩ tXk−1,v ∩ tX,z = ∅ for general x, z ∈ X and v ∈ Xk−1.(2)

Also as in the special case, we finish the proof by studying the incidence prop-
erties of certain linear subspaces of PN . Thus, let x ∈ X and v ∈ Xk−1 be gen-
eral points, and let u be a general point of xv. Then u is a general point of Xk.
Let M1 = tX,x, M2 = tXk−1,v , and N = M1M2, so that N = tXk,u by The-
orem 1.3. Consider another general point z ∈ X and set Λ1 = tX,z ∩ M1 and
Λ2 = tX,z ∩ M2. Thus, dim(Λ1) = δ1 − 1 and dim(Λ2) = δk−1 − 1 by Theorem
1.3, similarly dim(tX,z ∩ N ) = δk − 1. The relation (2) implies that Λ1 ∩ Λ2 = ∅.
Therefore, we have dim Λ1Λ2 = δ1 + δk−1 − 1. Since Λ1Λ2 ⊆ tX,z ∩ N , it follows that
we have δk ≥ δ1 + δk−1, as claimed.

To use similar methods to prove the general inequality δp+q ≥ δp + δq, one
might consider general points v ∈ Xp and w ∈ Xq, and a general point u ∈ vw.
Let M1 = tXp,v and M2 = tXq,w. As above, define N = M1M2 = tXp+q,u. Let z
be a general point of X, put Λ1 = tX,z ∩ M1 and Λ2 = tX,z ∩ M2. As above we
see that dim(Λ1) = δp − 1 and dim(Λ2) = δq − 1, while dim(tX,z ∩ N ) = δp+q − 1.
Since Λ1Λ2 ⊆ tX, z ∩ N , it suffices to prove that Λ1 ∩ Λ2 = ∅, or equivalently that
tXp,v ∩ tXq,w ∩ tX,z = ∅. This is an analogue of (2), and one might plausibly seek
to prove this by studying the tangent spaces of entry point sets on one of the higher
secant varieties. But since the higher secant varieties Xk have singular points, the
variety T (Xu, X) must be replaced by an appropriate variety of relative tangent stars.
For the type of proof proposed here, the main difficulty is that we do not know much
about the size of the relative tangent star at a point of some subvariety of Xk which
is a singular point of Xk. In particular, we don’t know whether there is a useful
replacement for the inclusion T (Xu, X) ⊂ tXk,u.
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